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Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations
of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway
inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate
immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such
as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF.
Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular
damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2-
and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of α7-nAChR (nicotinic acetylcholine
receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

1. Introduction

CF is an autosomal recessive inherited disorder characterised
by mutations in the gene encoding the Cystic Fibrosis
Transmembrane Conductance Regulator (CFTR) protein. It
is the most common inherited metabolic disorder among
Caucasians of European descent, with the most common
defect being the ΔF508CFTR mutation which causes the
protein to fold aberrantly and accumulate in the endoplasmic
reticulum of CFTR-producing cells. This leads to decreased
apical expression of CFTR in airway epithelial cells, impaired
Cl− conductance, Na+ hyperabsorption, mucus hypersecre-
tion, impaired mucociliary clearance, and colonization with
microorganisms [1].

The lung manifestations of CF are characterised by
chronic infection and neutrophil-dominated airway inflam-
mation and are initiated by proinflammatory microbial
stimuli culminating in increased airway epithelial cell
production of proinflammatory mediators, including the

neutrophil chemokine interleukin-8 (IL-8) [2]. Toll-like
receptors (TLRs) play an important role in these events [3].

TLRs respond to microbial antigens and initiate sig-
nalling cascades that culminate in proinflammatory gene
expression, principally via activation of the transcription
factors NFκB and the IRFs [4–6]. TLRs are present on
a variety of cell types, including both immune cells and
epithelial cells within the lung [7]. The expression and
function of ten members of the human TLR family have
been partially or fully characterized to date. TLRs expressed
by airway epithelial cells contribute to the pulmonary
immune response by regulating the production and secretion
of diffusible chemotactic molecules, mucins, antimicrobial
peptides, and cytokines and by enhancing cell surface
adhesion molecules expression [3, 8–23]. A plethora of
proinflammatory cytokines is regulated by TLR activation
in airway epithelial cells; TNFα and IL-6 can be induced
by TLR2, TLR4, and TLR9 agonists, for example, [3, 10,
21, 24]. IL-8 is a potent neutrophil chemoattractant. It
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is a particularly important cytokine in the neutrophil-
dominated CF lung. In the context of CF and airway
epithelial cells, various TLR agonists have been shown to
promote proinflammatory gene transcription (reviewed in
[7]). Chronic activation of TLRs can lead to overproduction
of these factors and ultimately have a deleterious effect on
pulmonary function and homeostasis.

Of all the TLRs, TLR2 has emerged as the principal
receptor responsible for orchestrating changes in proinflam-
matory gene expression in airway epithelial cells [11, 16,
17, 19, 20]. TLR2 is activated by the broadest repertoire of
agonists including lipoteichoic acids, peptidoglycan, di- and
tri-acylated lipopeptides from Gram-positive and/or Gram-
negative bacteria, protozoans, mycobacteria, yeasts, and
mycoplasma and is interesting amongst the TLR family in
that it can heterodimerize with other TLRs to confer respon-
siveness to these diverse ligands. In conjunction with TLR1 it
recognizes triacylated lipopeptides and Gram-positive lipote-
ichoic acid; whereas with TLR6 it can respond to diacylated
lipopeptides such as MALP-2 from mycoplasma. Due to the
presence of multiple potential TLR2 agonists in the CF lung,
this environment represents a milieu where TLR2 is likely
to be chronically activated [25]. Thus modulation of TLR2
function represents a therapeutic target for CF.

Nicotine is a naturally occurring plant alkaloid. Although
it is negatively associated with cigarette smoking, addiction,
and cardiovascular damage, nicotine also has therapeutic
properties and is a promising new treatment for chronic
inflammatory disorders. For example nicotine is prescribed
to treat the overt inflammation of gut epithelial cells in ulcer-
ative colitis [26] and is reported to have potential therapeutic
benefit for neuroinflammatory conformational disorders
including Alzheimer’s and Parkinson’s diseases [27]. Interest-
ingly TLRs have been shown to play a role in the disordered
inflammatory response in ulcerative colitis (UC) [28].

