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Simple Summary: Neuroblastoma (NB) is a cancer that starts in certain very early forms of nerve
cells of the sympathetic nervous system, most often found in an embryo or fetus. Symptoms may
include bone pain, an abdominal mass, frequent urination, limping, anemia, spinal cord weakness, or
bruising of the eye area. N-Myc is a key driver of high-risk NB. An elevated expression of N-Myc
often predicts a poorer prognosis, in both time to tumor progression and overall survival rate. We
discovered a transcription factor, insulinoma-associated-1 (INSM1), as the downstream target gene of
N-Myc. INSM1 has emerged as a novel NB biomarker that plays a critical role in facilitating NB tumor
cell development. Both N-Myc and INSM1 demonstrate high clinical relevance to NB. Therefore,
further understanding the association of INSM1 and N-Myc functions in aggressive NB should be
beneficial for future NB treatment.

Abstract: An aggressive form of neuroblastoma (NB), a malignant childhood cancer derived from
granule neuron precursors and sympathoadrenal lineage, frequently comprises MYCN amplifica-
tion/elevated N-Myc expression, which contributes to the development of neural crest-derived
embryonal malignancy. N-Myc is an oncogenic driver in NB. Persistent N-Myc expression during the
maturation of SA precursor cells can cause blockage of the apoptosis and induce abnormal prolifera-
tion, resulting in NB development. An insulinoma-associated-1 (INSM1) zinc-finger transcription
factor has emerged as an NB biomarker that plays a critical role in facilitating tumor cell growth
and transformation. INSM1 plays an essential role in sympathoadrenal cell differentiation. N-Myc
activates endogenous INSM1 through an E2-box of the INSM1 proximal promoter, whereas INSM1
enhances N-Myc stability via RAC-α-serine/threonine protein kinase (AKT) phosphorylation in
NB. The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown
of INSM1 that inhibits NB cell proliferation. The clinical pathological result and bioinformatics
analysis show that INSM1 is a strong diagnostic and a prognostic biomarker for the evaluation of NB
progression. The INSM1/N-Myc expression shows high clinical relevance in NB. Therefore, targeting
the INSM1/N-Myc-associated signaling axis should be a feasible approach to identifying new drugs
for the suppression of NB tumor growth.

Keywords: INSM1; MYCN; sympathoadrenal lineage; neuroblastoma; neuroendocrine differentiation

1. Introduction

Neuroblastoma (NB) is a cancer that starts in early nerve cells (called neuroblasts) of
the sympathetic nervous system, so they can be found anywhere along this system. Most
NB begins in the abdomen, either in an adrenal gland or in the sympathetic nerve ganglia.
The rest starts in the sympathetic ganglia near the spine, in the chest, in the neck, or in
the pelvis. Human NB is the most common childhood extracranial tumor arising from the
sympathetic nervous system. It is also a clinically heterogeneous disease that ranges from
spontaneous regression to high-risk stage 4 disease. This type of cancer occurs most often
in infants and young children. NB accounts for about 6–7% of all cancers in children as
the most common cancer in babies and the third-most common cancer in children after
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leukemia (26%) and brain cancer (21%). Although MYCN was identified as an important
genetic biomarker in high-risk NB, it was not considered “druggable” in the standard care
of MYCN-amplified NB patients. However, in high-risk NB, the survival rate is about 40%,
with a long-term survival rate of only 15%. A successful therapeutic strategy for high-risk
NB patients is urgently needed and represents an unmet societal necessity.

Recent studies of a neuroendocrine (NE) transcription factor, Insulinoma-associated-1
(INSM1), revealed that this zinc-finger DNA-binding protein not only regulates down-
stream target genes but also modulates signaling pathways critical for the stability of the
N-Myc oncogenic protein [1]. By screening a small molecule library using INSM1 promoter-
driven luciferase assay, we were able to identify multiple inhibitors potently inhibiting
INSM1 promoter activity as well as NB tumor cell growth [2]. The down regulation of
INSM1 also inhibits N-Myc protein expression, which contributes to NB tumor suppres-
sion [3]. When we dissect the transcriptional regulation of INSM1 and N-Myc functional
roles in NB, it is plausible to reveal potential small molecules targeting both INSM1 and
N-Myc. In the current review article, we discuss the essential role of INSM1 and N-Myc
interplay in aggressive NB as potential targets for NB cancer therapy.

