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Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser
beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop
here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction.
The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified
conditions by employing a state-of-the art computationally efficient approach. By comparing with
experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption
coefficients of the material. The validity of this approach has been tested in a variety of experiments where
nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach
provides excellent results for propagated power densities for which free carrier generation effects can be
neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable
acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to
estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for
predicting the spatial distribution of energy deposition inside the material and controlling the beam in the
writing process.

T
he propagation of high intensity laser beams (cw or pulsed) in dielectrics has been the subject of intense
investigation since the early research on self-focusing1–3 and laser-induced breakdown in transparent
materials4–6. Even at relatively low powers the combined effects of diffraction, nonlinear refraction and

nonlinear absorption leads to a large variety of spatial and temporal effects7 ranging from self-focusing and
self phase modulation to the formation of solitons8. The situation becomes more complex when the amount
of energy absorbed during beam propagation gives rise to the formation of sufficiently dense electron
plasmas to induce beam attenuation and self-defocusing5,9,10. Depending on the optical power, diffraction,
space-time focusing/defocusing, group velocity and higher order dispersion phenomena, modulation instabil-
ities, self steepening, Raman scattering, nonlinear absorption, plasma absorption and plasma defocusing can
take place during propagation. A detailed description of these and other effects, like beam reshaping11 or
propagation in presence of second order nonlinearities12 is outside the scope of this manuscript and can be
found, for instance, in Refs. 7, 13.

In general, the description of the propagation of intense laser pulses in optical media is given by the Maxwell
and constitutive equations with additional correction terms associated to nonlinear polarization and free carrier
generation14,15. Under the assumption that the beam remains linearly polarized, in the slowly varying envelope
(SVE) approximation with paraxial propagation conditions, the evolution of the field takes the form of the scalar
nonlinear Schrodinger equation (NLSE)14:
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The propagation direction is taken along the Z axis and the

electric field is expressed as ~E~
1
2

A(x,y,z,t) exp½i(kz{v0t)�~exz

cc. The pointwise intensity (,Wm22.) is given by I~
ce0n

2
Aj j2~ n

2g0
Aj j2 where g0 5 (e0c)21 is the vacuum impedance.

The central wavenumber and frequency of the laser pulse in vacuum
are k0 and v0 respectively (inside the material k 5 k0n, n being the
linear refractive index). The first term on the right of Eq. (1) accounts
for diffraction, the second for nonlinear refraction (n2 is the non-
linear refractive index of the material defined by n(I) 5 n0 1 n2I), the
third for group velocity dispersion, while the fourth corresponds to
the absorption required for carrier photo-ionization at a rate WPI in a
material with a bandgap Ui. The last term, for sufficiently high free
carrier densities, introduces plasma defocusing and absorption
associated to an electron plasma with a time dependent density (r)
and a cross section for inverse bremstrahlung (s).

The solution of Eq.(1) requires considering jointly the temporal
evolution of the plasma density and a rate equation including photo-
ionization, avalanche, and plasma relaxation terms9,16. More detailed
formulations for the NLSE including explicitly terms such as Raman,
self steepening or space-time focusing can be used, depending on the
specific conditions of the interaction problem considered15,17.
Similarly, simplified versions for negligible photo-generated carrier
densities can be used, for instance, to describe the generation of
spatial solitons18. In all cases the solution of the NLSE requires the
use of numerical methods that normally involve a split-step propaga-
tion technique or similar procedures9,17, for instance a Fourier spec-
tral decomposition in time and a standard Crank–Nicholson scheme
in space. A further discussion on the implementation with real-space,
spectral or mixed representations is given in Ref. 15. The introduc-
tion of transient effects (plasma density evolution including multiple
rate equations19 or models alike) adds in general difficulties even for
surface interactions20.

There are situations, however, where it is not necessary to acquire
an extremely detailed view of the process in terms of temporal evolu-
tion of the carrier density. This is the case, for instance, when trying
to make an a priori first guess of the best experimental parameters
required for ultrafast sub-surface laser processing of dielectrics21,22

using low repetition-rate pulses in the presence of strong aber-
ration23,24, prefocal depletion25–27 or self-focusing28 effects or in
standard calculations of spatial soliton formation18. Moreover, the
exclusive use of the nonlinear absorption term may suffice in several
cases to provide an accurate description of the beam reshaping pro-
cess, also in presence of plasma defocusing, as in the case of beam
filamentation in water described by Dubietis and coworkers16.