Nicotine exerts a variety of biological effects via the
nicotinic acetylcholine receptors (nAChRs), for example,
inhibiting LPS-induced TNFα, IL-1, and IL-6 in rat peri-
toneal macrophages, iNOS in murine macrophages or IL-
18 in human monocytes [29–31]. nAChRs are ligand-gated
cation channels that comprise a pentameric transmembrane
complex of multiple α(1-10), β(1-4), γ, δ or ε subunits,
each of which has four transmembrane spanning domains
that form the ion channel [32]. α(2-6) and β(2-4) can form
hetero-oligomeric nAChRs, whereas α(7-9) subunits form
homo-oligomers. It is the α subunit that contains the ligand
binding domain. The human α7 subunit is ∼50 kDa and
is composed of 502 amino acids and a 22-residue signal
peptide [32]. Studies of the anti-inflammatory effects of
nicotine implicate α7-nAChR as the receptor involved [27,
29, 31]. The α7-nAChR has been shown to be present on
human bronchial epithelial cells [33]. However, it remains
to be determined if the α7 receptor is present on CF airway
epithelial cells.

In this study we investigate the effect of nicotine on IL-8
production by a CF airway epithelial cell line (CFTE29o-) in
response to a range of TLR2 and TLR4 agonists. We assess
expression of α7-nAChR in these cells and use general and
specific nAChR antagonists to determine the role of α7-

nAChR in nicotine-mediated inhibition of TLR2-induced
IL-8 expression.

2. Materials and Methods

2.1. Cell Cultures and Treatments. CFTE29o- cells are a
ΔF508 homozygous tracheal epithelial cell line. These were
obtained as a gift from D. Gruenert (California Pacific
Medical Center Research Institute, San Francisco, CA). The
cells were cultured in EMEM (Invitrogen Life Technologies)
supplemented with 10% foetal calf serum (FCS) at 37◦C in
a humidified atmosphere in 5% CO2. Twenty-four hours
before agonist treatment, the cells were washed with serum-
free EMEM and placed under serum-free conditions or in
medium with 1% FCS for LPS treatments.

Stock nicotine (Sigma, 1 mg/mL or 6.2 mM in
methanol) was diluted in serum-free EMEM. Pseudomonas
LPS, peptidogylcan, zymosan, phorbol myristic acetate
(PMA), d-tubocurarine, and α-bungarotoxin were from
Sigma; triacylated lipopeptide (palmitoyl-Cys((RS)-2,3-
di((palmitoyloxy)-propyl)-Ala-Gly-OH) (Pam3) was from
Bachem.

2.2. IL-8 Protein Production. Cells (1 × 105) were left un-
treated, or in some experiments pretreated with d-
tubocurarine or α-bungarotoxin as indicated, prior to addi-
tion of nicotine at various concentrations for 1 hour at 37◦C.
Cells were then left untreated or stimulated with TLR2 or
TLR4 agonists or PMA for 24 hours at 37◦C as indicated.
IL-8 protein concentrations in the cell supernatants were
determined by sandwich ELISA (R & D Systems). All assays
were performed in triplicate.

2.3. Cell Proliferation Assay. CFTE29o- cells (1 × 105/mL)
were left untreated or stimulated with increasing doses
of nicotine (in triplicate) for 24 hours. Following this,
the supernatant in each well was replaced with 500 μL of
serum free medium and 100 μL of proliferation assay reagent
(CellTiter 96 Aqueous One Solution Cell Proliferation Assay)
and the samples were incubated for a further 3 hours at 37◦C.
Samples (120 μL) were transferred from each well of the 24-
well plates to a 96-well plate in duplicate. The plate was read
at 490 nm. The effect of the blank well was subtracted and
change in cell proliferation was measured as a percentage
change from the untreated cells.

2.4. Laser-Scanning Cytometry. Cells (1 × 105) were grown
in a four-well chamber slide, washed with PBS, Fc-blocked
for 15 minutes at room temperature with 1% BSA (Sigma-
Aldrich), then labelled with anti-α7-nAChR primary anti-
body (Abcam) for 30 minutes at 4◦C. Following three washes,
cells were incubated with 10 μg/mL FITC-labelled secondary
antibody (antirabbit F(ab)2 FITC (DakoCytomation)) for
30 minutes at 4◦C. Cells were counterstained with pro-
pidium iodide (PI) (Molecular Probes), and laser-scanning
cytometry (LSC) (Compucyte) was used to quantify cell
surface α7-nAChR expression. LSC is slide-based cytometry
which enables the detection and quantification of cell surface
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Figure 1: Effect of TLR2 and TLR4 agonists on IL-8 production in CFTE29o- cells. Triplicate samples of CFTE29o- cells (1 × 105/mL) were
left untreated or treated with (a) 1–100 μg/mL zymosan, PTG and Pam3, or PMA (50 ng/mL) in serum-free media for 24 hours, or (b)
Pseudomonas LPS (10 μg/mL) or PMA (50 ng/mL) in medium supplemented with 1% FCS for 24 hours. Levels of IL-8 in supernatants were
measured by ELISA and values are expressed in pg/mL (∗P ≤ .05 versus control) (n = 7).