1.1. INSM1 Is a Unique Zinc-Finger Transcription Factor

Insulinoma-associated-1 (INSM1) is a zinc-finger transcription factor that was orig-
inally identified in a human insulinoma subtraction library [4]. INSM1 is an intronless
gene located in chromosome 20 p11.2, encoding a 510-amino-acid polypeptide consisting
of a Snail/Gfi (SNAG) domain, two proline-rich segments, four dibasic amino acid sites,
a putative nuclear localization signaling sequence (NSL), and a potential amidation signal
sequence (PGKR) in the N-terminus. The C-terminal portion of INSM1 contains five zinc-
finger motifs, which constitute a functional domain of a DNA-binding transcription factor.
The DNA-binding consensus sequence of INSM1 was determined by a selected and ampli-
fied random oligonucleotide binding assay as 5′-TG/T

C/T
C/T

T/AGGGGG/TCG/A-3′ [5].
Several downstream target genes’ promoters of INSM1 were subsequently identified based
upon the consensus sequence on the promoter regions including neurogenic differentiation
factor (NeuroD1), insulin, RE1 silencing transcription factor (REST), ripply transcription re-
pressor 3 (Ripply3), neurogenin 3 (Ngn3), adherens junction belt-specific protein (Plekha7),
and INSM1 itself [5–7]. SNAG domain functions as a transcription repressor by recruiting
the histone deacetylase Hdac1, Hdac2, Rcor1, and histone demethylase Kdmla to modulate
gene expression by chromatin modification [8–10]. INSM1 protein not only binds to DNA
as a transcription factor but also directly binds to cellular proteins via its proline-rich
domain. INSM1 is capable of binding to cyclinD1 or RACK1 directly to interfere with cell
signaling and cell cycle progression [11,12].

The expression of INSM1 was detected in early human fetal brain, endocrine pancreas
development, and the tumors of NE origin including insulinoma, retinoblastoma, neurob-
lastoma, medulloblastoma, pheochromocytoma, Merkel cell carcinoma, medullary thyroid
carcinoma, pituitary tumor, carcinoids, and small-cell lung carcinoma [1]. The upstream re-
gion of the INSM1 promoter (2090 bps) contains several tissue-specific regulatory elements
that might contribute to a distinctive expression pattern of INSM1 dominant in tumors of
NE origin, as well as displays its role in neurogenesis and NE cell differentiation during
embryonic development [5]. During embryonic development, the expression of INSM1
was dramatically reduced in a later stage and mostly silenced in normal adult tissues. The
transient expression pattern suggests that the INSM1 gene functions as a developmentally
regulated transcription factor, which transiently expresses in early NE cells and is highly
reactivated in NE tumors.