In this work we describe a method for modeling the propagation of
laser beams in dielectrics in order to rapidly assess optical beam
propagation in the presence of absorptive and refractive nonlinea-
rities by monitoring optical beam reshaping against numerical
prediction. We aim to provide such information at a very low com-
putational cost, of the order of minutes, in order to have an effective
diagnostic tool for ultrafast laser processing applications. Although
the solution of the nonlinear Shroedinger equation is usually not
considered a computationally heavy problem, our approach requires
a lower computational cost than standard implementations. For this
reason, we employ a numerical approach based on a state of the art,
generalized fast-Fourier, adaptive evolver (GAFFE: A toolbox for
solving evolutionary nonlinear PDEs)29,30. While the use of a split-
step method for solving the NLSE is not original in itself, the method
here used calibrates itself to a given level of error tolerance and resizes
the meshing with respect to the Nyquist limit, yielding a novel and
highly efficient approach to compute beam propagation.

In Section I we describe the physical model on which the nonlinear
bean propagator is based as well as its limits of validity. Section II
provides a brief description of the code as well as several examples of

the code performance when calculating nonlinear propagation in the
case of spatial soliton shaping and waveguide writing. Simulations
are compared to experimental results obtained in soliton generation,
as well as real waveguide writing conditions. We show that, from the
simple monitoring of the beam shaping it is possible to efficiently
extract the effective nonlinear parameters of the material (nonlineal
refractive and absorption coefficients) with an accuracy sufficient to
predict the beam evolution inside the medium. This approach is
particularly valuable for femtosecond laser writing applications.
The actual implementation of the propagator is described in
Section III (Methods).

Physical Model and Limits of Validity
The physical model used is based on the solution of the NLSE under
simplified interaction conditions:

2ik
LA
Lz

z(
L2

L2x2
z

L2

L2y2
)Az

n2k2

g0
Aj j2AzikbK

n0

2g0

� �K{1

Aj j2K{2A~0 ðEq:2Þ

where the time-dependent contributions of group velocity dispersion
(GVD) and plasma effects have been neglected, and the absorption
term associated to photo-ionization has been replaced by an effective
nonlinear absorption involving the nonlinear absorption of K-
photons. Since Eq. (2) neglects the temporal dependencies, the beam
propagation can be considered as calculated in a pseudo-stationary
regime where a square pulse with constant width (tp) and limited
energy propagates changing only its amplitude (i.e. its local intensity
I(xyz)). This is equivalent to obtaining a snapshot of the energy
deposition profile corresponding to the peak power of the beam,
when the effects expected from optical nonlinearities are most
intense. It is worth noting that Eq.(2) in the absence of nonlinear
absorption corresponds to the scalar Helmholtz equation for a Kerr
medium under the paraxial approximation31.

The first simplification is based on group velocity dispersion
effects being important only for very short pulses, highly dispersive
materials and/or long propagation distances32. To ensure the validity
of this assumption before the calculations it is necessary to compute
the expected pulse broadening over the considered propagation

length in terms of the dispersive length LGVD~
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For instance for a 100 fs FWHM transform-limited pulse centered
at 800 nm and propagating in fused silica (k0 5 36 fs2/mm), LGVD 5

13.9 cm and the pulse will broaden approx. 0.5% after propagating
for 1 cm. In general, calculations for propagation distances d # 0.2 3

LGVD will not be affected by neglecting GVD and higher order
dispersion.

Replacing the absorption term associated to photo-ionization by
an effective multi-photon absorption is valid for weak fields (up to
,1017 Wm22 depending on the material)14,33. For field intensities for
which the Keldysh parameter12,34, c, is not ?1, a ‘‘local’’ intensity
dependent value for bK (derived from the Keldysh model) should be
used in the code. As an example Fig. 1(a) shows the intensity com-
puted as a function of the propagation distance for a pulse with an
initial energy of 0.25 mJ in fused silica. The propagation parameters
are: wavelength l 5 800 nm, pulse duration t 5 160 fs, focusing
depth d 5 75 mm and beam waist w 5 1.1 mm (inside the material at
at low intensity) similar to those in Ref. 9. We used a nonlinear
refractive index n2 5 2.25 3 10220 m2/W at 800 nm35–37.The effective
b6 is taken as an adjustable parameter in order to reproduce the
results of the maximum local intensity (Imax) for various pulse ener-
gies (up to 1.25 mJ/pulse) calculated using the Keldysh formulation
according to Ref. 32. The so determined b6 values are shown in
Fig. 1(b) along with the corresponding Imax values from Ref. 9.

