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Macrophages are crucial innate immune cells that maintain tissue homeostasis and

defend against pathogens; however, their infiltration into tumors has been associated

with adverse outcomes. Tumor-associated macrophages (TAMs) represent a significant

component of the inflammatory infiltrate in breast tumors, and extensive infiltration

of TAMs has been linked to poor prognosis in breast cancer. Here, we detail how

TAMs impede a productive tumor immunity cycle by limiting antigen presentation and

reducing activation of cytotoxic T lymphocytes (CTLs) while simultaneously supporting

tumor cell survival, angiogenesis, and metastasis. There is an urgent need to overcome

TAM-mediated immune suppression for durable anti-tumor immunity in breast cancer. To

date, failure to fully characterize TAM biology and classify multiple subsets has hindered

advancement in therapeutic targeting. In this regard, the complexity of TAMs has

recently taken center stage owing to their subset diversity and tightly regulated molecular

and metabolic phenotypes. In this review, we reveal major gaps in our knowledge of

the functional and phenotypic characterization of TAM subsets associated with breast

cancer, before and after treatment. Future work to characterize TAM subsets, location,

and crosstalk with neighboring cells will be critical to counteract TAM pro-tumor functions

and to identify novel TAM-modulating strategies and combinations that are likely to

enhance current therapies and overcome chemo- and immuno-therapy resistance.
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INTRODUCTION

Macrophages are innate immune cells and play a myriad of important roles such as host defense,
tissue homeostasis, and modulating inflammatory responses (1, 2). To perform these functions,
immature macrophages with high plasticity respond to microenvironmental cues, causing them
to adopt a spectrum of effector function, among which M1-like and M2-like represent extreme
polarization states (3–5). Classically activated M1 macrophages exhibit pro-inflammatory behavior
by migrating to inflamed tissues, targeting pathogens with the production of reactive oxygen
species (ROS), and having high antigen-expressing potential (6–8). Due to their inflammatory
behavior, anti-tumor macrophages are commonly called M1 macrophages. These macrophages
can be potent effector cells that kill tumor cells and can recruit cytotoxic T lymphocytes (CTLs)
to activate adaptive immune responses. On the opposite side of the macrophage polarization
spectrum, alternatively activated M2 macrophages secrete anti-inflammatory cytokines to induce
immune tolerance and attract T regulatory cells (Tregs) and Th2T cell subsets capable of protective

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.643771
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.643771&domain=pdf&date_stamp=2021-04-23
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jguerriero@bwh.harvard.edu
https://doi.org/10.3389/fimmu.2021.643771
https://www.frontiersin.org/articles/10.3389/fimmu.2021.643771/full


Mehta et al. Macrophage-Imposed Limitations for Breast Cancer

type 2 responses but devoid of cytotoxic functions. M2
macrophages facilitate canonical tissue repair functions and in
cancer are regarded as pro-tumor where they promote tissue
remodeling and repair, stimulate angiogenesis with vascular
endothelial growth factor (VEGF), and encourage tissue growth
with transforming growth factor beta (TGF-β) (9). Therefore,
for simplicity, tumor-associated macrophages (TAMs) have been
described as either M1-like (anti-tumor) orM2-like (pro-tumor),
but it should be recognized that theM1/M2 dichotomy represents
idealized polarization states (Figure 1), while in nature, there
exists a broad spectrum of macrophage phenotypes, which will
be discussed in detail below.

TUMOR INFILTRATING MACROPHAGES IN
BREAST TUMORS

Recruitment of Monocytes and
Macrophages to Breast Tumors
TAMs represent a significant component of the inflammatory
infiltrate in breast tumors (10, 11). Tumor-derived growth factors
such as chemokines and cytokines facilitate recruitment of
monocytes and macrophages into tumors (Figure 2, step 1) (12).
One of the best-characterized cytokines responsible for recruiting
TAMs into the tumor is chemokine (C-Cmotif) ligand 2 (CCL2),
also known as monocyte chemoattractant protein 1 (MCP-1).
CCL2 is expressed by both stromal cells and tumor cells (13)
and is associated with poor prognosis in breast cancer (14,
15). Through recruitment of CCR2-expressing monocytes, CCL2
has been shown to promote pulmonary metastasis in mouse
models of breast cancer (16). Activation of the CCL2–CCR2
axis promotes CCL3 production from macrophages, enhancing
metastatic seeding of breast cancer cells (17). CCL5, also known
as Regulated upon Activation, Normal T Cell Expressed and
Secreted (RANTES), is another well-known factor that recruits
TAMs to the breast tumor. CCL5 is expressed by malignant
epithelial cells in breast carcinoma and is associated with
advanced disease progression (18–20). Macrophages express high
levels of its receptor (CCR5) and respond to CCL5 produced
by tumor cells by infiltrating to the TME (21, 22). Importantly,
CCL5 has been reported to alter the functionality of TAMs
toward a tumor-promoting phenotype in colorectal cancer (23).

Several other factors produced by tumor cells help recruit
macrophages. Colony-stimulating factor 1 (CSF-1), also
known as macrophage colony-stimulating factor (M-CSF), and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
are other tumor-derived factors produced by breast cancer cells
(12, 24, 25). CSF-1 expression is associated with poor prognosis
and increased infiltration of CSF-1 receptor (CSF-1R)-expressing
macrophages in mouse models of breast cancer (26, 27). Tissue
factors important for angiogenesis, such as vascular permeability
factor (VPF), are also known to attract monocytes to tumors
(28). In line with this, increased VEGF expression in tumor
cells correlates with macrophage infiltration in human breast
cancer (29). Hypoxia is another well-described factor that alters
the activation and accumulation of macrophages in hypoxic
regions and prevents migration out of these regions (30–32).

Recruitment of TAMs into hypoxic niches occurs in a hypoxia-
induced Semaphorin 3A (Sema3A)-dependent manner through
VEGF-R1 phosphorylation in a mouse model of breast cancer
(33). VEGF signaling and hypoxia also play a crucial role in
angiogenesis, an important hallmark of cancer, providing links
between angiogenesis and TAMs (34).

