
fninf-14-00014 April 25, 2020 Time: 16:38 # 1

ORIGINAL RESEARCH
published: 28 April 2020

doi: 10.3389/fninf.2020.00014

Edited by:
Xi-Nian Zuo,

Nanning Normal University, China

Reviewed by:
Stavros I. Dimitriadis,

Cardiff University, United Kingdom
Anqi Qiu,

National University of Singapore,
Singapore

*Correspondence:
Bo You

youbo@hrbust.edu.cn
Tianzi Jiang

jiangtz@nlpr.ia.ac.cn

†These authors have contributed
equally to this work

Received: 12 December 2019
Accepted: 10 March 2020

Published: 28 April 2020

Citation:
He B, Yang Z, Fan L, Gao B, Li H,

Ye C, You B and Jiang T (2020)
MonkeyCBP: A Toolbox

for Connectivity-Based Parcellation
of Monkey Brain.

Front. Neuroinform. 14:14.
doi: 10.3389/fninf.2020.00014

MonkeyCBP: A Toolbox for
Connectivity-Based Parcellation of
Monkey Brain
Bin He1,2,3†, Zhengyi Yang2†, Lingzhong Fan2,4, Bin Gao2, Hai Li2, Chuyang Ye2, Bo You1*
and Tianzi Jiang2,3,4,5,6,7,8*

1 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China, 2 Brainnetome
Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 3 National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing, China, 4 University of Chinese Academy of Sciences, Beijing,
China, 5 Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Sciences and Technology,
University of Electronic Science and Technology of China, Chengdu, China, 6 CAS Center for Excellence in Brain Science
and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China, 7 Queensland Brain
Institute, The University of Queensland, Brisbane, QLD, Australia, 8 Chinese Institute for Brain Research, Beijing, China

Non-human primate models are widely used in studying the brain mechanism underlying
brain development, cognitive functions, and psychiatric disorders. Neuroimaging
techniques, such as magnetic resonance imaging, play an important role in the
examinations of brain structure and functions. As an indispensable tool for brain
imaging data analysis, brain atlases have been extensively investigated, and a variety
of versions constructed. These atlases diverge in the criteria based on which they are
plotted. The criteria range from cytoarchitectonic features, neurotransmitter receptor
distributions, myelination fingerprints, and transcriptomic patterns to structural and
functional connectomic profiles. Among them, brainnetome atlas is tightly related to
brain connectome information and built by parcellating the brain on the basis of the
anatomical connectivity profiles derived from structural neuroimaging data. The pipeline
for building the brainnetome atlas has been published as a toolbox named ATPP (A
Pipeline for Automatic Tractography-Based Brain Parcellation). In this paper, we present
a variation of ATPP, which is dedicated to monkey brain parcellation, to address the
significant differences in the process between the two species. The new toolbox,
MonkeyCBP, has major alterations in three aspects: brain extraction, image registration,
and validity indices. By parcellating two different brain regions (posterior cingulate cortex)
and (frontal pole) of the rhesus monkey, we demonstrate the efficacy of these alterations.
The toolbox has been made public (https://github.com/bheAI/MonkeyCBP_CLI, https:
//github.com/bheAI/MonkeyCBP_GUI). It is expected that the toolbox can benefit the
non-human primate neuroimaging community with high-throughput computation and
low labor involvement.
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INTRODUCTION

Non-human primates (NHPs) resemble high similarities in the
neuroanatomical structures and cognitive functions to humans
(Perretta, 2009). NHP models are essential in understanding
brain structures and functions, as well as neurodegenerative
diseases and pathological disorders. The neuroimaging on
NHPs has provided vital information in basic and translational
neuroscience research for various diseases, such as Parkinson’s
disease (Zhang et al., 2000), Alzheimer’s disease (Smith et al.,
1999), and autism (Amaral et al., 2003). There is an increasing
interest in magnetic resonance imaging (MRI) of monkeys for
neuroscience research, imposing a significant challenge in high-
quality brain atlas constructed from MRI data.