In Fig. 1(b) the Imax data show a characteristic inflection for a pulse
energy of ,0.1 mJ (,3.0 3 1017 Wm22), indicating the transition
from a multi-photon absorption behavior to a tunneling dominated

(Eq.2)
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scenario. The nearly constant effective value of b6 (5 3 10283 m9

W26) obtained for the lowest pulse energies indicates that the
multi-photon absorption approach can be thus used in our code
for local intensities up to ,3.0 3 1017 Wm22 in this case. The indi-
cated b6 corresponds to a cross section s6 5 1.6 3 10269 s21cm12 W26

for the multi-photon ionization rate, which is very close to the one
where the Keldysh and multi-photon formulations coincide for low
intensities in fused silica according to Ref. 14 (s6 5 9.8 3

10270 s21cm12 W26). For higher intensities, the calculated effective
b6 decreases, indicating that the rigorous Keldysh formulation is
required and that a local intensity-dependent value of b6 needs be
used in the code when computing the propagation.

Equation (2) neglects transient plasma defocusing and absorption
effects. As indicated above, it is well known that using just the non-
linear absorption term16 may often yield results sufficiently accurate
to calculate the evolution of the beam shape/intensity upon propaga-
tion. In this respect, the intensity threshold for plasma self-defocus-
ing effects to become important is not sharply defined. As thoroughly
discussed by Brodeur and coworkers38 the compensation of non-
linear self-focusing by an electron plasma requires carrier generation
rates of the order of 10218 cm23fs21. The exact value depends on the
material bandgap, the nonlinear refractive index and the laser wave-
length. Carrier generation for a 100 fs laser pulse leads to limiting
intensities (Istop) for compensating the Kerr effect in the 10216–
10217 Wm22 range and electronic densities in the 1017–1019 cm23

range in water. This limits the validity of the results derived from
Eq. (2) to local intensities typically below ,1017 Wm22 5,38 or carrier
generation rates typically below ,1018 cm23fs21, as in those cases
where the multi-photon absorption approach is used instead of the
rigorous Keldysh formulation. Similarly, the presence of avalanche
effects limits the use of Eq.(2) when the local intensity of the pulse
multiplied by its duration exceeds values typically of the order of 1 J/
cm2, as shown in silica by Rethfeld for avalanche dominated pro-
cesses, according to the multiple rate equations (MRE) model39.
Using as validity limits a maximum local intensity Imax ,

(,1017 Wm22) and a product Iloc 3 tp , ,1 J/cm2, depending on
the material, should enable obtaining results in terms of energy
deposition sufficiently close to the experimental situation. We will
see that for the case of elliptical beams, the peculiarities of the non-
linear propagation allow overcoming this ‘‘conservative’’ local
intensity limit still providing a very useful picture of the spatial
distribution of energy deposition.

Results and discussion
In brief, in order to solve Eq.2 a split-step Fourier method is used
with a library of optimized functions developed by E. Grace30 to

speed up the calculation time. This library contains routines to
dynamically resize the dimensions (in the x and y axis) and number
of points of the mesh that represents the field we propagate in the
sample. This is done in order to ensure that we have a full repres-
entation of the propagating field using a minimum number of points.
The step-size taken in the propagation direction of the beam (z axis)
is also optimized so as to use the largest possible step within a certain
error tolerance, given by comparing the propagation of the same
beam for two different step lengths. This allows obtaining results
in a very short time (typically a few tens of seconds) using a laptop
computer and testing a large number of parameters in a short time. A
detailed description of the implementation of the code is given in the
Methods Section below.

In this section we analyze the results of the numerical model in
several cases where the effects of nonlinear refraction and absorption
are important in defining the energy deposition or propagation spa-
tial profile of a high intensity beam. The first example refers to the
generation of spatial solitons in a strongly nonlinear Kerr material
where catastrophic collapse is avoided by multi-photon absorption.
In this case, the model given in Eq.(2) can be considered almost a
rigorous description of the problem, where only the temporal effects
are neglected. The other examples refer to situations where neglect-
ing transient plasma effects can affect the overall validity of the model
and thus the results have to be considered as only approximate.
Nevertheless we will show that, for Gaussian elliptical beams in
space, the sensitivity of the spatial energy deposition profile to rela-
tively small changes in n2 and bK is sufficient to perform reasonable
estimates of both parameters from a comparison with images of the
irradiated material in the focal region. This enables using the non-
linear propagator for a priori optimization of the experimental con-
ditions for sub-surface processing with a very small computational
cost. This latter feature is of special interest for fs-laser waveguide
writing and other sub-surface nonlinear laser processes. Being able to
inexpensively model the physical process more quickly than doing
the experiment opens up opportunities for finding material para-
meters that could be beneficial for a given application.

Propagation for negligible transient plasma effects: Soliton
shaping. Following the description by Pasquazi and coworkers in
Ref. 18, we simulated the propagation of a 25 ps laser pulse at
820 nm, focused at the surface of a 25 Nb2O5–25 PbO–50 GeO2

mol.% (NPG) heavy metal oxide glass and leading to the formation
of a spatial soliton with the aid of three-photon absorption. In this
case, picosecond excitation allows us excluding the presence of
significant GVD and plasma formation effects, making fully
applicable the description of the process by Eq.(2).

