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Abstract

Parkinson’s disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional
anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson’s disease with cardiac
dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to
assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations
tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were
evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog
11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific
radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between
10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution
volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P,0.001)
and 14 weeks (P,0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P,0.05), epinephrine, and
3,4-dihydroxyphenylacetic acid (P,0.01) were notably decreased after 6-hydroxydopamine at all time points. These results
demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible
pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method
to further develop a monkey model of cardiac dysautonomia.
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Introduction

Parkinson’s disease (PD) is a movement disorder associated with

degeneration of the nigrostriatal dopaminergic pathway; however,

patients also experience nonmotor symptoms, with up to 80%

having some form of autonomic dysfunction [1,2,3,4]. Dysauto-

nomias greatly affect PD patients’ quality of life, and often are

more disabling than motor deficits [5].

Cardiac dysautonomia, or abnormal autonomic control of the

heart, is characterized in PD by orthostatic hypotension, an

increase in corrected QT intervals (QTc), and reductions in heart

rate variability and plasma norepinephrine [6,7,8,9,10]. Cardiac

denervation, which may be a component of dysautonomias or

found independently in PD patients, [11,12,13,14] is associated

with arrhythmias, shortness of breath during exercise, reduced

time to peak heart rate, and fatigue [6,15]. High co-prevalence

suggests cardiac denervation and dysautonomia are intimately

related with serious clinical consequences. New screening tools [7]

and treatments are needed.

Cardiac sympathetic loss in PD has been documented using

sympathoneuronal imaging agents such as 6-[18F]fluorodopamine

[11,16,17,18] and 11C-meta-hydroxyephedrine (MHED) [19,20]

with positron emission tomography (PET) and [123I]metaiodo-

benzylguanidine with single-photon emission computed tomogra-

phy [12,13,21,22,23]. Low uptake in the left ventricle (LV)

myocardium is reported in all stages of PD, although specific

patterns of loss are not well described. Both diffuse and localized

losses to lateral and inferior LV walls are reported [12,20,24].

Regardless of the pattern, loss is progressive [6]. PD patients

exhibited as much as 30% loss of 6-[18F]fluorodopamine uptake in

the LV lateral wall over 2 years, with relative preservation in the

septal wall [18]. Loss of cardiac sympathetic innervation is

confirmed post mortem by nearly complete absence of tyrosine

hydroxylase, an enzyme in catecholamine biosynthesis, and by
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reduced neurofilament protein, a marker for the presence of axons

[25,26,27].

Development of PD treatments targeting cardiac dysautonomia

requires comprehensive animal models mimicking this symptom,

[28] but no well-characterized nonhuman primate model of

cardiac dysautonomia is currently available. Systemic administra-

tion of 6-hydroxydopamine (6-OHDA) to mice [29,30] and dogs

[31,32] induces persistent loss of cardiac catecholaminergic

innervation, supporting use of 6-OHDA to model cardiac

dysautonomias in PD. We therefore aimed to assess the feasibility

of developing a monkey model of cardiac dysautonomia by

administering 6-OHDA within a system of in vivo evaluation in

order to generate preclinical tools toward understanding this

condition and testing therapies for PD patients.

Materials and Methods

Ethics Statement
The present study was performed in strict accordance with the

recommendations in the NIH Guide for the Care and Use of

Laboratory Animals (7th edition, 1996) in an AAALAC accredited

facility (Wisconsin National Primate Research Center, University

of Wisconsin - Madison). Experimental procedures were approved

by the Institutional Animal Care and Use Committee of the

University at the Wisconsin-Madison (permit number: G00538).

All efforts were made to minimize the number of animals used and

to ameliorate any distress.

Subjects
Five adult rhesus monkeys (Macaca mulatta; 5–9 years old; 6–

10 kg; two male, three female) were used in this project. The study

followed a within-subjects experimental design (Figure 1) in which

each animal was used as its own control. This design facilitates

matching subjects between groups, reduces the chance of

confounding factors, and the number of monkeys used. The

animals were individually housed in Group 3 or Group 4

enclosures (cage floor area 4.3 ft.2 or 6.0 ft.2 per animal, height

30 or 32 in.) in accordance with the Animal Welfare Act and its

regulations and the 7th edition of the Guide for the Care and Use

of Laboratory Animals (1996) with a 12-hour light/dark cycle.

Throughout the study, the animals were monitored twice daily by

an animal research technician or veterinary technician for

evidence of disease or injury (e.g., inappetance, dehydration,

diarrhea, depression, lethargy, trauma, etc.) and body weight was

documented weekly to ensure animals remained in properly sized

cages. Animals were fed commercial nonhuman primate chow

(2050 Teklad Global 20% Protein Primate Diet, Harlan

Laboratories, Madison, WI) twice daily, supplemented with fruits

or vegetables and a variety of forage items and received ad libitum

water. Nonhuman primate chow soaked in a protein-enriched

drink (Ensure�, Abbott Laboratories, Abbott Park, IL) was offered

to stimulate appetite as needed after neurotoxin dosing.