1.2. The Role of INSM1 in Sympathoadrenal Cell Differentiation

The neural crest (NC) is a transient structure during early embryonic development.
NC cells from the trunk area of the neural tube generate a population of multipotent
embryonic cells. The sympathoadrenal (SA) cells’ lineage is a major sub-lineage of the NC
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cells that further differentiate into sympathetic neurons, chromaffin, and intermediate small
intensely fluorescent (SIF) cells. Sympathetic neurons and chromaffin cells are derived
from a common SA progenitor, which develops from NC cells that aggregated the dorsal
aorta [13–15]. Bone morphogenic proteins (BMPs) secreted from the dorsal aorta wall
play a central role in the differentiation of SA progenitor cells [16,17]. The studies of
chick embryo models showed that the expression of BMPs in the wall of the dorsal aorta
attracts NC cells expressing BMP-receptor IA and BMP-receptor IB migrating into the
dorsal aorta area [18]. BMPs induce the expression of SA precursor-specific markers. The
inhibition of BMP4/7 abolished the expression of catecholaminergic and neuronal markers
in NC cells that had aggregated at the dorsal aorta [19–21]. These data demonstrate that,
at least in the chick embryo, BMPs are required in vivo for the development of SA cells.
The differentiation of the SA lineage from the SA progenitor cells now aggregated in the
dorsal aorta area is under the control of a common trans-regulatory network of specific
transcription factors including Phox2b, Phox2a, Ascl-1, Hand2, Gata2/3, N-Myc, and
INSM1 (Figure 1). All components of the SA transcriptional network have been attributed
to different functions in various parts of SA cell development, including the promotion of
noradrenergic, neural, and endocrine cell differentiation; the regulation of proliferation;
and cell apoptosis [13].
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Figure 1. Role of INSM1 in SA lineage differentiation. Migrating neural crest (NC) cells from neural
tube (NT) aggregated and stimulated by bone morphogenic proteins (BMPs) from the dorsal aorta
wall for symphtho-adrenal (SA) progenitor cell differentiation. A common trans-regulatory network
of specific transcription factors include Phox2b, Phox2a, Mash1 (Ascl-1), Hand2, Gata2/3, INSM1,
and N-Myc, SA precursors further differentiate into sympathetic neurons and chromaffin cells, or NB
tumor formation.
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INSM1 plays an essential role in the development of chromaffin cells [22], pituitary
endocrine cells [9], pancreatic islets [7], and lung cancer cells of NE origin [23,24]. INSM1
promotes the trans-differentiation of pancreatic ductal and acinar cells into endocrine
islets [25,26]. INSM1 is also required for the early differentiation of sympathetic neu-
rons [22], sensory neurons of the dorsal root ganglion [27], and olfactory neurons [28].
Insm1-null mutant mouse demonstrates that Insm1 acts as a crucial component in the
network that controls the differentiation of SA lineage. The sympathetic neurons of Insm1-
deficient mice appear to differentiate correctly but with a delay, and their proliferation
reduced. In contrast, the terminal differentiation of chromaffin cells is significantly af-
fected by the Insm1-null mutation. The fetal lethality of Insm1-mutant mice is caused by
a catecholamine deficiency, which is the specific marker of SA lineage, supporting the
importance of Insm1 in the development of SA lineage [22]. There is a wealth of phenotype
similarities between Mash-1 (Ascl-1) and Insm1-deficient mice including the delay of neu-
ronal differentiation, reduced proliferation, and impaired differentiation of chromaffin cells,
suggesting that Insm1 might be the downstream target gene of Mash-1, whereas Mash-1
activates endogenous Insm1 during the differentiation of chromaffin cells [22].

1.3. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy

NB arises from SA progenitor cells within the NC that differentiate into sympathetic gan-
glion cells and adrenal catecholamine-secreting chromaffin cells [29–31]. NB is a malignancy
of the sympathetic nervous system where the majority are located in the abdomen along the
sympathetic chain and in the adrenal gland medulla area. NB tumors occurring in the early
childhood represent 6–10% of pediatric tumors. NB accounts for 12–15% of all childhood
cancer death and is the most common and deadly extracranial cancer [29,32,33]. The median
age at diagnosis for NB is 17–18 months and approximately 40% of the patients are younger
than 1 year at diagnosis, whereas less than 5% of the patients are older than 10 years [34].