Figure 1 | (a) Computed intensity as a function of the propagation distance inside the material achieved during the propagation of a focused fs-laser

beam in fused silica for a pulse energy of 0.25 mJ. (b) (Black-squares) Computed maximum intensity (Imax) during propagation as a function of the pulse

energy according to Ref. 7 using the Keldysh formulation. (Red squares) Values for the effective intensity-dependent b6 coefficient derived from adjusting

Imax with the code and using b6 as a fitting parameter. Dashed lines are a guide to the eye.
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In order to determine the nonlinear refractive index (n2) and the
three-photon absorption coefficient (b3) of the material, several pro-
pagation simulations using different values of n2 and b3 were per-
formed in order to reproduce the experimentally observed intensity
profile at the output facet of the sample after propagation. In the
experiments the beam (820 nm, 25 ps duration (FWHM)) was
focused at the input facet with a 3.5 cm focal length lens to a waist
of 11 mm and propagated over a distance of 5.7 mm. The formation
of a fundamental soliton was observed at a pulse energy of 2.8 mJ18,40.

The initial simulations were carried out with a few fixed values of
n2 in the 10219–10218 m2/W interval (as determined by degenerate
four wave mixing41), using b3 as the fitting parameter in order to get a
fundamental soliton at a pulse energy of 2.8 mJ. Each propagation
simulation typically lasted some 30–40 seconds on a normal laptop
computer enabling to perform, over a relatively small time, a com-
plete set of iterations varying b3 for a given n2. The validity of the
optimal values found for n2 and b3 was then tested by simulating the
propagation for other pulse energies and comparing the result to
experimentally obtained images. The results are shown in Fig. 2
where both experimental and calculated values of the intensity pro-
file at the sample output facet are shown versus pulse energy. The
optimal values determined from the simulation were n2 5 5.5 3
10219 m2/W and b3 5 5.5 3 10228 m3/W2. The values reported in
Ref. 18 are n2 5 5.5 3 10219 m2/W and b3 5 3.0 3 10228 m3/W2, and
were extracted by the complete fitting of the experimental results
comprising an independent measurement of the nonlinear transmis-
sion of the glass and accounting for the actual temporal shape of the
Gaussian pulse. The temporal dependence, even when GVD is
neglected, is required for a more accurate fitting of the pulse self-
focusing considering that the measured images were obtained by
integration of the pulse profile.

The tails of the pulse undergo a less pronounced self-focusing than
the peak. Hence, for the same peak power, a temporally Gaussian
pulse produces a soliton beam that appears larger than the one gen-
erated by a square pulse. For this reason our model here requires a
larger nonlinear absorption coefficient to counteract the self-focus-
ing effect, as compared with what experienced by the pulse during
experiments. Nevertheless, the computation time for the propaga-
tion of a single temporally Gaussian pulse is more than 20 times
longer. With this approach we obtain the same n2 and an upper
estimate of b3 of the same order of magnitude but with a computa-
tion time (minutes) compatible with the real time evaluation of the
material parameters by the direct monitoring of beam reshaping at
the output.

Propagation for non-negligible transient plasma effects:
Sensitivity of the energy deposition profile to the input beam

shape. The utility of the developed propagator in situations where
photo-generated carrier effects cannot be neglected a priori is given
by the strong sensitivity of the spatial intensity distribution in the
material to the actual shape of the input beam. This is illustrated in
Fig. 3 showing the calculated spatial intensity distribution in the focal
region for two beams (Gaussian circular and elliptical, respectively)
with the same initial pulse energy and duration, focused at the same
depth (with the same optics) for different values of n2 and b6 and
realistic waveguide writing conditions. In the figure, all the
simulations correspond to an input beam of diameter 7 mm
(1/e2 intensity), 100 fs (FWHM) duration, 7.5 mJ pulse energy at
800 nm, focused with a 20 mm focal length lens (beam NA 5

0.17) 500 mm below the surface. The Gaussian elliptical beam has
its long axis along X with an aspect ratio Rx/Ry 5 20, and propagates
along Z. The conditions in the simulations are similar to the typical
experimental parameters used for fs-laser waveguide writing at
low repetition rates with elliptical beam shaping26 at moderate
writing depths42 in fused silica (a nominal six photon process at
800 nm).