6-OHDA Dosing
6-OHDA hydrobromide (Sigma-Aldrich, St. Louis, MO)

solution was prepared under a certified chemical hood, less than

2 hours before administration. The solution was kept out of light

and on ice until immediately before administration, when it was

drawn up into a 10-mL syringe covered with foil, and flushed

through an amber-colored infusion line. Animals were food-

deprived overnight; anesthesia was induced with ketamine HCl

(15 mg/kg im) and maintained with 1–3% isoflurane in 100% O2

at 1 L/min. 6-OHDA (total final dose 50 mg/kg) was mixed into a

sterile ascorbic acid solution (1 mg/mL 0.9% NaCl) and

administered intravenously in a series of 5 mL injections (see

Table 1 for dosing scheme) at a rate of 1 mL/min, using a

motorized syringe pump (KD Scientific, Holliston, MA). Dosing

was based on previous reports administering 6-OHDA to dogs

[31,32]. Blood pressure, heart rate, respiration rate, blood oxygen,

and electrocardiograms (ECG) were monitored throughout the

procedure; their normalization (return to baseline values) defined

timing of subsequent dosing. Before dosing, blood was taken for

complete blood chemistry and hematocrit measurements; addi-

tional hematocrit measurements were performed after each

dosing.

Clinical Evaluations
Heart rate, cardiac auscultation, complete blood count, and

blood chemistry were performed at least monthly before and after

6-OHDA. Feces were monitored daily by trained personnel and

their characteristics recorded using a descriptive scale. The feces

Figure 1. Experimental timeline. All procedures were performed in
5 adult rhesus monkeys following a within-subject experimental design.
MHED PET scans, plasma catecholamines, troponin I and ECGs (*) were
performed at baseline and 1, 4, 10 and 14 weeks after 6-OHDA.
Echocardiograms (Echo) were obtained at baseline and 10 and 14
weeks after 6-OHDA. Clinical rating (CR) was performed at baseline and
4, 10 and 14 weeks following toxin administration. Food consumption
and feces were monitored daily and body weight was measured weekly
throughout the course of the study (shading). Animals were euthanized
14 weeks following 6-OHDA administration.
doi:10.1371/journal.pone.0035371.g001

Table 1. 6-OHDA dosing scheme (mg/kg) for each individual
animal.

Injection
number R01097 R01098 R04094 RH2316 RH2318

1 0.50 0.50 0.50 0.49 0.50

2 1.00 1.00 1.00 1.00 1.00

3 1.50 0.62 1.50 2.30 1.50

4 2.00 0.88 2.00 0.85 2.00

5 4.00 2.00 4.00 5.00 4.00

6 15.00 4.00 15.00 10.00 10.00

7 26.00 10.00 26.00 11.84 10.00

8 10.00 18.52 21.00

9 21.00

Total 50.00 50.00 50.00 50.00 50.00

The rhesus monkeys received 7–9 injections of 6-OHDA solution in one session,
accumulating to a total final dose of 50 mg/kg. Dosing and timeline of
injections varied based on the individual reaction to 6-OHDA. The normalization
(return to baseline measures) of vital signs, ECG, heart rate, and blood pressure
was used to define when the next dose could be given.
doi:10.1371/journal.pone.0035371.t001
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were identified as: no stool, very little stool, firm stool, soft feces

(feces not-formed, usually soft or loose), diarrhea (watery or fluid

feces), and mucus feces.

A trained observer monitored for PD signs using a previously

validated clinical rating scale [33,34]. The scale rates tremor (0–3

for each arm), posture (0–2), gait (0–5), bradykinesia (0–5), balance

(0–2), gross motor skills (0–4 for each arm), defense reaction (0–2)

and freezing (0–2). The total score ranges from 0 (normal

condition) to 32 points (extreme severe disability).

A 10-lead ECG (Hewlett-Packard PageWriter, MA) was

performed at baseline, during toxin administration, and at 1, 4,

10, and 14 weeks after 6-OHDA. Data were collected at least

15 minutes after starting isoflurane anesthesia. Electrodes were

placed on identical positions on the interior right and left arms and

legs, the 4th intercostal space immediately right of the sternum

(V3), the 5th intercostal space immediately left of the sternum, and

directly across from V3 at the anterior axillary line.

An echocardiogram (LOGIQe; GE Healthcare, Waukesha, WI)

was performed under 1–3% isoflurane anesthesia in 100% O2

(1 L/min) at baseline and at 10 and 14 weeks after 6-OHDA.

Measurements included heart rate, wall thickness, LV chamber

diameter, fractional shortening (FS), velocity of blood through

mitral and aortic valves, isovolumetric relaxation time, and aortic

diameter.

Troponin I and Catecholamines Analysis
Blood samples for plasma troponin I and catecholamines were

obtained at baseline and at 1, 4, 10, and 14 weeks after toxin

administration. Blood was collected in a K2 EDTA tube

immediately mixed with 10% sodium metabisulfite (0.7%) and

centrifuged. For plasma troponin I, samples were analyzed by an

enhanced sensitivity immunometric immunoassay as per manu-

facture instructions (VITROS Immunodiagnostic Products).