Building an atlas involves dividing the brain into regions
with certain homogeneity within each region. The definition
of region boundaries has always been challenging since the
development of the well-known Brodmann atlas (Brodmann,
1909). Various atlases have been constructed from MRI (Toga
et al., 2006; Amunts and Zilles, 2015; Fan et al., 2016; Glasser
et al., 2016), and they diverge in the boundary defining criteria,
ranging from cytoarchitectonic features, neurotransmitter
receptor distributions, myelination fingerprints, transcriptomic
patterns to structural and functional connectomic profiles, and
any combination of the above. Among them, connectivity-
based parcellation (CBP) has attracted increasing interest
from the community. The rationale behind CBP is that the
function of a certain cortical area is mainly determined
by the unique connectional pattern defined by inputs
and outputs (“connectional fingerprint”), and its local
infrastructure characterized by microstructural properties
(Passingham et al., 2002). Therefore, brain areas should
be definable by aggregating voxels/vertices demonstrating
similar connectivity patterns, characterized by structural,
functional, or meta-analytic connectivity (Behrens et al., 2003;
Kim et al., 2010; Eickhoff et al., 2011), and so forth into
clusters. Researchers have used CBP to form cartographic
maps of specific brain regions or the entire cortex (Eickhoff
et al., 2015), and the whole human brain—the human
brainnetome atlas (Fan et al., 2016)—which is based on
the anatomical connectivity profiles derived from structural
neuroimaging data.

A brain atlas of macaque monkey has been constructed using
a CBP pipeline similar to Automatic Tractography-Based Brain
Parcellation (ATPP) (Wang et al., 2018). However, previous
work involves many operator interventions throughout the
process, including manual delineation of brain tissue, fine-
tuning registration, and fiber tracking parameters. To facilitate
researchers with limited programming skills in using CBP, we
have published an automatic pipeline for building brainnetome
atlas of human brain, named ATPP. In this paper, we present
a variation of ATPP, which is dedicated to monkey brain
parcellation, to address the significant differences in the process
between the two species. The new toolbox, MonkeyCBP, has
major alterations in three aspects: brain extraction, image
registration, and validity indices. By parcellating two different
brain regions [posterior cingulate cortex (PCG) and frontal pole

(FP)] of the rhesus monkey, we demonstrate the efficacy of
these alterations.

FRAMEWORK OF MonkeyCBP

Overview
The toolbox takes single or multiple user-defined regions of
interest (ROIs) and a set of parameters as input and automatically
parcellates the brain and output the parcellation results, as well
as debug information in a text file. Figure 1 is the flowchart of
the toolbox. As a pipeline tailored for monkey brain, MonkeyCBP
toolbox has several steps that are significantly different from the
ATPP package. First, two methods for monkey brain extraction
have been incorporated to the toolbox. One is a modified version
of the Brain Extraction Tool (BET) method (Luo et al., 2018);
the other is based on multi-atlas segmentation (MaS). Second,
the SPM registration method used for human brain has been
replaced by methods based on Advanced Normalization Tools
(ANTs)1 (Avants et al., 2011), which are more suitable for
monkey brain processing. Third, the parcellation validity indices
have been improved. In addition to preserving the previous
verification method on the basis of the information of standard
space, we introduced a statistical framework method of principal
component analysis (PCA), which is simple and effective to
facilitate users to select cluster numbers and further improves
the reliability of the conclusion by analyzing the original data, to
verify the results of brain parcellation.

Brain Extraction
Brain extraction, or skull stripping, from human MRI data has
been widely examined in the development of neuroimaging, as
a stepping stone for subsequent analyses, such as intracranial
volume calculation, tissue classification, subregion segmentation,
connectivity computation, and brain network construction.
Nevertheless, the technique of brain extraction for monkey
MRI data has not been as mature as that for human data.
The task of brain extraction is to retain the brain tissue
only and remove the non-brain tissues, including scalp, skull,
and eyeballs, which often negatively affect automated image
registration, segmentation, and further analyses. As reviewed in
Kalavathi and Prasath (2016), human brain extraction methods
can be broadly classified into four categories on the basis of
morphology, intensity, deformable surface, and atlas/template. In
addition, hybrid methods combining any of the four types have
also been explored.

We have reported a BET (Smith, 2002) variation for rhesus
brain extraction (Luo et al., 2018). Hereby, we briefly review
a subset of the atlas/template-based and hybrid methods, in
which multiple atlases are used. An atlas is defined by a pair of
structural images and its manual segmentation, or labels. Besides
preprocessing (e.g., intensity inhomogeneity correction) and
postprocessing (e.g., morphological hole filling), MaS involves
three major steps:

1http://www.picsl.upenn.edu/ANTS/
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FIGURE 1 | Framework of the MonkeyCBP toolbox. The processing steps of the pipeline mainly including brain extraction, registration, probabilistic tractography,
and clustering. First, the technique of brain extraction for monkey MRI data was performed; then based on T1w and diffusion tensor images of the same subjects,
two defined regions of interest (ROIs), including the right posterior cingulate cortex and the bilateral frontal pole, are parcellated simultaneously. After pipeline
processing, the parcellation results at both individual level and group level with a maximum probability map and probabilistic maps of each subarea of the right
posterior cingulate cortex and the bilateral frontal pole are generated.