In all cases, the simulations including nonlinearities (n2 ? 0, b6 ?
0) show maximum local intensities in the 1 3 1017–5 3 1017 Wm22

range, close to and above the theoretical validity limit of Eq.(2). The
corresponding maximum electronic densities and carrier generation
rates have been estimated by computing the local nonlinear loss and
converting it to the corresponding energy assuming a Gaussian tem-
poral profile and a 6-photon absorption process. This leads to carrier
generation rates of 6.0 3 1018–2.4 319 cm23fs21, above the threshold
initially taken for neglecting plasma self defocusing. Still, it is worth
comparing the evolution of the modeled intensity cross sections with
and without slit shaping for various nonlinear coefficients. First, in
the focal region the transversal energy spread associated to the ellipt-
ical beam makes the differences in the spatial intensity distribution
for various values of n2 and b6 much more visible than in a circular
beam, despite that the local maximum intensities are higher in the
second case. It is also clear that changes in n2 over one order of
magnitude have a much stronger impact than changes in b6 in the
intensity distribution in the focal region. These latter may be hardly
distinguished in terms of shape for the circular beam (compare
Fig. 3(b) and (c)) unlike the case of the elliptical beam, in which
the energy deposition in the pre-focal region enables to clearly reveal
changes in b6 within one order of magnitude (see Fig. 3 (f) and (g)).
Similar simulations as in Fig. 3 show that analogous features can be
observed for different numbers of absorbed photons, K $ 2, although
the sensitivity of the intensity cross section shape to changes in bK is
higher the lower the K value is. As a general trend, the com-
puted intensity profiles permit to distinguish changes in n2 and bK

Figure 2 | (left) Experimental and calculated images of the transverse beam intensity distribution at the output exit of the NPG glass for different

pulse energy values. (right) Experimental (from Ref. 40) and calculated beam waist (FWHM) at the exit facet of the sample as a function of the input pulse

energy. The error bars indicate the error in the experimental pulse energy determination. The scales are in mm. The coefficients used in the simulations are

n2 5 5.5 3 10219 m2/W and b3 5 5.5 3 10228 m3/W2.

www.nature.com/scientificreports
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within a factor of two and within one order of magni-
tude, respectively, for elliptical beams with an aspect ratio Rx/Ry $

,5.

Propagation for non-negligible transient plasma effects:
Determination of nonlinear coefficients (n2, bK) from imaging
experiments. These peculiarities of the nonlinear propagation of
elliptical beams can be exploited to estimate the material nonlinear
coefficients (n2, bK) from post-mortem trans-illumination images of
the focal region or plasma emission images21. Figure 4 (a–d) shows
several cross sectional images of fs-laser written waveguides in fused
silica using the slit shaping technique43 for various slit-widths, pulse
energies and writing depths as described in Ref. 42, along with the
corresponding propagation modes at 633 nm. The writing
conditions correspond to a linearly polarized input beam of
diameter 7.4 mm (1/e2 intensity), 100 fs (FWHM) pulse duration
at 800 nm, focused with a 20 mm focal length lens below the
surface after being shaped with a variable slit. The laser repetition
rate was 1 kHz and the sample scanning speed 100 mm/s. The slight
asymmetry in the experimental results with respect to the symmetry
plane (X–Z) is most likely due to a slight tilt on the input beam.

The experimental images clearly show the combined effect of slit
shaping, nonlinear refraction and increased propagation depths. For
the shallowest depth and smaller energy (0.75 mm, 4 mJ, Fig. 4(a))
the accumulated nonlinear phase shift is still relatively small to create
a large distortion of the energy deposition profile with respect to the
linear case. It is worth noting that, as indicated in Ref. 42, the use of a
relatively small NA (,0.19) and slit shaping strongly diminishes
spherical aberration, leading to a relatively small transformed region
along the beam propagation axis. As the pulse energy and the pro-
cessing depth increase, nonlinear self-focusing, and spherical aber-
ration distort the focal volume, leading to a characteristic arrow-head
shape (Fig. 4(b)). The angle and length of the arrow-head is given by
the combination of pulse energy, processing depth and slit width, as
shown in Fig. (4b–d). This is rather apparent for the deepest structure
shown (writing depth 4.35 mm) for which spherical aberration
effects are clearly appreciable.

In order to model the observed structural changes, the effect of the
slit is replaced by an elliptically shaped beam with the corresponding
aspect ratio. The propagation calculations were performed using an
intensity independent b6 coefficient of 5 3 10283 m9 W26 (valid for
maximum local intensities below ,4 3 1017 Wm22 (see Section II))
and using n2 as an adjustable parameter in order to reproduce the
characteristic shape of the transformed region. To this extent we used
the spatial distribution of the nonlinear absorbed energy, as shown in
the lower row of Fig. 4 where the corresponding normalized values
were discretized to ease the comparison with the shape of the trans-
formed region. The same value, n2 5 0.75 6 0.25 3 10220 m2/W, was
determined from several structures similar to those shown in Fig. 4.
This value is substantially smaller than the typically reported values
for the nonlinear refractive index of un-irradiated fused silica at
800 nm (2.0–2.5 3 10220 m2/W9,37.