Plasma norepinephrine, dopamine and epinephrine and their

deaminated metabolite dihydroxyphenylacetic acid (DOPAC)

were assayed by high-performance liquid chromatography

(HPLC) with electrochemical detection (ESA, Chelmsford, MA).

Two animals (RH2318 and RH2316) had baseline catecholamines

drawn under ketamine and medetomidine, an adrenergic agonist,

and were removed from individual catecholamine analysis.

A1.0 mL of plasma was analyzed using a coulometric electro-

chemical detector (Choulochem III; ESA, Chelmsford, MA).

Every 1 L of mobile phase used to separate the catecholamines

contained 13.8 g of sodium phosphate, 55 mg of 1-octane sulfonic

acid, 55 mg of EDTA and 45 mL of acetonitrile at pH of 3.85 and

filtered through a 0.22 mm GV filter under vacuum and pumped

into the system at a rate of 0.6 mL/min producing a pressure

approximately 69–71 bars. The electrodes were set at 2250 and

380 mV. Peak heights were measured from the chromatograms

and original concentrations of the plasma sample were determined

by correcting for the incomplete recovery relative to the internal

standards. Coefficients of variation between standards were at

acceptable levels for norepinephrine (0.014), epinephrine (0.023),

dopamine (0.015) and DOPAC (0.014). For statistical analysis,

levels below detectable HPLC sensitivity, were considered as the

threshold value (e.g.: epinephrine, 3.0 mg/mL; norepinephrine,

1.5 pg/mL; DOPAC and epinephrine assays were all within

detectable ranges).

Radiosynthesis of C11Meta-hydroxyephedrine (MHED)
MHED was prepared by UW-Madison Medical Physics

cyclotron facility using published methods [35]. Briefly,

[11C]MeI was produced from in-target [11C]CH4 on a 16

MeV GE PETtrace using a Scansys automated chemistry module.

Gas phase [11C]MeI labeled 15 mg metaraminol free base (ABX,

Germany) in 300 mL 1:2 DMSO:DMF. The sealed vial was heated

to 110uC for 5 minutes and diluted with 5 mL water for

preparative reverse-phase HPLC purification (Econosil 5 m,

86300 mm, 3 mL/min 0.1 M Na2HPO4, with EtOH concen-

tration increasing linearly from 0 to 10% over 600 s). The final

product was millipore filtered for injection.

[11C]MHED PET Imaging
Monkeys underwent MHED PET under isoflurane anesthesia

(1–3% in 100% O2, 1 L/min) at baseline and at 1, 4, 10, and 14

weeks after 6-OHDA. Animals were positioned supine in a

Siemens HR+ PET scanner, using a custom-made foam

positioning apparatus. After a 15 minute transmission scan,

MHED was injected as an intravenous bolus (#5.2 mCi) over

30 s. Dynamic PET images were obtained for 1 hour with

conventionally increasing frame durations (6630s, 3660s,

26120s, 106300s).

PET Data Analysis
Whole-blood tracer concentrations were obtained from a

volume of interest in the upper part of the LV chamber. MHED

uptake was quantified using the equilibrium distribution volume

(DV) [36] of the LV tissue relative to whole blood. A DV value of

1 corresponds to no excess capacity in tissue relative to blood; DV

– 1 thus provides a measure of the density of the nerve terminals

that give the tissue its excess capacity. DV was evaluated in eight

sectors in each of seven short-axis rings evenly spaced along the

long axis of the heart. Data are presented as polar maps (apex of

the heart at the center, base of the LV at the edge). Intersubject

variation was observed at baseline in the apical and basal regions,

probably reflecting normal patterns of innervation. Study of one

animal (R01097) at the 10-week time point failed for technical

reasons; uptake patterns at other time points were similar to those

of the other four animals and were included in the visual

assessments. Statistical assessments of PET data were performed

with only the four remaining animals.

Individual subject global DV was calculated as an average over

all eight sectors from polar rings 2 to 6 (total: 40 blocks) at baseline

and at 1, 4, 10, and 14 weeks after lesion. These measures were

averaged across animals to determine the group global DV at each

timepoint. Individual MHED percent retention deficit was

calculated for each of the 40 blocks at each time point as

[(DVbaseline21)2(DVtimepoint21)]/(DVbaseline21)6100 and aver-

aged over blocks at each time point. These measures also were

averaged across animals to obtain group MHED percent retention

deficit at the four post-lesion time points.

Statistical Analysis
All statistical analysis was performed using GraphPad Prism

(version 5.0b, GraphPad Software). A P,0.05 was accepted as

significant. Comparison over time of the different data sets (feces,

weights, ECG intervals, echocardiogram data, troponin I and

catecholamines levels) were done using repeated measures

ANOVA and corrected with Bonferroni multiple comparison tests.