A TH-MYCN transgenic mouse model was generated using a tyrosine hydroxylase
(TH)-promoter-driven human MYCN cDNA [35]. The TH-MYCN transgenic model sponta-
neously developed NB, which is morphologically and phenotypically similar to human
high-risk NB [36]. This murine NB model mirrors human NB in many aspects of tumor
formation including tumor locations, spinal cord involvement, histological presentations,
cellular synapses, granule formation, and gains and losses of syntenic regions of chro-
mosomes. The TH-MYCN mouse tumor is strongly positive for the expression of Insm1
(Figure 2). NB development in this mouse model is transgene dose-dependent. The ho-
mozygous mice develop NB tumor masses faster than hemizygous, at 4.0–6.9 weeks of
age vs. 5.6–19 weeks of age. One-hundred percent of homozygous TH-MYCN mice have
tumor growth from six weeks of age, but only fifty percent of hemizygous mice have
tumor growth. Similar results were observed in another transgenic mouse model with
Cre-conditional induction of MYCN in dopamine β-hydroxylase-expressing cells termed
LSL-MYCN/Dbh-iCre, where clinically relevant NB tumor development occurred in 75%
of mice [37]. The transduction of primary NC cells with over-expression levels of N-Myc
back into the mice resulted in NB tumor formation [3,38]. Similar results were shown in
the zebrafish model; ectopic expressions of N-Myc in neural crest cells induce NB develop-
ment [39]. Taken together, these data strongly suggest that the over-expression of N-Myc
in NC cells is sufficient for NB development and indicate that N-Myc is an important
oncogenic driver in NB. Both clinical and experimental studies suggest that NB originates
from the dysregulation of cellular processes during neural crest development [40–42].
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1.4. N-Myc as an Oncogenic Driver in NB

A number of biological and genetic markers of NB have been investigated for the
diagnosis, prognosis, and monitoring the treatment effects in NB patients. The MYCN
status has been proven as the most significant marker for NB. It was strongly correlated with
an advanced stage of disease and poor prognosis [30]. N-Myc expression is important for
the regulation of NC cell migration and expansion during normal murine sympathoadrenal
development. A high level of N-Myc expression is detected in the NC cells, which migrate
into the dorsal aorta area. In normal embryonic development, the expression of N-Myc is
gradually decreased during the differentiation of sympathetic neurons. The dysregulation
of the N-Myc onco-protein plays a strong causative role in NB that induces widespread
proliferation and inhibits the SA lineage cell apoptosis [43–45]. The molecular mechanisms
of MYCN dysregulation are mostly driven by the disruption of transcription, translation,
protein stability, apoptotic resistance, and metabolic flexibility [46–48].

Sympathoadrenal precursors that failed to differentiate into neural or chromaffin cells
might end up developing NB [49]. The over-expression of N-Myc in sympathoadrenal
precursors of zebrafish models not only abolishes the differentiation of chromaffin cells
but also induces the development of NB [39]. N-Myc plays a crucial transcription factor
in the regulation of cell proliferation and apoptosis. Persistent N-Myc expression during
the maturation of SA precursor cells can cause the blockage of apoptosis and can induce
abnormal proliferation of NB [35,50].

1.5. The Interaction between INSM1 and N-Myc

Recently, the development of high-throughput technology investigating genomic DNA,
RNA, and epigenetic profiles of clinical patient samples provided valuable information
for analyzing the specific genes in the progression and prognosis of NB. We analyzed the
correlation of the expression levels of N-Myc and INSM1 from three public NB datasets
derived from GEO. MYCN amplification was identified as the first genetic biomarker of any
cancer, specifically marking high-risk NB [51]. MYCN amplification is a well-confirmed
prognostic factor that patients with MYCN amplification have poor prognoses and shorter
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overall survival time (OS). We analyzed the correlated expression level of N-Myc and MYCN
amplification from three public NB datasets derived from GEO. The bioinformatics analysis
indicates that patients with MYCN amplification as high-risk NB also have significantly high
levels of N-Myc expression. However, INSM1 expression correlates with MYCN amplified
versus non-amplified is less significant than N-Myc expression, which shows p values
of 0.12, 0.017, or 0.0077, respectively (Figure 3). Furthermore, MYCN non-amplified NB
tumors may have high c-Myc expression, which could still positively regulate INSM1 [46].
For the OS time analysis, the patients with a higher expression of INSM1 or N-Myc had
OS times that were significantly shorter than those with lower expression levels (Figure 4,
red line). Taken together, the clinical pathological result and bioinformatics analysis show
that INSM1 is a strong diagnostic and prognostic biomarker for the evaluation of NB
progression. The INSM1/N-Myc expression shows high clinical relevance in NB.
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Figure 3. Correlation of N-Myc/INSM1 expression with MYCN gene amplification. (A) N-Myc
expression positively correlates with MYCN amplification in NE patients derived from three different
public cohorts, Cangelosi (782 samples), Asgharzadeh (247 samples) and Rajbhandari (273 samples).
(B) INSM1 expression significantly correlates with MYCN amplification in NB patients derived
from Asgharzadeh (247 samples), and Rajbhandari (273samples) but non-significant in Cangelosi
(782samples) cohort.