This apparently surprising result is perfectly consistent with the
observations reported by Blömer and coworkers44 on the nonlinear
refractive index of waveguides written in fused silica at KHz repe-
tition rates. Their estimates, based on self modulation measurements
during the propagation of fs-laser pulses in the written waveguides,
show a substantial decrease of n2 in the laser irradiated material, up to
a factor ,4 for the maximum dose analyzed. In our case, the esti-
mated ratio n2irradiated/n2non-irradiated , 3 is very close and consistent
with the lower dose used. Interestingly, our simulation is a clear
indication that the modification of the nonlinear refractive index
of the material occurred during the interaction (it is not an after-
effect) as it conditioned the energy deposition process during the
writing process.

It is also worth noting that these n2 estimates correspond to a
situation in which the achieved maximum local intensities are above
the conservative limit at which plasma self-focusing can be neglected
(1017 Wm22, see Section I). In fact the maximum carrier generation
rates and carrier densities calculated from the simulations in Fig. 4
are in the 5 3 1018 cm23fs21, and 8 3 1020 cm23 ranges, respectively.
This latter value is perfectly consistent with experimental data from
maximum plasma densities measured in waveguide writing by fs-
resolved microscopy26. This pinpoints that, as expected from the
comparison of simulated absorbed energy cross sections and experi-
mental waveguide cross section images, the calculations provide reli-
able estimates of the energy deposition profile even above the plasma
self-defocusing threshold. The actual reason for such a remarkable
outcome is not totally clear: on the one hand, the highest plasma
densities are reached near-before the focal region (or well before it
depending on the amount of accumulated nonlinear phase-shift)
where the beam is strongly depleted by nonlinear absorption. As a
consequence, plasma self-defocusing effects may be strongly
reduced. On the other hand, the plasma build-up speed could -to
some extent- soften plasma self-defocusing effects while nonlinear
refractive index changes (like the ones we observe upon irradiation)
dynamically affect the carrier generation rate. It should also be noted
that avalanche process is delayed and thus cannot compensate the
Kerr effect when the pulses are sufficiently short. In any case, the
results derived from the image analysis show that, owing to the
sensitivity of the focal volume of an elliptical beam to nonlinear
phenomena during propagation, the presented approach is quite
reliable in determining the effective nonlinear coefficients under
actual writing conditions. In general, as also pointed out in Ref 16,
this study suggests that the solution of the nonlinear Schrödinger
equation with nonlinear absorption alone may suffice to capture the
dynamics of beam reshaping in a number of cases beyond the
plasma-free regime. This seems to be the case for elliptical beams,
partly due also to the peculiarities of their propagation in presence of
absorptive and refractive nonlinearities.

This approach for the estimation of nonlinear coefficients is simi-
larly valid for processes involving a lower number of photons in the
nonlinear absorption process, as shown in Fig. 5. The figure shows

Figure 3 | Simulated intensity Y–Z cross sections (x 5 0) in the focal
region for various n2 and b6, for a 100 fs, 7.5 mJ pulse, focused 500 mm
underneath the surface with a 20 mm focal length lens. (a–d) Correspond

to a Gaussian circular beam (Rx 5 Ry 5 3.5 mm (1/e2)). (e–f) Correspond

to a Gaussian elliptical beam (Rx 5 3.5, Ry 5 0.175 mm (1/e2)). The

nonlinear parameters in the simulations are n2 5 0, b6 5 0 (a,e), n2 5

10220 m2W21, b6 5 5 3 10284 m9W25 (b), n2 5 10220 m2W21, b6 5 5 3

10283 m9 W25 (c), n2 5 10219 m2W21, b6 5 5 3 10284m9 W25 (d), n2 5

10220 m2W21, b6 5 5 3 10282 m9 W25 (f), n2 5 10220 m2W21, b6 5 5 3

10281 m9 W25 (g), n2 5 10219 m2W21, b6 5 5 3 10282 m9 W25 (h). All

images were normalized to the maximum power density indicated by the

legend in each image in Wm22. The spatial scales are the same for (a–d) and

(e–h), respectively. The beam incidence is along Z. The white dashed

indicates the linear focus position.
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two cross sectional images (Fig. 5(a), 5(b)) of waveguides produced in
a commercial phosphate glass by fs laser writing at 1 kHz repetition
rate with a sample scanning speed of 100 mm/s, as reported in Ref. 21
using pulses of different duration and polarization. The guided
modes of both structures at 1550 nm are included as well. The input
beam diameter was 7.0 mm (1/e2 intensity), shaped with a 0.35 mm-
width slit (Ry/Rx 5 1/20 aspect ratio) and focused 1.56 mm below the
surface with a 20 mm-focal length microscope objective.