Changes over time of global DV mean and percent retention

deficit were assessed by repeated-measures ANOVA and corrected

with Tukey’s multiple comparisons test. To assess regional

variation, individual DV values in the four single sectors in the

anterior, septal, inferior, and lateral directions were averaged over

the five central rings (total: 5 blocks) to provide a single mean

regional value at each time point. Group averaged regional DV

values were analyzed with two-way repeated-measures ANOVA

among all four regions over time and corrected with Bonferroni

Nonuniform Cardiac Denervation in Monkeys
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multiple comparisons test. Finally, Pearson correlations were

performed between MHED uptake and other outcome measures

(feces, ECG, blood assays and echocardiogram outputs) and

between body weights and frequency of abnormal feces.

Results

Immediate Effects of 6-OHDA Administration
Sympathetic responses occurred immediately after each 6-

OHDA injection, including increases in systolic and diastolic blood

pressure (Figure 2A) and heart rate. Individual animal sensitivity

and the tachyphylaxic effect of sympathetic responses to 6-OHDA

dosing influenced the time interval between successive doses that

ranged from 12 to 100 minutes with the longest period occurring

after a cumulative dose of .1.5–3 mg/kg (Table 1; Figure 2B).

In three animals (R01098, R04094, RH2316), ECGs showed

arrhythmic activity (e.g., ventricular premature contractions) when

the cumulative dose reached .3 mg/kg, which delayed next

dosing. Increasing the number of injections (while decreasing the

amount of 6-OHDA per injection) and adjusting each dose

according to the individual response minimized side effects and

reduced time between consecutive doses.

Hematocrit levels were slightly elevated during toxin delivery;

peak increases averaged 18.1%. Three animals (R01097, R01098,

R04094) vomited during or directly after treatment. All animals

produced pink-hued urine after 6-OHDA, probably because of

oxidation of 6-OHDA; samples were negative for blood.

Clinical Effects of 6-OHDA Administration
Group weekly weights showed body weight loss after 6-OHDA

compared to baseline. The weight loss became statistically

significant 4 weeks after lesion (12.26%) and remained stable over

time (Table 2).

Soft feces or diarrhea were observed after 6-OHDA dosing but

did not interfere with general and motor behavior as well as blood

hematology and chemistry. The frequency of abnormal feces

positively correlated with body weight loss (Pearson’s correlation,

r2 = 0.516, P,0.0001), in particular diarrhea (r2 = 0.3604,

P = 0.0005) and soft feces (r2 = 0.4015, P = 0.0002).

ECGs after 6-OHDA all demonstrated normal sinus rhythm.

There were no significant changes in PR, QRS and QTc intervals

relative to baseline, despite QTc being considered an indicator of

cardiac dysautonomia in Parkinson’s disease (Table 3) [37,38].

Echocardiograms revealed variable changes in FS, a measure of

systolic performance following 6-OHDA (Table 4). Three animals

had a decrease in FS throughout the study with the largest

decrease being 43% from baseline. In two of these three animals,

there was left ventricular dilation accompanying the systolic

dysfunction. Two animals showed no apparent changes in

chamber size or FS. There were no notable clinical consequences

observed from FS reductions such as signs of heart failure.

Evaluation of wall thickness, did not reveal significant changes

associated to nonuniform wall innervation (Table 4).

Figure 2. Systolic and diastolic blood pressure measurements during 6-OHDA administration. Blood pressure results from a
representative animal (RH2318). A, Both pressures increase immediately after each 6-OHDA dosing (arrows). B, Change in systolic and diastolic blood
pressure from peak of pressure following 6-OHDA until levels normalized at which time the next injection of 6-OHDA was administered. The amount
of time to normalize paralleled the change in blood pressure. At the accumulated dose of 2.0 mg/kg, this animal required 61 minutes to regulate
blood pressure. bp, blood pressure.
doi:10.1371/journal.pone.0035371.g002
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Blood Assays
Troponin I levels in four animals were not affected by 6-

OHDA. One animal (R04094) had a fivefold increase at 1 week,

suggestive of cardiac damage; levels returned to baseline over time.

Plasma catecholamine levels dramatically decreased 1 week

after 6-OHDA and remained stable until necropsy (Table 5), with

significant reduction in norepinephrine (F2,4 = 6.57, P = 0.012) and

DOPAC (F2,4 = 17.20, P = 0.0005) levels. Decreases in dopamine

and epinephrine did not reach statistical significance, probably

because of individual variability at baseline.

Analysis of MHED Uptake
Baseline DV values were uniform, regionally and across

animals. DV values fell to ,1 in all regions in all animals at 1

week after 6-OHDA, and slowly recovered over 3 months with

considerable regional variation (Figure 3). Group-averaged global

DV values at each time point after 6-OHDA were all significantly

lower than at baseline (P,0.001), suggesting reduction of

innervation 3 months after 6-OHDA. Similarly, group MHED

percent retention deficit values varied significantly over time

(F3,3 = 14.38, P,0.001), with reductions noted between 1 and 10

weeks (P,0.01), 1 and 14 weeks (P,0.001), and 4 and 14 weeks

after toxin (P,0.05) but not between directly adjacent time points

(Figure 4A). The continual increase in MHED uptake suggests

slow but global recovery of innervation; however, significant

changes were detected between 10 and 14 weeks after toxin

challenge, suggesting stabilization of the lesion.