expressed (or intracellular markers if a permeabilisation
reagent is used) on cytospun or adherent cells without the
need for trypsinization, a process which can potentially
remove some receptors [3, 24, 34–40]. Cells are stained with
PI enabling detection of all cell nuclei and an FITC-labelled
antibody directed against the receptor of interest allows
quantification of the target on the total cell population.
FITC and PI cellular fluorescence of at least 2000 cells
were measured. α7-nAChR expression was quantified using
CompuCyte software on the basis of integrated green fluo-
rescence. An appropriate rabbit antimouse isotype antibody
was used as a control (DakoCytomation).

2.5. Statistical Analysis. Data were analysed with GraphPad
Prism 4.0 software (GraphPad). Results are expressed as
mean ± SE and were compared by Mann Whitney U-test.
Differences were considered significant when the P-value was
≤.05.

3. Results

3.1. TLR2 and TLR4 Agonists Induce IL-8 Production from
CFTE29o- Cells. The effect of the TLR agonists zymosan,
peptidoglycan (PTG), triacylated lipopeptide (Pam3), and
Pseudomonas LPS on IL-8 production by CFTE29o- cells was
quantified by ELISA (Figure 1). Each of the TLR2 agonists
dose dependently increased IL-8 production by CFTE29o-
cells compared to untreated cells after 24 hours treatment
(Figure 1(a)). The zymosan preparation was found to be
contaminated with intact yeast particles so for subsequent
experiments only PTG or Pam3, at 5 μg/mL and 1 μg/mL,
respectively, were used. LPS treatment (10 μg/mL, 24 hours)

also significantly increased IL-8 expression by CFTE29o-
cells (Figure 1(b)). PMA (50 ng/mL) is a known inducer of
IL-8 and was used as a positive control.

3.2. Nicotine Inhibits Peptidoglycan- and Triacylated
Lipopeptide-Induced IL-8 Production by CFTE29o- Cells.
We next investigated the effect of nicotine on TLR2
agonist-induced IL-8 production (Figure 2). As before PTG
treatment (5 μg/mL, 24 hours) led to a significant increase
in IL-8 production from CFTE29o- cells compared to
untreated controls. This response was significantly reduced
in the presence of nicotine at concentrations of 10 and
50 μM. The vehicle control had no effect at these doses
however at a dose equivalent to 100 μM nicotine, vehicle
significantly impaired PTG-induced IL-8 production (data
not shown). For this reason we carried out all subsequent
experiments using nicotine at concentrations up to 50 μM.

Figure 3 shows that nicotine also significantly inhibited
Pam3-induced IL-8 expression from CFTE29o- cells at 10
and 50 μM.

3.3. Nicotine Does Not Inhibit LPS-Induced IL-8 Production
by CFTE29o- Cells. Next the effect of nicotine on IL-8 pro-
duction induced by the TLR4 agonist Pseudomonas LPS was
assessed. These assays were performed in the presence of 1%
FCS to facilitate LPS-TLR4 signalling. Figure 4 shows that
LPS-induced IL-8 production was not significantly inhibited
by pretreatment with nicotine at concentrations of 1–50 μM.

3.4. Effect of Nicotine on CFTE29o- Proliferation. Nicotine
has known antiapoptotic effects in a variety of cells [41–
44]. However in order to determine that nicotine’s ability
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Figure 2: Nicotine inhibits PTG-induced IL-8 protein expression at
concentrations of 10 and 50 μM. CFTE29o- cells (1× 105/mL) were
stimulated with increasing doses of nicotine (0–50 μM) for 1 hour.
These samples were left untreated (control) or treated with PTG
(5 μg/mL, 24 hours) as indicated. Levels of IL-8 in supernatants
were measured by ELISA. Assays were performed in triplicate (∗
and #P ≤ .05, ∗ versus control, # versus PTG) (n = 6).

to decrease TLR2-induced IL-8 production was not being
mediated by increased cell death or apoptosis, the effect of
nicotine on CFTE29o- cell proliferation was tested. Figure 5
shows that over a range of concentrations up to 50 μM,
nicotine was nontoxic to CFTE29o- cells and at 10 μM
nicotine has a significant protective effect and actually
promoted cell survival (∗P = .0286).