To further add complexity to TAMs, there are at least
three lineages of macrophages that arise at different stages of
development and persist into adulthood (35, 36). Each tissue in
the body is composed of 5–20% tissue-resident macrophages,
which are yolk sac-derived and seeded during embryogenesis.
During homeostatic adaptations, such as tumorigenesis,
macrophages of different phenotypes can be recruited from the
monocyte reservoirs of blood, spleen, and bone marrow (37) and
from resident progenitors or through local proliferation (38, 39).
One report documented the loss of resident macrophages and
a concomitant increase in monocyte-derived TAMs in a breast
cancer model (40). Tissue macrophages have vastly different
transcriptional profiles between tissues, suggesting that the
macrophages at metastatic sites may differ from the primary
tumor site and may need to be targeted differently (36). It
is currently unknown how the ontogeny of TAMs influences
primary and metastatic breast cancer and the extent to which
TAM origin is important for clinical outcome.

Differentiation and Maturation of TAMs in
Breast Tumors
TAM differentiation and polarization is regulated by the tumor
microenvironment (TME) and results in a heterogeneous
population of cells, but the subset diversity is only just
beginning to be understood. Tumors are generally poorly
vascularized and lack nutrients, causing recruited monocytes
to differentiate into mature wound-repairing macrophages. To
an infiltrating monocyte, the tumor is a “wound” that needs
repair, and therefore, TAMs polarize to an M2-like phenotype
driven by CSF-1, IL-3, IL-4, IL-10, and TGF-β (Figure 2, step
2) (41, 42). TAMs subsequently show pro-tumor functions
by promoting tumor cell survival, proliferation, angiogenesis,
and dissemination (42–47). Whether or not differentiated
macrophages are able to undergo M1/M2 repolarization after
adopting a mature phenotype in vivo is still under debate, or
if instead new monocytes recruited to the TME acquire their
phenotype and remain in that state (41, 48–50). At least ex
vivo M1-like human macrophages can be repolarized to M2-like
macrophages upon exposure to M2 cytokines (51) and that M2-
like macrophages are reprogrammed to express M1-like genes
following exposure to TLR ligands or IFN-γ (52, 53).

PRO-TUMOR FUNCTIONS OF
MACROPHAGES IN BREAST TUMORS

Promotion of Tumorigenesis
The contribution of TAMs to cancer progression and outcomes
is multifaceted due to their wide spectrum of phenotypes.
In vitro and in vivo studies have shown that macrophages
are involved in a feedback loop between tumor cells at
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FIGURE 1 | Opposing phenotypes of M1-like and M2-like tumor-associated macrophages.

invasive fronts of breast tumors, where macrophages provide
factors that enhance tumorigenesis. TAMs can directly promote
the proliferation of tumor cells by secreting growth factors
and inflammatory mediators such as CCL2, IL-1α, IL-6, and
TNF-α (Figure 2, step 3) (54). Importantly, TNF-α secreted
by TAMs leads to the activation of NF-κB in tumor cells,
preventing tumor cell death and enhancing tumor cell invasion
(55). In that regard, tumor cells recruit and activate M2-
like macrophages, which then produce M2-related cytokines,
such as CCL18, which causes breast cancer cells to elongate,
lose contact inhibition, and increase vimentin expression. In a
humanized murine model, anti-GM-CSF and anti-CCL18 both
reversed the epithelial–mesenchymal transition (EMT) state of
cancer cells, inhibiting metastasis. This concept was further
confirmed with human breast tumors, revealing that high GM-
CSF expression significantly corresponds to CCL18-expressing
macrophages, cancer cell EMT and metastasis, and poor clinical
outcome (56).

Facilitation of Angiogenesis
Angiogenesis is a complex, multistep process of forming new
vasculature that facilitates tumor growth and progression (31).
Macrophages are a major contributor of angiogenesis through
the secretion of angiogenic cytokines (Figure 2, step 4) (57).
TAMs secrete a key angiogenic cytokine, VEGF-A, directly,
or indirectly by secreting matrix metalloproteinase 9 (MMP9)

that activates latent forms of VEGF-A (29, 58, 59). TAMs
also produce other pro-angiogenic factors from the fibroblast
growth family that includes TGF-α, TGF-β, EGF, and PDGF
(12, 60). Further supporting the role of macrophages in tumor
angiogenesis, studies have shown that increased infiltration of
TAMs promote angiogenesis whereas TAM depletion inhibits the
angiogenic switch (61, 62). TAMs also contribute to angiogenesis
by producing CCL18, which promotes angiogenesis both in vitro
and in vivo (63). In addition to angiogenesis, CCL18 production
from TAMs has also been associated with tumor invasiveness
and metastasis in breast cancer (64). Furthermore, a subset of
angiopoietin receptor Tie2-expressing monocytes, also known
as TEMs, promote tumor angiogenesis (65, 66). In murine
models, TEMs were initially identified as leukocytes expressing
Tie2, CD11b, and CD45 in the peripheral blood and Tie2,
CD11b, and Sca-1 in mammary tumors (65, 67). Additionally,
TEMs also show a unique surface marker profile consisting of
Tlr4, Mrc1, Il4ra, and CD163, which differentiate them from
TAMs in murine mammary tumors (68). In humans, TEMs
express CD45, CD11b, CD11c, CCR5, CD33, M-CSF-1R, and
CD13 but lack expression of CD62L and CCR2 in circulating
blood. Interestingly, TEMs from tumors of primary invasive
breast carcinoma patients display different markers associated
with antigen presentation, such as HLA-DR, CD80, CD86,
and CD1a in addition to CD14, Tie-2, and VEGFR-1, which
suggests their role in tumor-specific immune responses (69, 70).
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FIGURE 2 | Tumor-associated macrophages (TAMs) impede a productive anti-tumor immune response. (1) Monocytes are recruited to the tumor through

tumor-derived factors. (2) One of the tumor monocytes mature to suppressive TAMs. (3) TAMs produce factors that promote tumor cell proliferation and survival. (4)

TAMs promote angiogenesis and metastasis (5). (6) TAMs impair productive antigen presentation by dendritic cells and themselves downregulate MHC class I and II

molecules. TAMs inhibit T cell function through recruitment of T regulatory cells (Tregs) (7) and suppression (8) and upregulation of co-inhibitory molecules (9).

TEMs are also capable of secreting large amounts of IL-10
and VEGF, promoting a pro-angiogenic and immunosuppressive
environment that inhibits tumor-specific T cell responses in
breast tumors (70).