Statistical analysis demonstrated a main effect on each variable

region (F3,48 = 5.93, P,0.05) and time (F4,48 = 231.4, P,0.001), in

addition to the interaction effect (F12,48 = 2.986, P,0.01). Post hoc

analysis between regions over time showed a significant difference

between anterior and inferior regions at 10 (P,0.001) and 14

weeks (P,0.01), anterior and septal at 10 weeks (P,0.001), and

inferior and lateral at 10 weeks (P,0.01), suggesting that 6-OHDA

creates a heterogeneous lesion in the LV myocardium (Figure 4B).

Cardiac MHED uptake was significantly correlated with the

natural logarithm of the blood concentrations of norepinephrine

(Pearson’s correlation; r2 = 0.44, P = 0.0097), dopamine

(r2 = 0.596, P = 0.0012), epinephrine (r2 = 0.526, P = 0.0033), and

DOPAC (r2 = 0.60, P = 0.0011) at similar time points (Figure 5).

Additionally, frequency of abnormal feces significantly corre-

sponded with MHED uptake (r2 = 0.4814, P = 0.0059). No

significant correlations were found between MHED and troponin

I or FS changes.

Table 2. Weekly animal weights (kg) and average group % weight loss before and after 6-OHDA dosing.

Animal ID Baseline 1 2 3 4 8 10 11 12 13 14

R01097 8.38 7.98 7.96 8.14 7.55 7.68 7.36 7.51 7.09 7.29 7.24

R01098 6.44 5.86 5.89 6.00 5.63 5.48 5.52 5.71 5.47 5.66 5.57

R04094 8.00 7.22 7.28 7.32 6.74 6.42 6.28 6.58 6.21 5.99 5.94

RH2316 9.60 9.70 8.35 8.33 8.33 8.38 8.50 8.43 8.70 8.75 8.67

RH2318 9.55 8.49 8.53 8.55 8.61 8.99 9.12 9.32 9.05 9.50 9.34

Average (kg) 8.39 7.85 7.60 7.67 7.37** 7.39** 7.36** 7.50* 7.30** 7.44* 7.35**

SEM 0.58 0.64 0.48 0.47 0.54 0.64 0.67 0.64 0.69 0.75 0.74

Average group % loss 6.72 9.25 8.40 12.26 12.32 12.78 10.84 13.49 11.92 12.95

A significant loss of weight was found starting at four weeks post 6-OHDA challenge and persisting throughout the study.
*P,0.05,
**P,0.01.
doi:10.1371/journal.pone.0035371.t002

Table 3. Electrocardiogram (ECG) measurements at baseline,
1, 4, 10 and 14 weeks after 6-OHDA for each animal.

Animal ID Time
HR
(bpm) PR (ms)

QRS
(ms) QT (ms)

QRS
axis DQTc

RH2316 Baseline 140 80 45 230 84

1 wk 112 90 77 296 65 53.10

4 wk 112 90 40 240 110 223.40

10 wk 130 105 50 250 110 16.70

14 wk 135 90 48 242 110 11.70

RH2318 Baseline 130 78 50 260 45

1 wk 125 80 48 265 30 20.21

4 wk 142 95 40 240 45 213.51

10 wk 148 82 38 280 45 57.09

14 wk 135 100 44 285 45 44.79

R01097 Baseline 132 90 50 240 50

1 wk 129 90 45 280 45 54.60

4 wk 165 85 43 240 45 42.00

10 wk 140 90 47 235 45 33.40

14 wk 137 100 46 245 45 6.70

R01098 Baseline 120 92 45 295 45

1 wk 135 95 54 270 80 212.20

4 wk 145 90 55 290 45 33.60

10 wk 138 98 54 269 45 20.20

14 wk 134 89 51 300 45 21.70

R04094 Baseline 140 98 48 250 65

1 wk 120 104 50 315 65 63.60

4 wk 140 100 51 260 85 15.30

10 wk 132 90 54 280 90 29.20

14 wk 145 90 50 250 85 31.10

QTc was calculated using the Bazett’s formula as QT interval/sqrt (RR interval),
where the RR interval was calculated 60/HR. DQTc was calculated as QTc of
each time point minus baseline. No significant differences were found in PR,
QRS and QTc intervals obtained in anesthetized animals. HR, heart rate. QTc,
corrected QT interval.
doi:10.1371/journal.pone.0035371.t003
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Discussion

To our knowledge, this is the first study to characterize in vivo

effects in the heart of systemic 6-OHDA to rhesus monkeys, and

the first to track experimental cardiac denervation with MHED

PET. The main findings include a nonuniform pattern of MHED

uptake in the left myocardium, as well as decrease in circulating

catecholamines, suggesting that this model mimics cardiac

dysautonomia in PD.

The most common nonhuman primate model of PD involves

the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) [39]. Systemic dosing of MPTP produces a severe

Table 4. Echocardiogram measurements at baseline, 10 and 14 weeks after 6-OHDA for each animal.