INSM1 can be considered an onco-fetal differentiation factor according to its elusive
expression pattern in the fetal stage of NE precursors, silenced in adult normal tissues,
and re-activated in tumors of NE origin. The re-expression of INSM1 in NB tumor cells
contributes to the aggressive phenotype of a certain subtype of NB with enhanced N-Myc
protein expression that is a well-confirmed oncogenic driver for the development of NB.
Moreover, there is a feed-forward loop between INSM1 and N-Myc, N-Myc targets the
INSM1 gene via direct binding to the INSM1 proximal promoter E2-box area and induces
INSM1 expression. Additionally, INSM1 stabilizes the N-Myc protein via AKT phosphory-
lation and prevents the N-Myc protein from going into ubiquitination degradation [3,52].
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The ectopic expression of INSM1 stimulates NB tumor growth in contrast to the knockdown
of INSM1 that inhibits NB cell proliferation [53].
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Figure 4. N-Mvc and INSM1 expression consistently associated with NB overall survival (OS).
A Kaplan-Meier plot shows the OS time and survival probability in NB patients. NB patients derived
from Cangelosi, Asgharzadeh, and Rajbhandari cohorts were divided into high-or low-N-Myc or
INSM1 expression based on the cut-point using maximally selected rank statistics (maxstat).

1.6. INSM1, a Novel Diagnostic and Prognostic Marker for NB

INSM1 functions as a transcription factor in NE differentiation. Recently, INSM1
has emerged in clinical practice as a sensitive and specific diagnostic biomarker in NE
tumors (NETs). This novel biomarker provides pathologists a useful tool to distinguish
NETs from non-NETs, and it represents a more sensitive NE marker as compared to the
traditional markers, such as synaptophysin, chromogranin A, and CD56 [54]. INSM-1
nuclear expression in cytology specimens successfully shows that it is a robust NE marker.
Numerous studies confirmed that INSM1 is a reliable immune-histochemical staining for
NETs with high sensitivity and specificity [55–57].

NB is an NET that arises from the neural crest. The immune-histochemical profile
of INSM1 in a cohort of peripheral neuroblastic tumors, using both tissue microarrays
and whole-slide histologic sections, shows INSM1-positive staining in 78% of peripheral
neuroblastic tumors and that no INSM1 signal was detected on the non-neuroblastic
tumor [58]. Additional INSM1 mRNA expression levels in a range of neurological cancers
with NE features and other non-NE cancers were analyzed from the available datasets
in an R2 Genomics Analysis and Visualization Platform (http//r2.amc.nl, accessed on
21 February 2022, Figure 5). The result shows that INSM1 has a high specificity and
expression level in NB (red bar).

http//r2.amc.nl
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Figure 5. INSM1 expression in different tumors. INSM1 expression level in various tumors was
obtained from publicly available datasets in R2: Genomics Analysis and Visualization Platform
(http//r2.amc.nl, accessed on 21 February 2022). Analysis of INSM1 expression in neurological
cancers with NE feature (red) and the other non-NE caners (blue) was across platforms with hs,
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1.7. Application of INSM1 in Treatment of NB