Promotion of Metastasis
TAMs play a major role in tumor progression and metastasis by
producing various matrix proteolytic enzymes including matrix
metalloproteases (MMPs) and urokinase (uPA; Figure 2, step 5)
(71, 72). This allows for the local invasion and attachment of
cancer cells to other adjacent epithelial cells and the extracellular
matrix (ECM) through the formation of adherens junctions.
Next, the multistep process of invasion-metastasis occurs with
intravasation of cancer cells to blood and lymphatic vessels,
escape of cancer cells to distant tissues, and, finally, the growth

of small lesions in tumors (34, 73). Direct visualization of
macrophages using intravital multiphoton imaging showed that
perivascular macrophages are important for the intravasation
of cancer cells in the mammary tumor (74). In line with this,
the genetic ablation of CSF-1 reduced macrophage density and
slowed tumor progression and metastasis in the MMTV-PyMT
model of breast cancer (75). CXCL1 secretion from TAMs
is known to promote breast cancer migration and epithelial–
mesenchymal transition in both mouse and human breast cells
(76). Furthermore, a study showed that macrophages were
required for breast tumor metastases, and Ets-2 transcription
factor in TAMs was important for promoting angiogenesis
and growth of both primary tumors and lung metastases
(77). In another study, macrophage depletion using clodronate-
encapsulated liposomes in an ovarian tumor reduced metastasis
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in ovarian cancer (78). In the MMTV-PyMT mouse model of
breast cancer, TAMs show high levels of cathepsin protease
activity, which promotes tumor invasion and angiogenesis (79).
It is also reported that IL-4 released from tumor cells and T cells
induces cathepsin protease activity in TAMs to promote tumor
invasion (79).

Importantly, tissue-resident macrophages at metastatic sites
may vary greatly. For example, hypoxic primary breast tumor
environments release lysyl oxidase (LOX), triggering NFACTc1-
driven osteoclastogenesis, which increases bone resorption and
thereby creates a metastatic niche for circulating tumor cells.
Bisphosphonate treatment inhibits bone osteoclasts, which
could be a potential combination therapeutic for patients
with high-LOX primary breast tumors (80). The ability for
therapeutics to reach sites of metastasis should also be
considered when targeting TAMs. For example, in a murine
breast cancer model, local pulmonary administration of CSF-
1R inhibition allowed the drug to overcome lung physiological
barriers of administration better than oral administration,
significantly enhancing the M1/M2 ratio at a much lower dose.
Therefore, orally administered medications may not effectively
reach the lung-resident macrophages due to mucous layers,
enzyme degradation, or mucociliary clearance; therefore, locally
administered routes specific to lung metastatic sites should be
considered (81).

Non-productive Antigen Presentation
Detrimental to the TME, protumor TAMs can become less
efficient antigen-presenting cells, subsequently causing these cells
to produce lower levels of pro-inflammatory cytokines and
become less tumoricidal or able to activate T cells (82–84).
TAMs that express pro-tumor features such as the IL-4R and
arginase activity express low levels of MHCII (85). Subsets of
TAMs characterized by lower expression of MHCII have been
shown to be less effective in antigen presentation (85–87). In
general, macrophages are less efficient in processing internalized
antigens compared to conventional DCs, and macrophages in
tumors appear to be greatly restricted in their antigen-presenting
capacity (85, 86). Importantly, IL-10 derived from TAMs can
also inhibit DC antigen presentation, further dampening tumor
immunity (Figure 2, step 6) (88).

Suppression of T Cell Function
TAMs release anti-inflammatory cytokines that promote an
immune-suppressive tumor microenvironment through the
recruitment of Tregs, which suppresses effector T cell activation
(Figure 2, step 7). For example, CCL22 and CCL20 secreted
by TAMs induce an immunosuppressive microenvironment by
recruitment of Tregs in ovarian and colorectal cancer (89,
90). In addition, TAM-derived chemokines CCL17, CCL18,
CCL22, IL-4, IL-10, TGF-β, and prostaglandin-E2 (PGE2) have
all been well-characterized in their ability to suppress T cell
functions (Figure 2, step 8) (91–97). As a third way to inhibit
T cell function, blocking B7-H4 on macrophages improves
macrophage-mediated T cell activation (98), and at the heart of
T cell activation as it relates to immunotherapy, TAMs induce
immunosuppression through the expression of ligands that bind

to PD-1 and CTLA-4 molecules on T cells, which inhibits T cell
activation (Figure 2, step 9) (99).

MACROPHAGE METABOLISM AS A
BARRIER TO ANTI-TUMOR IMMUNE
RESPONSES

Macrophage metabolism is a critical feature of the macrophage
phenotype. Previous work has revealed that M2-like
macrophages have a distinct metabolic profile compared to
M1-like macrophages (100). In vitro, the metabolic profile
of macrophages activated with IL-4 (M2-like stimuli) is
distinct from those activated with lipopolysaccharide (LPS)
+ IFN-γ (M1-like stimuli) (100). Studies have revealed that
IL-4-stimulated macrophages depend on fatty acid oxidation
(FAO) known as β-oxidation (101) and glutamine metabolism
for the production of key metabolic intermediates such as
α-ketoglutarate and succinate (100), to fuel the oxidative
tricarboxylic acid cycle (TCA) cycle. IL-4 activates glutamine
catabolism in macrophages, and interestingly, glutamine
deprivation or inhibition of N-glycosylation decreased M2
polarization and production of the chemokine CCL22 (100).
However, macrophages stimulated with LPS and IFN-γ utilize
glycolysis and fatty acid synthesis (FAS) (102). Some early
work has revealed that enhanced uptake of glucose through
the induction of glucose transporter 1 (GLUT1) is a key
feature of LPS-activated macrophages (103). Furthermore,
A[1,2-13C2] glucose tracer-based metabolomics approach,
coupled with mass isotopomer distribution analysis of the newly
formed metabolites, revealed that stimulated macrophages are
highly glycolytic cells. The expression of 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase (PFK2), which regulates
fructose-2,6-bisphosphate concentration and the glycolytic flux,
was found to be the key molecular switch between the two
phenotypic states and was independent of hypoxia-inducible
factor 1α (HIF-1α) activation (104).