Animal ID Time AWd (cm) AWs (cm) PWd (cm) PWs (cm) LVDd (cm) LVDs (cm) FS
FS (% change from
baseline)

RH2316 Baseline 0.48 0.86 0.44 1.01 2.10 0.94 55%

10 wk 0.44 0.85 0.44 0.95 2.20 1.08 51% 28%

14 wk 0.45 0.96 0.45 0.96 2.22 0.96 57% +3%

RH2318 Baseline 0.47 0.88 0.50 1.08 2.35 1.28 46%

10 wk 0.48 0.76 0.52 0.82 2.37 1.75 26% 243%

14 wk 0.48 0.86 0.49 0.95 2.52 1.60 37% 220%

R01097 Baseline 0.47 0.81 0.48 0.75 2.01 0.94 53%

10 wk 0.49 0.82 0.47 0.74 2.17 1.10 49% 27%

14 wk 0.51 0.89 0.48 0.81 2.19 1.35 38% 228%

R01098 Baseline 0.46 0.93 0.48 0.78 2.06 1.16 44%

10 wk 0.45 0.77 0.45 0.72 1.97 1.16 41% 26%

14 wk 0.44 0.82 0.40 0.72 1.98 1.11 44% +1%

R04094 Baseline 0.46 0.77 0.49 0.82 2.16 1.19 45%

10 wk 0.45 0.86 0.42 0.86 2.15 1.12 48% +7%

14 wk 0.48 0.87 0.42 0.71 2.02 1.32 35% 223%

FS is calculated as [(LVDd – LVDs)/LVDd]6100. Three animals experienced large decreases in FS compared to baseline, but there was no significant change in left
ventricle diameter or in anterior and posterior wall thickness. This suggests that the increased luminal dimensions of the left ventricle were not due to the loss of cardiac
muscle. AWd, anterior wall thickness in diastole. AWs, anterior wall thickness in systole. PWd, posterior wall thickness in diastole. PWs, posterior wall thickness in systole.
LVDd, left ventricle diameter in diastole. LVDs, left ventricle diameter in systole. FS, fractional shortening.
doi:10.1371/journal.pone.0035371.t004

Table 5. Circulating plasma catecholamine levels (pg/mL) at baseline (0) and at 1, 4, 10, and 14 weeks after 6-OHDA in three
animals.

Animal ID Time Norepinephrine pg/mL (ln)* Epinephrine pg/mL (ln) Dopamine pg/mL (ln) DOPAC pg/mL (ln)**

R01097 0 22.35 (3.11) 10.33 (2.34) 13.25 (2.58) 79.64 (4.38)

1 3.61 (1.28) 3.83 (1.34) 1.74 (0.56) 26.48 (3.28)

4 4.73 (1.55) 4.08 (1.41) 1.26 (0.23) 13.52 (2.60)

10 3.85 (1.35) nd 1.31 (0.27) 14.46 (2.67)

14 nd nd 2.77 (1.02) 21.29 (3.06)

R01098 0 89.92 (4.50) 102.19 (4.63) 86.98 (4.47) 103.77 (4.64)

1 4.18 (1.43) 3.20 (1.16) 2.02 (0.70) 14.99 (2.71)

4 4.50 (1.50) 6.02 (1.80) 1.36 (0.31) 12.50 (2.53)

10 nd 4.11 (1.41) 3.55 (1.27) 12.13 (2.50)

14 4.81 (1.57) 5.24 (1.66) 2.82 (1.04) 17.15 (2.84)

R04094 0 49.06 (3.89) 20.96 (3.04) 18.49 (2.92) 56.92 (4.04)

1 4.25 (1.45) 1.87 (0.63) 3.57 (1.27) 16.82 (2.82)

4 3.91 (1.36) 3.35 (1.21) 1.03 (0.03) 16.21 (2.79)

10 2.26 (0.81) 3.43 (0.81) 2.49 (0.91) 19.04 (2.95)

14 4.39 (1.48) nd 7.12 (1.96) 21.47 (3.07)

The values in parentheses are the natural logarithms of the concentration values and used to graph correlations in Figure 5. For statistical analysis, non-detectable levels
(nd) levels were considered as the lowest detection level with 1.5 pg/mL for norepinephrine and 3.0 pg/mL for epinephrine. Post hoc analysis with Bonferroni multiple
comparisons detected significance at all timepoints compared to baseline for norepinephrine and DOPAC (*P,0.05, ** P,0.01).
doi:10.1371/journal.pone.0035371.t005
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parkinsonian motor syndrome; however, effects in sympathetic

denervation are temporary, as observed with 6-[18F]fluorodopa-

mine PET imaging [40]. The other frequently used PD monkey

model depends on direct intracerebral delivery of 6-OHDA, in

order to bypass the blood–brain barrier and affect the nigrostriatal

pathway without inducing peripheral effects [39]. Our method of

intravenous delivery takes advantage of 6-OHDA catecholamin-

ergic toxicity to develop a cardiac dysautonomia model.