3.5. CFTE29o- Cells Express the α7-nAChR. Nicotine is
known to exert an anti-inflammatory effect through the
α7-nAChR [45]. We used laser scanning microscopy to
examine cell surface expression of α7-nAChR on CFTE29o-
cells. Figure 6 illustrates that CFTE29o- cells express the α7-
nAChR; the histogram in Figure 6(a) shows clear detection
of α7-nAChR with an anti-α7-nAChR antibody (solid) com-
pared to an isotype control antibody (clear). In Figure 6(b)
the median channel fluorescence (MCF) emitted by the
FITC-linked anti-α7-nAChR antibody is significantly greater
than that of the isotype antibody (163,710 ± 31,788 versus
325,680 ± 55,554 MCF, P = .0011).

3.6. α7-nAChR Mediates Nicotine’s Inhibitory Effect on TLR2-
Induced IL-8 Production in CFTE29o- Cells. Finally we
investigated whether nicotine mediates its anti-inflammatory
effects via α7-nAChR in CF airway epithelial cells. To do
this we employed the use of d-tubocurarine, a broad-
range nAChR inhibitor, and α-bungarotoxin, a specific α7-
nAChR inhibitor. For these experiments we used nicotine at
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Figure 3: Nicotine inhibits Pam3-induced IL-8 production in a dose-
dependent manner. CFTE29o- cells (1×105/mL) were left untreated
or stimulated with increasing doses of nicotine (0–50 μM) for 1
hour then left untreated or stimulated with Pam3 (1 μg/mL, 24
hours) as indicated. Levels of IL-8 in supernatants were measured
by ELISA and values are expressed in pg/mL (∗ and #P ≤ .05, ∗
versus control, # versus Pam3). Assays were performed in triplicate
(n = 5).

10 μM and as before this dose significantly inhibited Pam3-
induced IL-8 protein production (Figure 7). Pretreatment
with either antagonist for 1 hour had no effect on nicotine’s
ability to inhibit the TLR2 response (data not shown).
However pretreatment for 16 h with the broad range nAChR
antagonist d-tubocurarine reversed the inhibitory effect of
nicotine on Pam3-induced IL-8 expression, with IL-8 levels
not significantly different from those induced by Pam3

alone. Similarly 16 h pretreatment of CFTE29o- cells with α-
bungarotoxin (1 μM) abrogated nicotine’s ability to decrease
expression of IL-8 in response to Pam3. These data implicate
α7-nAChR in nicotine’s anti-TLR2 effect.

4. Discussion

Whilst inflammation in the CF lung is a neutrophil-
dominated process, the airway epithelium plays a key role in
the regulation of neutrophil recruitment via TLR-mediated
changes in gene and protein expression [3]. Here we
show that CF airway epithelial cells express α7-nAChR and
respond to nicotine by inhibiting TLR2 agonist-induced IL-8
expression. This novel finding is of particular interest with
respect to CF, as the CF lung is a milieu rich in potential
TLR2 agonists and because TLR2 is the predominant TLR
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Figure 4: No effect of nicotine on LPS-induced IL-8 protein
production in CFTE29o- cells. CFTE29o- cells (1 × 105/mL) were
left untreated or stimulated with increasing doses of nicotine (0–
50 μM) for 1 hour. Following this, samples were either left untreated
or treated with Pseudomonas LPS (10 μg/mL, 24 hours). Levels of IL-
8 in supernatants were measured by ELISA and values are expressed
in pg/mL (∗P ≤ .05). Assay was performed in triplicate (n = 4).

expressed on the surface of lung epithelial cells in vivo
[11, 16, 17, 19, 20, 25].

The mechanism by which nicotine can exert its anti-
inflammatory effects has been reported to include targeting
NFκB and AP1 [46, 47]; the IL-8 gene is regulated by both of
these transcription factors. For example, nicotine in cigarette
smoke extract can inhibit transcription of LPS-induced IL-1,
IL-8, and PGE2 in activated macrophages through inhibition
of the NFκB pathway. Although we did not observe inhibi-
tion of LPS-induced IL-8 expression in CF airway epithelial
cells, others have reported that nicotine can inhibit LPS-
induced NFκB DNA binding and transcriptional activity.
Indeed several studies have linked the anti-inflammatory
function of nAChRs to the NFκB pathway [46, 48–53].
Yoshikawa et al. [54] further reported that the mechanism by
which nicotine impairs NFκB activation in human peripheral
monocytes is via inhibition of phosphorylation of IκB. Given
that TLR4 and TLR2 share the same signalling pathways,
it is likely that nicotine also inhibits TLR2-induced IL-8
expression by targeting NFκB and possibly AP1 [4–6].