Metabolic regulation is a major difference between the
extreme states of macrophage polarization and related to their
downstream effector function. M1 macrophages preferentially
depend on glycolysis, whereas M2 macrophages facilitates ATP
production through the oxidative tricarboxylic acid cycle (TCA)
coupled with oxidative phosphorylation (OXPHOS) (105–107).
Previous work shows that M1 macrophages heavily depend on
glycolysis to fulfill their energy demands; however, glycolysis only
generates two ATP molecules per unit of glucose whereas the
TCA cycle and OXPHOS generates 36 ATP molecules (108).
It is speculated that M1 macrophages produce enough energy
and intermediate metabolites for quick execution of effector
functions like cytokine production and microbial killing (109,
110). Indeed, the metabolic differences between M1 and M2
macrophages are critical for their effector function. M1 and M2
macrophages display major differences in L-arginine metabolism
via nitric oxide synthase (NOS) or arginase, respectively, which
ultimately impact their functional outcome. NOS2 is activated
through proinflammatory cytokines such as IFNγ, TNFα, IL-1β,
and LPS (111) and has been well-characterized to metabolize
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L-arginine to L-citrulline and cytotoxic nitric oxide (NO; a
pro-inflammatory mediator responsible for anti-tumor immune
response) (112, 113). The expression of arginase is induced
by Th2 cytokines such as IL-4 and IL-13 that activate the
signal transducer and activator of transcription 6 (STAT6),
which acts with STAT3 and CCAAT/enhancer binding protein β

(C/EBPβ) to bind to the arginase 1 enhancer locus. Additionally,
GM-CSF, TGFβ, prostaglandin E2 (PGE2), cyclic adenosine
monophosphate (cAMP), and TLR agonists can induce the
expression of arginase 1 (111). In M2 macrophages, arginase
catalyzes L-arginine to urea and L-ornithine (113). In M2
(wound repairing) macrophages, ornithine production promotes
cell proliferation and repairs tissue damage through generation
of polyamines and collagen, which are important for wound
repair, but highly immunosuppressive in the TME (114–117) and
involved in mediating TME remodeling (118). Recent studies
have challenged this dichotomy of macrophage metabolism. A
transcriptomic andmetabolomics-based analysis of macrophages
stimulated either with LPS or Pam3CysSK4 [P3C; a toll-like
receptor (TLR) 2 agonist] revealed divergent metabolic responses
such as TCA, OXPHOS, and lipid metabolism pathways
between both stimuli, which regulated cytokine production and
phagocytosis. Unlike LPS, the TLR2 ligand P3C induced a
complex metabolic rewiring by upregulating both glycolysis and
OXPHOS (119).

The Role of the TME on Mediating TAM
Metabolism
The intricate communication between TAMs and the TME
has been well-studied (36, 120–123), and the metabolic
interactions between TAMs and cancer cells have been recently
reviewed (124). There are growing efforts to understand the
crosstalk between metabolic pathways, their metabolites, and the
intracellular signaling in macrophages that in turn affects the
epigenetic and transcriptional profile, which ultimately controls
macrophage plasticity (100, 105, 125–127). One recent study
showed that lactic acid production from tumor cells was an
essential component in driving the M2-like polarization of TAMs
by upregulating ARG1 and vascular endothelial growth factor
A (VEGFA), with the effect of lactic acid being dependent
on HIF-1α (128). Another study showed that lactate released
from cancer cells acts as ligand for G protein-coupled receptor
132 (Gpr132, a pH sensor) that converts macrophages to an
immunosuppressive M2-like phenotype. Importantly, genetic
deletion of Gpr132 impaired M2-like macrophage phenotype
with reduced tumor burden and metastasis in a preclinical model
of breast cancer (129). In line with this, in areas of hypoxia, TAMs
upregulate HIF-1α, which enables migration and survival (130),
suggesting a feedback loop and signaling between tumor cells and
TAMs that regulate their metabolic phenotype. Tumor-derived
lactic acid has also been shown to induce the activation of the
angiopoietin receptors (Tie1 and Tie2) and AXL receptors on
TAMs. These receptors have been associated with pro-angiogenic
and immunosuppressive phenotypes (131, 132). Similarly,
macrophages treated with conditioned media from thyroid
cancer cells underwent functional reprogramming. This effect

was partly mediated by tumor cell-derived lactate that induced
upregulation of cytokine production through an AKT1/mTOR-
dependent increase in aerobic glycolysis. Immunohistochemistry
(IHC) analysis confirmed the increase in glycolytic enzymes and
lactate receptor in TAMs from human tumors (133).

Tumor cell-derived long-chain fatty acids including oleic acid
have been shown to reprogram mitochondrial respiration in
TAMs and subsequently induce polarization to an immune-
suppressive phenotype through activation of the mTORC
signaling pathway (134). In another study, tumor cell-derived
succinate resulted in TAM polarization toward a pro-tumor
phenotype through a succinate receptor (SUCNR1) and was
dependent on the PI3K/HIF1α signaling pathway that resulted in
enhanced metastasis (135). Similarly, prostaglandin E2 (PGE2), a
prostanoid lipid synthesized by tumor cells, has been reported to
polarize TAMs toward a pro-tumor phenotype through the cyclic
AMP-responsive element binding (CREB) pathway (136, 137).
These studies indicate that there is an intricate relationship
between the factors secreted by the TME that dictates the
outcome of macrophage phenotype and function. Additional
studies to evaluate the differences of how the TME at different
metastatic sites regulates TAMmetabolism are warranted. An in-
depth understanding of the crosstalk between TAMs and TME
will be critical to design therapeutic strategies to target TAMs at
both the primary and metastatic sites.