In this case, the shape of the high energy waveguide (Fig. 5.(a)),
written with linear polarization, 100 fs laser pulses was first fitted
using the nonlinear refractive index of the non-irradiated phosphate
glass26 (5.85 3 10220 m2W21) as the starting parameter. Afterwards,
optimal values for both n2 and b3 for linear polarization were deter-
mined through an iterative process, leading to n2L 5 1.1 3

10220 m2W21 and b3L 5 4.0 3 10230 m3W22. Consistently with
our previous observation in the case of fused silica, the nonlinear
refractive index of the irradiated material considerably decreases (by
a factor close to 6) with respect to that of the non-irradiated one45.
The simulations of the low energy waveguide, written with circular
polarization, and a pulse duration of 250 fs (Fig. 5.(b)) were then
performed decreasing n2L by a factor of 1.5 (n2L/n2C 5 1.5), corres-
ponding to the ratio of the nonlinear refractive index for linear and
circular polarizations in isotropic materials26,35. Interestingly, we
observe that the change of the irradiation conditions (polarization
and pulse duration) not only affects the nonlinear refractive index
value but also the nonlinear absorption coefficient. The optimal value
of b3 estimated for circular polarization is b3C 5 1.0 3 10230 m3W22,
which is a factor of ,4 smaller than b3L. This diminution of the

nonlinear absorption for circular polarization has been experi-
mentally reported by Temnov and coworkers45 in crystalline and
amorphous dielectrics (in fused silica a similar diminution is
observed). The transition from circular-polarization dominance
to linear polarization dominance in the nonlinear absorption cross
section is theoretically predicted46 for K , 4, although we observe
this effect for K 5 3.

As in the case of fused silica (Fig. 4), the corresponding estimated
maximum carrier generation rates and densities (,6 3

1018cm23fs21 and ,1021 cm23) are above the plasma self-defocus-
ing threshold and consistent with experimental measurements26,
supporting the viability of the approach in a wide variety of pro-
cessing conditions. The comparisons in Fig. 5 between the calcu-
lated incident intensity and absorbed energy cross sections, and
the experimental transillumination images of both waveguides
suggest that along three photon absorption (responsible for the
formation of the refractive index increased, white contrasted
region) there is an additional nonlinear energy deposition mech-
anism. This causes the formation of the dark contrasted zones
before and after the focal region, most likely due to the generation
of defects. This is valuable information that has to be considered
to further improve the performance of the waveguides.

The feasibility of accessing the nonlinear coefficients of a dielec-
tric, even within a resolution of one order of magnitude, based on
post-mortem or plasma emission images of the focal region appears
thus as an appealing use of the propagator, especially considering its
low computational cost and the inherent difficulties in the precise
experimental determination of n2 and bK.

Figure 4 | Central column, cross sectional transillumination images (Y–Z plane) of waveguides written in fused silica using slit shaping at the indicated
energies (mJ/pulse), slit widths and processing depths. Beam incidence is from the left of the images. The corresponding propagated modes at 633 nm are

shown in the column to the right. The left column shows the corresponding normalized cross sectional images of the calculated distribution of absorbed

energy along the Y–Z plane (x 5 0). The arrows indicate the position of the linear focus at the indicated processing depth. The absorbed energy

distributions have been normalized to the maximum (1.0) and then discretized in 0.2 steps to facilitate the comparison with the experimental images. The

calculated absorbed energies are 1.9 (a), 3.8 (b), 4.9 (c) and 3.9 mJ (d), respectively. The simulations were performed using n2 5 0.75 3 10220 m2/W, b6 5

5 3 10283 m9 W25. In all cases the maximum local intensity achieved is ,2 3 1017 Wm22.
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Conclusion
A method for modeling the propagation of laser beams in dielectrics
in the presence of absorptive and refractive nonlinearities has been
implemented. The method is based on the use of a generalized fast-
Fourier evolver to solve the nonlinear Shrödinger equation under
simplified interaction conditions, with computing times of just tens
of seconds. The propagator provides excellent results for propagated
power densities at which free carrier generation effects can be
neglected. The peculiarities of the nonlinear propagation of elliptical
beams enable to use to code in situations where plasma self-defocus-
ing effects are expected to be relevant. In such cases, the code still pro-
vides an instantaneous picture of the spatial distribution of the
energy deposition in the material sufficiently realistic to perform
reasonably accurate estimates of the effective nonlinear refractive
index and the nonlinear absorption coefficient based on trans-illu-
mination images of the irradiated region. These estimates can in turn
be used for a priori refining the processing conditions of dielectrics
with ultra-short laser pulses at low repetition rates in waveguide
writing and other applications.