The only previous report of systemic administration of 6-

OHDA to monkeys was done in a single rhesus to compare the

systemic effect of 6-OHDA to MPTP [40]. Yet, the authors did

not describe the 6-OHDA method of administration and only

provided a 6-[18F]fluorodopamine PET scan image and catechol-

amine levels 1 week after intoxication. Instead, we based our

dosing regime on the reports of 6-OHDA administration to dogs,

which described neurotoxin delivery over several hours to avoid

clinical complications associated to the dopaminomimetic effects

of the neurotoxin [31,32]. Intravenous administration of 6-OHDA

proved to require intensive monitoring and veterinary care to

avoid hypertensive crisis and pulmonary edema. The adjustment

of the dosing regimen to the individual animal response decreased

the intensity of the symptoms and the time period needed for their

normalization and ensured a safe recovery after the procedure.

Reduction in FS after 6-OHDA administration suggests an

abnormality in cardiac contractility. These reductions were mild;

even the lowest values were within published normal reference

ranges [41,42], and were not associated at the time with changes

in wall thickness. It should be noted that normal ranges of

echocardiogram parameters are not well established for macaque

monkeys and the limited data are based on single recordings with

different types of anesthesia. Because FS measurements are not

well established for monkeys, we evaluated the percent change of

FS over time for each individual animal. Three animals in this

study had recurring declines in the change of FS following 6-

OHDA, suggesting that the loss of noradrenergic cardiac

innervation may produce reductions in left ventricular systolic

function. The animal with the greatest decrease in FS (R04094)

uniquely had increased troponin I levels 1 week after toxin

suggesting injury to the myocardium. This was coupled with lack

of recovery in the LV MHED uptake from 1 week to 4 weeks,

perhaps demonstrating a more severe hypertensive response to 6-

OHDA. The other animals did not exhibit elevated cardiac

troponin I levels and had no or less of an initial decrease in FS

accompanied by greater increases in total MHED uptake.

Noninvasive PET imaging of cardiac sympathetic innervation

allowed us to monitor over time the cardiac tissue response to 6-

OHDA challenge. We used equilibrium DV relative to whole

blood to analyze uptake of MHED, because the uptake index

conventionally used [20] declined rapidly as progressively later

time windows were used for estimation. This behavior, and the

success of an analysis method that assumes reversibility of the

radioligand uptake, are at least partly due to progressive

metabolism of MHED into compounds with no specific affinity

to noradrenergic terminals. If blood metabolite analysis is not in

the protocol, the DV estimates represent the most reproducible

and least arbitrary way to use all the measured data to estimate a

single number representing the uptake process. The use of DV – 1

to represent the innervation-specific part of the uptake is based on

the observation that lesioning reduced the DV values to ,1 in all

regions in all animals.

Systemic administration of 6-OHDA induced loss of catechol-

aminergic innervation of the heart (greater loss in inferior LV

Figure 3. Distribution volume maps before and after systemic 6-OHDA dosing. Maps express regional capacity of the tissue for MHED
uptake relative to whole blood, thus providing a measure of the density of nerve terminals. Each individual map consists of 8 sectors and 7 rings
(apex of the heart at the center, base of the LV at the edge), totaling to 56 blocks of data per timepoint. MHED uptake significantly decreased at each
timepoint after 6-OHDA compared to baseline (P,0.001). Scales (mL whole blood/g tissue) are similar between animals and identical across time
points for each individual. The compass rose indicates regions: A, anterior; S, septal; I, inferior; L, lateral.
doi:10.1371/journal.pone.0035371.g003

Nonuniform Cardiac Denervation in Monkeys

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e35371



myocardium), which persisted 3 months after toxin challenge.

Although nerve terminals in all regions of the LV reacted similarly

to 6-OHDA at 1 week, regional rates of recovery varied over time,

with an average 51% remaining deficit after 3 months. The

anterior region consistently recovered most rapidly and the

inferior wall most slowly. Our findings resemble those in PD:

MHED PET established loss in sympathetic myocardial innerva-

tion [19] and 6-[18F]fluorodopamine imaging suggested preserva-

tion in septal [18] and anterior [6] walls of the LV. The

nonuniform pattern of MHED uptake may be caused by regional

differences in blood perfusion that affected the distribution or

metabolism of the neurotoxin. Another possibility is that the

subpopulation of ganglionic cells innervating the area has a greater

sensitivity to 6-OHDA. It could be argued that the regional

recovery was due to re-growth of cardiac muscle tissue, instead of

reinnervation. Yet, results from the echocardiogram showed no

significant differences in posterior or anterior wall thickness in

either diastole or systole. Bai and colleagues [43] have reported

recovery of cardiac sympathetic nerves following subcutaneous

delivery of 6-OHDA insult in rats. In addition, sympathetic

reinnervation has been described after heart transplantation,

suggesting that the system has a certain plasticity that could be

exploited for regenerative or neuroprotective treatments

[44,45,46]. Increasing animal numbers would help further define

regional differences in LV MHED uptake. Further investigation of

the mechanisms of regional loss is needed, as it may facilitate the

identification of possible therapeutic targets.