CLINICAL SIGNIFICANCE OF TAMS IN
BREAST TUMORS

TAM infiltration is associated with poor prognosis, in a variety of
cancers, including breast cancer (61, 92, 138, 139). This finding
has been corroborated in a meta-analysis where TAM density
significantly correlated with poor survival in patients with breast
cancer (140). In an analysis of 11,000 breast tumors, the immune
cell type that correlated most significantly with poor clinical
outcome in estrogen receptor-positive (ER+) breast tumors was
the presence of TAMs (141, 142). Clinically, the presence of
TAMs is associated with metastasis (44) and poor survival (45–
47) and has been shown to induce endocrine therapy resistance
in ER+ breast cancer cells in vitro and in vivo through NF-
κB- and IL-6-dependent signaling pathways (143). Importantly,
a higher fraction of M1-like TAMs in ER+ breast cancer
correlated with a higher pathological complete response (pCR)
rate as well as prolonged disease-free survival (DFS) and overall
survival (OS) (142). In a cohort of 40 HER2+ breast cancer
patients who received trastuzumab, an anti-HER2 therapy, a high
number of M1-like macrophages (iNOS+) were significantly
associated with improved survival whereas high expression of
M2-like macrophages (CD163+) were associated with worse
prognosis (144). Additionally, high numbers of iNOS+ M1-
like macrophages combined with high numbers of CD8+ T
cells were significantly associated with improved survival, and
this combined marker predicted a patient’s ability to remain
progression-free without trastuzumab after initially responding
to therapy (144). This is in line with other reports demonstrating
low TAM and high CD8+ T cell populations are associated with
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better recurrence-free survival in patients with invasive breast
cancer (145).

Relative Numbers of Macrophages Across
Breast Tumor Subsets
Evidence for differential TAM regulation between breast tumor
subsets comes from ER+ and triple-negative breast cancer
(TNBC) cell lines co-cultured with macrophages. Tumor-
induced phenotypic drift toward M2-like phenotype has been
shown in differentiating bone marrow-derived macrophages
(BMDMs) in breast cancer cell-conditioned media (146).
Additionally, macrophages exposed to a TNBC cell line
upregulated CCL2, reinforcing the concept that macrophage
infiltration is a vicious feedback loop. In contrast, ER+ breast
cancer cells co-cultured with macrophages were more broadly
pro-inflammatory, secreting CXCL10, IL-2RA, and IL-3 (147).
Furthermore, macrophage infiltration by breast cancer subtype
has been explored using gene expression data with adjacent
normal tissue as a baseline, which reported lower macrophage
scores in ER+ tumors, especially ER+/HER2– subsets, in
comparison to ER– tumors (148). A recent study examined
immune-rich ER+ and immune-rich TNBC tumors based on
microarray expression scores and compared relative fractions of
immune cells. Although TNBC had a higher overall macrophage
count, ER+ tumors had a higher relative percentage of M2-
like macrophages and upregulation of TGF-β expression, which
are both indicators of poor prognosis (149). TGF-β and IL-4
have been shown to upregulate YKL-39, a chitinase-like protein
secreted by TAMs, which facilitates monocyte recruitment and
angiogenesis. Importantly, YKL-39 expression levels were six
times higher in patients with metastases than without metastases
after neoadjuvant chemotherapy (NAC), independent of tumor
stage or grade (150). YKL-39 has also been shown to be
elevated in estrogen receptor 1 (ESR1) mutant metastatic breast
cancer (151) and has been shown to be regulated by the
androgen receptor in prostate cancer (152). These differences
highlight unique targeted therapies, such as targeting the TGF-
β pathway or reprogramming M2-like macrophages into M1-like
macrophages, as having high potential, especially in ER-positive
breast cancer.

Immunohistochemistry (IHC) has revealed that TNBC has
significantly more tumor-infiltrating T cells and macrophages
compared to non-TNBCs (153). To further understand the extent
of macrophage infiltration in TNBC, immune infiltrates in 41
TNBC tumors were characterized using multiplexed ion beam
imaging by time of flight (MIBI-TOF) (154). The fraction of
infiltrating immune cells ranged widely from 1 to 91% of cells
in the analysis fields selected from each tumor. On average,
macrophages were among the most abundant immune cell in the
tumor region, accounting for 25% of the immune population.
Other immune populations also significantly contributed to
the immune landscape, including the following: CD8+ (19%),
CD4+ (15%), regulatory T cell (1%), B-cells (11%), and NK
cells (<1%). However, these numbers varied greatly between
patients. In fact, macrophages comprised as high as 100% of the
immune population in tumors with low immune infiltration or

FIGURE 3 | Infiltration of macrophages (CD68 and CD163) and T cells (CD8)

in human triple-negative breast cancer (TNBC) with a low density of immune

cells (top row) and high density (bottom row).

as low as 5% in more immunologically abundant TNBC tumors.
Our group has recently investigated macrophage abundance
in TNBC using multiplex cyclic immunofluorescence (CyCIF)
(155–158). We also found that TAM infiltration can vary greatly
between tumors (Figure 3). In addition, we recently reported
that TNBC harboring mutations in the breast cancer gene 1
(BRCA1) has a nearly 10-fold increase of TAMs compared
to BRCA1-wildtype TNBC (159). This work highlights that
tumor cell intrinsic mutations, such as BRCA mutations, may
play a key role in regulating the TME. Indeed, the current
and other studies have shown that BRCA-deficient cancer cells
have an increase in cytosolic DNA leading to STING pathway
activation and secretion of type 1 interferon-related cytokines
such as CXCL9 and CXCL10 that can recruit immune cells,
including macrophages, to the tumor (160, 161). Another work
has confirmed an increase in CD68+ macrophages in TNBC
compared to other subsets, and interestingly, breast tumors
with high frequency of c-Myb-positive cells, identified through
mRNA levels in breast cancer patients from public datasets, were
correlated with a lower density of CD68+ macrophages, which
was also found within the molecular subtypes (162).

Relative Numbers of Macrophages in
Breast Cancer Progression
Not only does macrophage abundance vary between breast
cancer subtypes but also with the stage of cancer progression. In
preclinical models, macrophages have been shown to orchestrate
early breast cancer dissemination and metastasis in a mouse
model of HER2+ breast cancer, where CCL2 produced by
both cancer cells and myeloid cells recruited CD206+/Tie2+
macrophages to propagate the disease (163). Similar results were
seen in the MMTV-PyMT murine model of luminal B breast
cancer, where blocking CCL2 prevented recruitment of TAMs
to breast tumors, reduced metastasis, and prolonged the survival
of mice (16). Other preclinical studies have shown a significant
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correlation between CSF-1 and breast cancer metastasis using the
MMTV-PyMT model (26).