• label mapping: registering the images in multiple atlases
to the image under segmentation and transforming the
manual labels accordingly;

• atlas selection: choosing the atlases best matched to the
image under segmentation; and

• label fusion: fusing the multiple transformed labels to
obtain the final segmentation.

General-purpose MaS methods were reviewed in Iglesias and
Sabuncu (2015) and was initially introduced to neuroimaging
for segmenting brain into anatomical structures (Aljabar et al.,
2009), and it was demonstrated that image similarity and age
were both suitable for atlas selection. Artaechevarria et al. (2009)
prompted local weighting scheme for label fusion and highlighted
that not a single fusion method was optimal to all structures.
Lötjönen and colleagues reported a hybrid method combining

MaS and expectation maximization (Lötjönen et al., 2010). Wang
J. et al. (2014) used a graph-based atlas selection method to
reduce overall computational time. A recent advance was the
sparsity-based atlas selection strategy applied to newborn brains
(Serag et al., 2016).

Dedicated to brain extraction, Leung et al. presented a multi-
atlas propagation and segmentation (MAPS) method (Leung
et al., 2011) that outperformed three methods without using
atlases, including BET. BEaST was proposed to speed up the
time-consuming label mapping step by reducing the areas to be
applied patch-based segmentation, the number of atlases, and
patches (Eskildsen et al., 2012). Doshi et al. (2013) developed a
method called Multi-Atlas Skull Stripping (MASS), to enhance
atlas representativeness by defining study-specific atlases selected
from the images under segmentation, rather than existing atlases.
In their method, extra effort is needed for semi-automatically
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segmenting the selected images. Joint label fusion (JLF) was
proposed to overcome the invalid assumption that the atlases are
independent, and significant improvement was reported (Wang
et al., 2013). MaS methods were also adapted to segment fetal
brains (Tourbier et al., 2015) and brain/ventricles simultaneously
(Tang et al., 2015).

A variant of BET was developed for rhesus monkey brain
extraction and achieved a dice similarity coefficient (DSC) of
92.6% (Fu et al., 2016). However, there has been limited work on
the use of MaS approaches for rhesus monkey brain extraction.
Ballanger et al. applied MaS method to extract brain from T1-
weighted (T1w) MR images of crab-eating monkeys (Macaca
fascicularis) (Ballanger et al., 2013), and they reported the first
MaS dataset for NHP. Maldjian et al. (2016) presented study-
specific atlases for rhesus, vervet, and cynomolgus monkeys.
Brain extraction was used to transform the labels in the best
performed atlas judged by image similarity; no quantitative
evaluation was reported though. A hybrid method combining
MaS for coarse extraction with surface deforming guided by
local intensity and priors was developed and tested on both
human and NHP brain images (Wang Y. et al., 2014). Tested
on a single dataset of 20 adult healthy rhesus macaques, it
achieved overall DSC of around 97%, mean absolute surface
distance (MASD) of around 0.6 mm, and maximum surface
distance of around 4 mm, which significantly outperformed
Brain Surface Extractor (BSE), Hybrid Watershed Algorithm
(HWA), Analysis of Functional NeuroImages (AFNI), and BET
and its two variations.

In this study, we developed a MaS-based protocol for
automatically extracting brain tissues from structural MRI
data of rhesus macaque (Macaca mulatta). We evaluated
the performance by comparing the results against manual
segmentations. The brain tissue boundaries of all subjects
were manually traced on the axial view using ITK-SNAP
(Yushkevich et al., 2006), whereas the other two views were
displayed for reference. Manual delineations along with original
images were visually inspected by a co-author slice by slice to
rectify incorrectly segmented regions, recover over-segmented
brain tissues, and remove non-brain tissues. Thus, an atlas
was obtained for each subject from its T1w MR image, with
brain tissue voxels manually labeled as 1 and others as 0.
Then the three major steps of MaS were followed: (i) For
label mapping, the software package ANTs was used for non-
linear registration because of its outstanding performance (Klein
et al., 2009). (ii) For atlas selection, we built study-specific
atlases for D24 and D30, using a leave-one-out (LOO) cross-
validation (CV) scheme. In each LOO CV run, for each
subject, the manual segmentations of the remaining subjects
were non-linearly registered and mapped to its space. The label
fusion methods were then applied to combine the mapped
segmentations and extract the brain of the left-out subject. (iii)
For label fusion, we tested majority voting (MV) (Lötjönen
et al., 2010) and JLF (Wang et al., 2013). To shorten the
overall time, we applied label fusion to voxels within a
mask around the brain boundary, which was generated by
subtracting the intersection of all mapped atlas segmentations
from their union.