The timeline of our experimental design was based on our

previous experience with administration of neurotoxins in the

central nervous system of nonhuman primates. For example, an

observation period of 3 months after MPTP challenge allows for

the dopaminergic nigral cell neurodegeneration to be completed

and defines a stable syndrome [33,47,48]. Lack of significant

changes in MHED uptake between 10 and 14 weeks suggests that

as predicted, by 3 months the catecholaminergic lesion was

stabilized and recovery mechanisms were completed. The

characterization of the timeline for recovery and stabilization of

the lesion in this model will be helpful when designing a study to

test disease-modifying strategies for the heart. Follow-up experi-

ments with endpoints exceeding 14 weeks after toxin administra-

tion would further confirm that 6-OHDA produces a stable lesion

in the LV.

Dopamine, epinephrine, norepinephrine, and DOPAC circu-

lating levels were significantly decreased after 6-OHDA, which

indicates that the neurotoxin affected peripheral catecholaminer-

gic sources such as adrenal medulla, facilitating onset of cardiac

dysautonomia. The positive correlation found between catechol-

amine levels and cardiac MHED uptake further suggests a similar

toxic effect of 6-OHDA in different peripheral catecholaminergic

cells. The drop in circulating catecholamines did not seem to affect

animal health, probably because of adaptive sympathetic presyn-

aptic supersensitivity [49]. Studies in dogs did not find changes in

catecholamine levels, suggesting a species difference in the

sensitivity to neurotoxin effects [32].

Cardiac dysautonomia in PD patients is clinically characterized

by orthostatic hypotension, an increase in corrected QT intervals

(QTc), and reductions in heart rate variability [6,7,8,9,10,52,53].

The presence of these symptoms was not confirmed in this study,

because they are detected in an awake state and the cardiac and

blood pressure evaluations were performed under anesthesia.

Nonuniform cardiac innervation, affects cardiac repolarization

and has been associated with arrhythmias [6,15]. Future

preclinical experiments using telemetric measurements of heart

rate, blood pressure, and locomotive activity [50,51] will allow

their identification in awake animals. Injections of vasoactive

pharmaceuticals such as phenylephrine or sodium nitroprusside

may also help characterize the cardiovascular response.

The monkeys presented abnormal feces and weight loss that

became significant 4 weeks after 6-OHDA. The frequency of loose

stools and diarrhea correlated with the amount of weight loss.

Supplementation of feedings with chow soaked in protein-enriched

drink (standard practice in our facility for animals loosing weight)

enticed feeding, increased fluid intake and helped prevent further

weight loss. The abnormal feces could have been the result from

stress (each animal underwent procedures at least monthly), but

their presence were also described in 6-OHDA-treated dogs that

did not undergo those evaluations, suggesting an effect of 6-

OHDA in the gastrointestinal tract [31]. The enteric nervous

system consists of dopaminergic neurons (myenteric and submu-

cosal plexus), which are potentially susceptible to the toxic effects

of systemic 6-OHDA [54]. In that regard, rats treated with 6-

OHDA have decreased TH mRNA levels in the duodenum [55].

Reduced sympathetic innervation of the intestinal tract can lead to

bowel dysmotility and, therefore, abnormal feces.

Collectively, the changes in cardiac innervation, catecholamine

levels and feces suggest that systemic dosing of 6-OHDA affects

multiple vulnerable catecholaminergic peripheral cells, and this

Figure 4. Quantitative analysis of MHED PET. A, Group mean
global MHED % retention deficit comparing 1, 4, 10, and 14 weeks after
toxin to baseline. B, Group mean regional MHED uptake comparing
anterior, inferior, septal, and lateral regions of the left ventricle at
baseline and at 1, 4, 10, and 14 weeks after toxin. *P,0.05, ** P,0.01,
*** P,0.001.
doi:10.1371/journal.pone.0035371.g004
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property can be applied to model dysautonomias in nonhuman

primates. Similar to CNS neurotoxic models, a 6-OHDA-induced

dysautonomia model presents limitations like acute onset and the

risk for spontaneous recovery [39]. Intravenous administration of

6-OHDA does not induce a PD motor syndrome, therefore a

comprehensive PD model would require supplementation with

systemic MPTP or direct intracerebral dosing of 6-OHDA to

induce dopaminergic nigral cell loss. Postmortem analysis and

quantification of catecholaminergic cell and terminal loss in

susceptible tissues, as well as evaluation of pathologies typical of

PD–related neurodegeneration, such as inflammatory cell re-

sponse and intracytoplasmic accumulation of alpha synuclein [56],

are warranted to further characterize the effect of 6-OHDA in

peripheral catecholaminergic cells.

To conclude, systemic administration of 6-OHDA to rhesus

monkeys mimics features of cardiac dysautonomia in PD that can

be tracked and mapped in vivo using PET imaging. We hope that

these results will facilitate model development to study this

symptom and to identify new therapeutic alternatives.
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