Compared to normal breast tissue, macrophage numbers are
significantly higher in ductal carcinoma in situ (DCIS) and
remain higher through progression to invasive ductal carcinoma
(IDC) (164). TAMs from human breast cancer have been shown
to have a distinct transcriptomic signature from macrophages in
healthy breast tissue, which is enriched in more aggressive forms
of breast cancer (165). Additionally, CD68+ macrophages (166,
167), especially those defined by authors as M2 macrophages
(CD68+PCNA+), have been shown to be elevated in high-grade
compared to low-grade DCIS (167). Recent work by Gil Del
Alcazar et al. compared immune cell infiltration in HER2+ and
TNBC as a function of disease progression by comparing DCIS to
IDCs (168). IDC had higher numbers of macrophages compared
to DCIS. Interestingly, in DCIS, higher fractions of CD8+ T
cells were associated with a significantly higher frequency of
macrophages. Gene expression profiling revealed that Th1 and
Th2 cells were enriched in HER2+ IDCs, while TNBC IDCs
had enrichment of Th17 cells and T regulatory cells (Tregs). For
TNBC tumors, but not HER2+ tumors, the transition fromDCIS
to IDCs correlated with an increased number of TILs, but fewer
were in the activated state, indicative of T cell exhaustion in
advanced stages of TNBC. Macrophages were not examined in
this context, indicating that further characterization is needed to
fully understand how macrophages participate in different stages
of cancer progression.

Location of Macrophages in Breast Tumors
In addition to breast cancer subtype and disease state, the
location of macrophages within the TME may be a predictor
of their function and correlate with clinical outcome. However,
the field has not yet come to a consensus on the extent of
region-specific TAM behavior as a prognostic factor. Generally,
macrophages in the stroma are associated with angiogenesis,
immunosuppression, and cancer cell migration. In contrast,
macrophages in the cancer nest tend to be more heterogeneous
across cancer types and are correlated with reduced overall
survival (OS) and recurrence-free survival (RFS) in breast cancer
(169). Gwak et al. found stromal, intratumoral, and total TAMs
to all have similar prognostic value, while Merdeck et al. reported
stromal TAMs, but not tumor nest TAMs, are significantly
correlated with tumor size and high tumor grade (45, 170).
Recently, CD68 and CD163 were evaluated in both tumor nests
and tumor stroma in 60 specimens of invasive breast cancer. High
numbers of CD68+ TAMs in the tumor stroma were significantly
associated with larger tumor size and positive nodal metastasis,
whereas high numbers of CD163+ TAMs in the tumor stroma
were significantly associated with positive vascular invasion,
nodal metastasis, and molecular subtypes (171). Macrophage
behavior may be modulated by breast cancer subtype and TME
location, which in turn may regulate tumor behavior with
stimulatory and inhibitory signals. For example, in HER2+ and
basal-like subtypes, macrophages concentrate in invasive fronts
and use TGF-β signaling to thicken the extracellular matrix
(ECM), contributing to breast tumor metastasis (172). Therefore,
not only are macrophages shaped by their location within

the TME but they also reciprocally influence the surrounding
TME composition. The significance of histologic localization
of TAMs and the degree of TAM infiltration add additional
layers of complexity to targeting TAMs in breast tumors for
anti-cancer therapy.

Macrophage Characterization After
Therapy
The characterization of TAMs before and after therapy may
provide insight to how TAMs may change with treatment and
play a role in drug resistance and metastasis. Increases in
macrophages have been reported after chemotherapy in both
preclinical and clinical settings (145). In a primarily ER+ patient
cohort, neoadjuvant chemotherapy increased the percentage of
CSF-1R+ macrophages (173). In line with these findings, Waks
et al. examined changes in TAM populations after neoadjuvant
chemotherapy in ER+ breast cancer, reporting an influx of
CD68 macrophages with a larger proportion associating with
an M2-like phenotype (174). These findings are in line with
preclinical studies showing chemotherapy significantly increased
F4/80+macrophages in chemotherapy-sensitive tumors, but not
chemotherapy-resistant tumors, indicating that macrophages are
recruited to the site of chemotherapy-induced apoptosis and play
a role in drug response (175). These changes in the TME could be
implicated in mechanisms of chemotherapy resistance.

MACROPHAGES AS A BARRIER TO
CHEMOTHERAPY AND IMMUNOTHERAPY

While the heterogeneity of TAM populations is still being
deconvoluted, clinical evidence suggests that macrophages can
contribute to shortcomings of chemo- and hyphenate immuno-
therapy. High TAMdensity has been shown to be an independent
poor prognostic marker in breast cancer patients, especially for
HR-positive breast cancer (170). Importantly, macrophages have
been shown to contribute to reduced efficacy of chemotherapy.
Shree et al. discovered that in vitro cathepsin-expressing BMDMs
shield mammary cancer cells from paclitaxel-induced cell death.
They further demonstrated that tumors from MMTV-PyMT
mice treated with paclitaxel had increased TAM infiltration, and
cathepsin inhibition in combination with paclitaxel increased
long-term survival (176). Similarly, tamoxifen-resistant ER-
positive and HER2-negative clinical samples had a higher
density of CD163+ macrophage populations and increased
expression of EGFR than tamoxifen-sensitive samples, which
positively correlated with tumor size and metastasis (177).
Furthermore, macrophages can disrupt T cell infiltration, which
immunotherapies rely on to mediate efficacy. For example, in
lung cancer patients, macrophage exclusion of CD8+ T cells
from tumor nests correlated with poor response to anti-PD-
1 therapy. When macrophages were depleted with anti-CSF-
1R therapy, CD8T cells successfully infiltrated the tumor to
interact with malignant cells and delay tumor progression (178).
Also, importantly, in preclinical breast cancer models, when
macrophages are depleted using anti-CSF-1R therapy (145, 178)
or their phenotype was converted to an anti-tumor phenotype
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(179), anti-PD-1 therapy induced potent anti-tumor immunity.
This highlights the deleterious effects of TAMs in tumors and
the importance of targeting both innate and adaptive immune
cells to achieve the full potential of immunotherapy and a durable
anti-cancer immune response.