Methods
Figure 6 shows a flow diagram of the code. For the initial beam, the field, both in the
real and Fourier spaces, is represented by a 2-D matrix containing both the corres-
ponding field scalar amplitudes and additional null field values surrounding the field
distribution. The representation matrix size, density and beam to space ratio is
defined in the real and Fourier spaces before starting the propagation code. The
spatial profile of the beam is initially defined in the form of a spatially (circular or
elliptical) Gaussian intensity distribution with a (pre-defined) arbitrary wavefront.
The potential use of arbitrary wavefronts allows introducing different types of aber-
rations in the wavefront in order to tailor the spatial profile of the region where energy
is deposited, like in the case of using a spatial light modulator for spatial beam
shaping47. This particular application is however beyond the scope of this manuscript.
The beam is then linearly propagated in air and focused by an optically thin lens to
reach the air-dielectric interface. The spherical aberration effect associated to the
propagation through the interface is then impressed in the beam wavefront following
the Fresnel reflection. After this stage, the ‘‘health’’ of the beam is checked in order to
ensure the absence of aliasing effects which would render inaccurate results. This is
done by measuring the energy fraction of the beam in the outermost regions of the
representation matrices (real and Fourier spaces). If the value is above a pre-fixed
tolerance limit, the representation matrices have to be redefined until aliasing falls
within the specified tolerance. If the field is not aliased, the propagation inside the
material begins.

The propagation is performed in small split steps along the propagation direction.
For a propagation length (Dz), the linear propagation over Dz/2 is first computed in
the Fourier space. Then the nonlinear propagation (non-linear absorption and
refraction) is calculated over the whole step Dz in the real and Fourier spaces using as
input the previously calculated field amplitude A(x, y, z1 Dz/2). Finally, the
remaining linear propagation step over Dz/2 is calculated. We can see this as applying
the nonlinear propagation over a field that is averaged over the propagation step. Two
tests are performed before the computed field amplitude A(x, y, z 1 Dz) is stored and
the next is step calculated. First, it is checked if the step size used Dz was correct.
For this purpose, the field amplitude A(z – Dz) is propagated over a step 2Dz and
compared to the just calculated A(z 1 Dz) (except for the first step). If the difference
between both fields is lower than a given tolerance value, the propagation field is taken

as correct. If the difference is much lower than the tolerance value, the code increases
Dz for the next calculation step to reduce the computation cost. If the difference is
above tolerance, Dz is reduced and the current propagation step is repeated. The
second test computes the fraction of energy in the outermost region of the repres-
entation matrices. If the field is aliased in the real or in Fourier spaces, the density of
the representation matrix in the non-aliased space is increased and the propagation
step repeated in the outermost region the representation matrices is sufficiently low,
the code reduces the matrix density to reduce the calculation time. It can happen that
the new Dz is too small and required the time to complete the propagation gets
unaffordable. In that case, the calculation must be restarted with new initial field

Figure 5 | (Second colum from left) Cross sectional transillumination images (Y–Z plane) of waveguides written in phosphate glass using slit shaping
at energies and pulse durations of 9.6 mJ/pulse, 100 fs (a) and 4.0 mJ/pulse, 250 fs (b), respectively, for a slit width of 0.35 mm, at a processing depth of
1.56 mm. The polarization of the writing beam is linear in (a) and circular in (b). Beam incidence is from the left of the images. (Left column) Corresponding

normalized cross sectional images of the calculated absorbed energy distribution along the Y–Z plane (x 5 0) for the same processing parameters. The

corresponding guided modes at 1550 nm are shown in the third column from the left. (Right column) Normalized calculated incident intensity cross section.

The calculated absorbed energies are 8.5 (a) and 1.9 mJ (b) while the maximum intensities are 1.5 3 1017 and 2.9 3 1017 Wm22, respectively. The simulations

were performed using n2 5 1.1 3 10220 (a) and 0.72 3 10220 (b) m2W21, and b3 5 4.0 3 10230 (a) and 1.0 3 10230 m3W22 (b).

Figure 6 | Flow diagram of the beam propagation code.
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representation parameters. When the field pass both tests, the code stores the 2D-slice
A(z 1 Dz) and calculates (at wish) related magnitudes as intensity, beam radius, field
distribution momentums, etc. In particular, the energy absorbed in each step can be
calculated and used to make an estimate of the electron density generated by multi-
photon absorption, with the above indicated constrains.

Finally, when all the data is calculated from the field, the code follows to the next
step until the desired depth is reached. In that moment, the code stops the calculation
of the propagation and starts the representation of the desired output. It can consist of
different cross sections of the beam intensity or absorbed energy, or different order
momentums of the intensity, in order to access, for instance to the beam waist
evolution during propagation.
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