The anti-inflammatory effects of nicotine can be medi-
ated via α7-nAChR [45], and our studies clearly implicate
α7-nAChR in nicotine’s anti-TLR2 activity in CF airway
epithelial cells. A range of nAChRs has been shown to
be present on human epithelial cells, including α7-, α3-,
and α3β4-subtypes [33, 55]. Normal bronchial epithelial
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Figure 5: Nicotine does not increase CFTE cell death but increases
cell survival at certain concentrations. CFTE29o- cells (1 × 105/mL)
were left untreated or stimulated with increasing doses of nicotine
(in triplicate) for 24 hours. Cell proliferation was quantified and
values are expressed as a percentage change from the untreated cells
(∗P ≤ .05).

cells express α7-nAChR. Our studies have detected α7-
nAChR on CF tracheal epithelial cells for the first time
and show that specific inhibition of α7-nAChR using α-
bungarotoxin (a 75 amino acid peptide from Bungarus
multicinctus venom) abrogates nicotine’s ability to impair
Pam3-induced IL-8 protein production. Thus α7-nAChR
may represent a new therapeutic target for CF. Agonists of
α7-nAChR have previously been proposed for the treatment
of inflammatory diseases via their ability to reduce TNFα
release from macrophages. For example in vivo treatment
with nicotine can inhibit TNFα-induced HMGB1 secretion
and has a proven therapeutic benefit in models of sepsis
[48]. In these studies nicotine did not affect levels of total
or phosphorylated versions of ERK, JNK, or p38 MAPK,
rather the observed effects occurred directly via α7-nAChR-
mediated blockade of NFκB.

A major drawback to the potential use of nicotine as
a therapeutic agent is its negative side effects which are
associated with addiction, cardiovascular disease, hyperten-
sion, cancer, reproductive and gastrointestinal disorders.
However, nicotine analogues exist that lack addictive or
damaging side effects but retain desirable anti-inflammatory
and cognitive-enhancing properties. Indeed the objective
in developing nicotine analogues is the discovery of novel
drugs that feature the beneficial actions of nicotine whilst
eschewing its side-effect profile [56, 57]. The addictive
properties of nicotine are mediated via the β2-containing
nAChR subtypes, hence compounds that are selective for
the α7-nAChR—the receptor that mediates nicotine’s anti-
inflammatory effects—are attractive as potential therapeutic
agents. Varenicline is a partial agonist of the α4β2 receptor
and a full agonist of α7-nAChR that is currently used
as a smoking-cessation therapy. Given its nAChR affinity,
unlike nicotine, it lacks addictive effects but retains anti-
inflammatory benefits [58]. Thus evaluation of the anti-
inflammatory properties of varenicline for CF would be
worthy of further study.
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Figure 6: CFTE29o- cells express the α7-nAChR. CFTE29o- cells
(1 × 105/mL) were grown in chamber slides, Fc-blocked, and
labelled with FITC-conjugated anti-α7-nAChR or isotype control
antibodies. Cells were counterstained with PI, and α7-nAChR
surface expression was quantified by laser-scanning microscopy. (a)
Representative histogram of FITC fluorescence comparing isotype
(clear) and anti-α7-nAChR (solid) antibody-labelled samples. (b)
Histogram showing median channel fluorescence ± SEM (∗P ≤
.05, n = 6).

Notwithstanding the novelty of this study the observa-
tions are limited somewhat by the fact that only a single CF
epithelial cell line was used, cytokines other than IL-8 were
not measured and nicotine analogues were not tested. It will
also be important to explore in greater detail the mechanism
by which nicotine achieves its anti-inflammatory effect in
CF epithelium. These questions will form the basis of future
studies.

In conclusion the findings of this study indicate that nico-
tine and nicotine analogues have potential to inhibit TLR2-
mediated inflammation in response to common agonists in
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Figure 7: Inhibition of α7-nAChR abrogates nicotine’s anti-TLR2
inhibitory effect. CFTE29o- cells (1× 105/mL) were left untreated or
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Assays were performed in triplicate (n = 3).

the CF lung via α7-nAChR. These useful effects occur at dose
levels that could be delivered to CF lungs through inhaled
preparations.
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