Targeting TAMs for Anti-Cancer Therapy
Both preclinical and clinical strategies to target the tumor-
promoting functions of TAMs in cancer are being developed.
These approaches have been reviewed in great detail and include
inhibiting the recruitment of macrophages to tumors by blocking
the CCL2–CCR2 or CCR5–CCL5 axes, depleting TAMs by
blocking CSF-1 or CSF-1R; blocking macrophage “checkpoint
inhibitors” such as CD47/SIRP1α, PD-1/PD-L1, MHCI/LILRB1,
and CD24/Siglec-10; and suppressing macrophages’ pro-tumor
activity (inhibition of TGF-β or VEGF) (36, 180–184). Depletion
or inhibition of macrophages using CCL2, CSF-1, and CSF-1R
inhibitors has been shown to be effective against both mouse and
human tumors (16, 36, 145, 185). Importantly, a recent study
showed that CCL2 inhibition as a monotherapy led to more
metastasis when the therapy was discontinued, which was driven
in an IL-6- and VEGF-dependent manner (186). This study
challenges the use of CCL2 as a monotherapy and highlights the
need to understand the tumor microenvironment composition
for successful anti-metastatic therapy.

CSF-1R is a promising target to address TAMs therapeutically,
as high expression of CSF-1 or CSF-1R predicts cancer
progression and mortality (187). Blockade of CSF-1R has been
shown to decrease TAM infiltration, which subsequently results
in the increase in CD8+ T cells and improves response to
chemotherapy (95, 145). In a phase Ib study with advanced solid
tumors, the combination of pexidartinib, a CSF-1R inhibitor,
and paclitaxel was well-tolerated, and the combination showed
reducedmacrophage infiltration in the tumor microenvironment
(188). However, in another phase I a/b study, emactuzumab,
a monoclonal antibody against CSF-1R, showed reduction in
immunosuppressive TAMs but did not demonstrate clinical
benefit alone or in combination with paclitaxel (189). These
studies suggest that a careful evaluation of the TME is important
before deciding which patients would best benefit from CSF-1R
therapy. Other caveats to anti-CSF-1R therapies include reports
showing that inhibition of CSF-1R signaling can promote breast
cancer metastasis (190).

To enhance anti-CSF-1R therapies, combining anti-CSF-1R
with complementary chemotherapy and agents that enhance
T cell function may markedly improve outcomes. In that
regard, a recent study showed that addition of a CD40 agonist
before anti-CSF-1R therapy induced a short-lived hyperactivated
macrophage state that was enough to generate an effective
T cell response in ICB-resistant tumors (191). Additionally,
we have recently shown that CSF-1R inhibition leads to a
significant reduction in TAMs and when combined with PARP
inhibitor therapy results in an increase in overall survival, with
some mice experiencing tumor-free survival for at least 1 year
(159). Studies with CSF-1R signaling antagonists, combined
with the drug paclitaxel or carboplatin, showed enhanced
tumor control and reduced metastasis in preclinical models of

breast cancer. Importantly, blockade of CSF-1 signaling also
enhanced anti-tumor immunity and cytotoxic T cell infiltration
to chemotherapy (145). The blockade of the CCR5–CCL5 axis,
which decreased macrophage infiltration in tumors, is another
exciting therapeutic target with ongoing clinical trials for breast
cancer (192).

An alternative strategy is to convert pro-tumor TAMs to an
anti-tumor phenotype. CD40 agonists (193), PI3Kγ inhibitors
(194), CD47 inhibitors (195), and a class IIa HDAC inhibitor
(179) have all been shown to reduce primary and metastatic
murine breast tumors (179) and have emerged as novel
modalities to convert TAMs to anti-tumor macrophages. In
addition, other strategies have been shown to convert TAMs to
an M1 phenotype and include Bruton’s tyrosine kinase (BTK)
inhibitors (196), TLR agonists (197), STAT3 inhibitors (198), IL-
1Ra inhibitors (199), and LILRB2 inhibitors (200) Taken together,
strategies to deplete or inhibit suppressive TAM functions
or activate anti-tumor TAMs combined with chemotherapy
and/or immunotherapy may have a great potential for the
treatment of breast cancer patients. However, while many of
these compounds in preclinical and clinical development are
now filling our toolbox with TAM-targeting strategies, it will
likely be necessary to further elucidate the complexity of TAM
subsets including their ontogeny and phenotype for successful
therapeutic targeting (Figure 4).

Therapeutic Targeting of TAM Metabolism
for Anti-Cancer Therapy
The metabolic programming of TAMs is complex, and the
underlying molecular mechanisms and crosstalk between tumor
cells and stroma remain to be characterized. An in-depth analysis
of these metabolic circuits may facilitate better appreciation for
the functional fates of macrophages, including their pro- vs. anti-
tumor phenotype. This important information would further
support the clinical application of targeting TAM metabolism
for anti-cancer therapy. There is some insight of the potential
of this strategy from several recent publications that utilized
other immune cell types including Tregs. Recently, Tregs were
shown to activate the sterol regulatory element-binding protein
1 (SREBP1)-mediated fatty acid synthesis pathway in TAMs.
SREBP1 induced M2-TAM metabolic fitness, mitochondrial
integrity, and survival (201). Pharmacological inhibition of de
novo fatty acid synthesis using a SREBP1 inhibitor, fatostatin,
showed anti-tumor immunity when combined with ICB (anti-
PD-1) in a B16 melanoma preclinical tumor model (201).
Our group recently reported that PARP inhibition directly
modulated macrophage metabolism by shunting glycolysis and
inducing a dependence on lipid metabolism, which generated
an immunosuppressive TME by inhibiting T cell function
and thereby contributed to PARP inhibitor resistance (159).
The use of fatostatin in combination with PARP inhibition
and macrophage modulation significantly enhanced the overall
survival of mice bearing brca1-deficeint TNBC (159). In line
with our findings, inhibition of PARP induced upregulation of
lipogenic genes by modulating the transcription factor specificity
protein 1 (Sp1), which leads to the accumulation of lipid droplets
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FIGURE 4 | Macrophage-targeting strategies for anti-cancer therapy have started to fill our toolbox. We now need to understand how these compounds work, which

subsets of TAMs they modulate, and which breast cancer patients will benefit.

in the liver (202). Similarly, a study suggested that genetic
deletion as well as pharmacologic inhibition of PARP induced
the expression of ATP-binding cassette transporters (ABCA1)
and cholesterol efflux in macrophages (203). These studies
highlight the role of both Tregs and PARP inhibitors in regulating
macrophage lipid metabolism. Further molecular understanding
on the mechanisms of how PARP inhibitors regulate TAM
metabolism would provide future opportunity for promising
therapeutic strategies.