The current treatment protocol for patients with high-risk NB remains limited, and the
treated patients frequently developed chemo-resistant relapse after high-intensity conven-
tional multimodal therapy [59]. Therefore, novel treatment protocols are needed [60]. Since
a high percentage of the high-risk NB patients contain MYCN amplifications, targeting the
MYCN signaling pathway could be beneficial for NB therapy [61,62]. We and others have
shown that N-Myc is an oncogenic factor promoting NB progression and that increased
N-Myc protein stability is crucial for NB cell growth by multiple feed-forward expression
loops involving N-Myc trans-activation and repression of target genes [3,63,64]. Although
MYCN amplification is a well-confirmed poor prognostic factor in NB, MYCN amplifica-
tion is usually considered “undruggable” in standard care for MYCN-amplified high-risk
NB patients. It will be a difficult strategy to design approaches for directly targeting or
modifying the amplified MYCN gene. Therefore, we aim to target a co-factor of N-Myc in
aggressive NB. We have provided evidence that INSM1 can increase the N-Myc protein
stability and subsequently stimulate NB cell proliferation and anti-apoptosis. Additionally,
N-Myc directly binds to the INSM1 proximal promoter to activate endogenous INSM1
expression [3]. It is logical to use an INSM1 promoter-driven luciferase assay for identifying
novel inhibitors that could inhibit INSM1 promoter activity [2]. We have identified several
small molecules, such as 5′-iodotubercidin, plicamycin, romidepsin, panobinostat, and
homoharringtonine targeting INSM1 promoter activity, which exhibited potent inhibition
of INSM1 and N-Myc protein expression as well as NB tumor cell growth [2,53]. Further
evaluation of novel small molecules targeting aggressive NB should provide more insights
into advancing NB therapeutic options.
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2. Discussion

Multiple immune-histochemical studies demonstrated that the detection of INSM1
expression is a super sensitive and specific diagnostic biomarker in NETs as compared with
conventional NE markers (CGA, SYP, and CD56) [54,55]. Functional studies of INSM1 in
NETs revealed that INSM1 exhibited regulatory roles in the cellular signaling axis critical for
cell growth and oncogenesis including NB [3,53]. MYCN amplification plays a particularly
important role in the transformation of NB, representing about one- third of NB cases
that belong to high-risk groups with higher mortality. However, MYCN amplification
derives from the presence of multiple copies of the MYCN gene, which poses certain
difficulties while direct targeting these multi-copy genes. Therefore, it is logical to design
an alternative strategy targeting other co-factors associated with MYCN gene regulation.
We have identified a novel NET biomarker, INSM1, which exhibits a feed-forward loop of
regulating N-Myc protein stability [3]. Both gene expression levels are clinically associated
with OS time as higher expression levels of N-Myc or INSM1 present shorter OS time. The
clinical relevance of INSM1 and N-Myc expression in NB suggests that either molecule
could be a prominent target for the suppression of an NB tumor.

An INSM1 promoter-driven luciferase assay was developed [2]. We performed it on
a small library screen using an INSM1-luciferase assay as a platform in NB. The assay result
provides a high Z’ factor value suggesting its effectiveness in a chemical library screen.
Several chemical compounds were identified as potent inhibitors for INSM1 and N-Myc
expressions, as well as readily suppressing NB tumor cell growth. Interestingly, all of
these small molecules possess a common feature of modifying INSM1 promoter regula-
tion. Potentially, interference of the N-Myc activation of an INSM1 expression mediated
through binding to the E2-box of INSM1 proximal promoter could play a role in INSM1
regulation. These small molecules comprise HDAC inhibitors, natural compounds, and
cellular metabolites that significantly reduce INSM1 activity [2,53]. The HDAC inhibitors
were known to have pro-differentiation and apoptotic effects on the treatment of cancer
including high-risk NB [65–67]. Although the HDAC inhibitor showed promise in NB
treatment, it usually has a limited effect as a single agent due to the induction of drug
resistance. Therefore, it is plausible to add other anti-NB small molecule compounds as
combinational therapy. This approach should enhance the potency of treatment effects,
lower the dosage of cytotoxicity, and reduce the possibility of drug resistance. Our pre-
liminary data show that a combination of a natural compound (homoharringtonine) and
an AKT1 inhibitor (A674563) that is important for N-Myc protein stability significantly
reduces the expression of INSM1, N-Myc, and NB tumor cell growth (unpublished results).
Combination therapy has been a hallmark of successful cancer treatment. Our INSM1
promoter-driven luciferase screening-platform will be a valuable approach to screening
additional novel small-molecules for NB cancer therapy.
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