In a preclinical syngeneic model of pancreatic
ductal adenocarcinoma (PDAC), a TLR9 agonist, CpG
oligodeoxynucleotide, induced a metabolic state that required
fatty acid oxidation and shunting of TCA intermediates for de
novo lipid biosynthesis. This shift in central carbon metabolism
activated highly phagocytic macrophage that could overcome
the CD47 “don’t-eat-me” signals on tumor cells to mediate
an antitumor response (204). Macrophages cultured with
PDAC-conditioned media compared to normal pancreatic cells
had higher levels of vascular network formation, enhanced
metastatic potential, increased levels of EMT, and a pronounced
glycolytic signature. Inhibiting hexokinase II (HK2) with
2-deoxyglucose (2DG) inhibited glycolysis and reversed the pro-
tumor TAM phenotype, highlighting the therapeutic potential
of modulating TAM metabolism for anti-cancer therapy (205).
Molecular metabolic control of TAMs has been demonstrated
in vitro by inhibiting glutamine synthetase (GS). In human
monocytes, GS expression activates an M2-like phenotype,
which is reversed through pharmacological inhibition of GS
by methionine sulfoximine (MSO). Inhibition of GS resulted
in production of succinate, a critical regulator of the pro-
inflammatory response, and enhanced glucose flux through

glycolysis. Importantly, in ex vivo studies, GS restored T cell
recruitment. In vivo, genetic deletion of macrophage-specific GS
reduced metastasis in a preclinical mouse model of lung cancer
(206). Taken together, precisely targeting the metabolic rewiring
of TAMs may re-educate their phenotype and may overcome
TAM-associated immunosuppression.

BEYOND M1 AND M2 PHENOTYPES AND
NEXT STEPS

To date, characterizing the diversity of macrophage subsets has
been difficult, as researchers have relied on a limited number
of macrophage markers, and gene expression profiling has
been done in bulk tissue or total macrophage populations,
which preclude detection of unique subsets. Although gene
expression data is high throughput, it inherently lacks the ability
to determine spatial relationships, precise cellular function, or
biochemical analysis at a single-cell level. Another consideration
for leukocyte-containing samples is the canonical expression
of RNase, which could potentially degrade RNA transcripts
and interfere with single-cell analysis sample quality. Likewise,
protein analysis should be used to support gene expression
data, but is comparably tedious and low yield. The intracellular
glycoprotein CD68 is widely used in clinical studies as a TAM
marker, but it also detects other cell types such as some lymphoid
and non-hematopoietic cells (207, 208) and does not identify
TAM phenotype or functional status. The scavenger receptor
CD163 has also been used to identify some TAM populations
and has been shown to associate with early recurrence and
reduced survival in breast cancer patients (209). CD68 and
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CD163 have been broadly used to show that high TAM density
correlates with a worse clinical outcome in breast cancer but
do not predict their functional phenotype (122, 140, 210).
As high-resolution techniques uncover the heterogeneity and
plasticity of macrophage populations, researchers will need to
look beyond the binary M1/M2 nomenclature and incorporate
an extensive panel of markers in their analysis. Indeed, TAMs
have high plasticity and can express both M1-like and M2-like
phenotypes simultaneously, creating a need for more nuanced
categorizations ofmacrophages (169).Multiplex IF such asMIBI-
TOF and CyCIF have the unique advantage of analyzing a
relatively large number of proteins, while maintaining spatial
context of the tumor. These technologies will be invaluable in the
next era of TAM studies, in which distinct phenotypes will need
to be pursued.

Immune-focused mass cytometry has shed light on the
diversity of TAMs in breast cancer, where in a study of 144
breast cancer patients, 19 distinct subsets of myeloid cells
were identified, which clustered into five broader categories
(211). These clusters included CD14-expressing monocytes,
early immigrant macrophages, tissue-resident macrophages,
TAMs, and myeloid-derived suppressor cells, with each group
containing several additional subsets of myeloid cells. The
distribution of the 19 clusters was distinct regarding the location
within the tumor microenvironment and the subtype of breast
cancer. For example, ER– tumors had more PD-L1+ TAMs
than ER+ tumors, while luminal B tumors contained a higher
proportion of PD-L1+ TAM subsets than luminal A. Although
the sample set was predominantly from ER+ tumors, the
results expose high-resolution categorizations of macrophages
that could shed light on current therapeutic barriers. This work
highlights the complexity of macrophages and tumors and is the
right step forward; however, it is yet to be understood what the
functional significance of these subsets are for clinical outcomes
(211). Assays that test the functional ability of macrophages
are warranted including high-throughput efferocytosis assays or
gene signatures that may predict enhanced efferocytosis. The
abovementioned studies have contributed to understanding the
immune profile related to macrophages in breast cancer subtypes
using bulk and single-cell RNA-sequencing, single- and dual-
color IHC, multiplex spatial analysis such as MIBI-TOF and
CyCIF, as well as flow cytometry, which compile data with
different perspectives and limitations. As researchers continue to
assess the breast TME, it is critical to acknowledge the strengths

and limitations of different methods regarding their resolution,
accuracy, and ability to represent tumor heterogeneity.

TAMs play a major role in tumor progression and metastasis
and promote a highly suppressive TME that may limit breast
cancer therapy. Therefore, modulating TAMs in combination
with chemo- and/or hyphenated immuno-therapy will be critical
to achieve maximum tumor reduction and elimination. Thus,
it is imperative to characterize TAM subsets and their location.
In addition, differences among breast tumor subtypes and how
TAMs change after therapy will be important to characterize,
along with differences in tissue-resident macrophages at
metastatic sites. To develop effective macrophage-targeting
therapies for the treatment of breast cancer, it is critical to have
a precise understanding of the unique macrophage populations
in each subset of breast cancer, as well as their location within
different regions of the tumor. In addition, when considering
the variety of influences that macrophages have on the TME,
it is apparent that the surrounding TME will also need to be
considered. Therefore, it is crucial to assess the number of
infiltrating macrophages, their phenotype and function, as well
as their spatial location to other cells in the TME. Expanding
beyond M1 and M2 macrophage nomenclature will enhance the
field of cancer immunology by providing better understanding of
the tumor environment for rationale design of immunotherapy
strategies including future development of macrophage-targeting
therapies (Figure 4).
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