Two independent datasets (24 and 30 subjects, named D24
and D30, respectively) were used for testing the generalizability
of the developed pipeline. The accuracy was evaluated using DSC,
MASD, and relative volume difference (RVD) measures (Yang
et al., 2015) with manual segmentations as reference. We visually
inspected the segmentation results of both MaS methods, and we
found that all images (54 in total) were reasonably segmented
without obvious failure, indicated by DSC values (108 in total)
larger than 0.85. As illustrated in Figures 2, 3, JLF significantly
outperformed MV on both datasets, in terms of DSC, MASD,
and RVD (paired t-test, p < 0.05). The quantitative evaluation
is shown in Table 1. The extractions on D24 are generally better
than D30. However, the maximum symmetric surface-to-surface
distance of D24 (2.97 ± 2.83 mm) is notably larger than that of
D30 (1.94 ± 1.90 mm), designating worse extreme case of local
segmentation error in D24 than D30.

Registration
Registration is a critical step in CBP for generating probability
maps of parcellations. For each subject in a cohort, the skull-
stripped structural and diffusion-weighted imaging (DWI) data
are transformed to a standard template (e.g., INIA19 structure
template) using linear and non-linear registration algorithm,
to obtain the forward and inverse transformations. CBP starts
with transforming a predefined ROI in the standard space,
either extracted from an existing atlas or drawn manually,
into a seed mask in the individual DWI space using the
inverse transformation. After the seed mask is parcellated,
the forward transformation is employed to transform the
parcellation from the individual space to the standard template
space. In MonkeyCBP toolbox, the image registration between
the individual and the template space is performed using
ANTs (see text footnote 1), owing to its superior performance
(Nazib et al., 2018) in deformable registration evaluated on

FIGURE 2 | Example T1 images from D24 (top) and D30 (bottom), overlaid
with manual segmentation, MaS-MV, and MaS-JLF from left to right. Arrows
indicate differences in segmentations. MaS, multi-atlas segmentation; MV,
majority voting; JLF, joint label fusion.
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TABLE 1 | Quantitative evaluation of the tested methods on the two datasets.

Data Method DSC Specificity Sensitivity MASD (mm) RVD (%)

D24 MaS-MV 0.981 ± 0.003 0.981 ± 0.007 0.999 ± 0.001 0.27 ± 0.057 1.14 ± 1.01

MaS-JLF 0.987 ± 0.002 0.987 ± 0.004 0.999 ± 0.000 0.17 ± 0.042 0.50 ± 0.42

D30 MaS-MV 0.967 ± 0.017 0.970 ± 0.019 0.996 ± 0.005 0.54 ± 0.34 3.90 ± 4.32

MaS-JLF 0.976 ± 0.006 0.976 ± 0.013 0.997 ± 0.013 0.36 ± 0.11 1.92 ± 1.34

DSC, dice similarity coefficient; MASD, mean absolute surface distance; RVD, relative volume difference.

FIGURE 3 | Brain extraction evaluation results on D24 and D30. From left to right: DSC, MASD, and RVD. DSC, dice similarity coefficient; MASD, mean absolute
surface distance; RVD, relative volume difference; MV, majority voting; JLF, joint label fusion.

large-scale datasets (Avants et al., 2011). There are many
strategies, ranging from linear algorithms to diffeomorphic
algorithms, in ANTs that use different transformation models
and similarity metrics and their combinations to improve
the performance and alleviate over-fitting problems in various
application scenarios. For example, symmetric diffeomorphic
image registration of ANTs was proven to be effective for MRI
registration with large deformation (Avants et al., 2008) and
algorithm parameters, such as regularization terms, could be
fine-tuned to prevent over-fitting. In addition, to quantitatively
evaluate the registrations results, three different similarity
measurements (mean square difference, cross-correlation, and
mutual information) were used in MonkeyCBP. The similarity
metrics between the registered image pairs were calculated,
and if they were below a threshold determined on the basis
of experience, the toolbox would issue a warning and request
human inspection.

Probabilistic Tractography
Probabilistic diffusion tractography is implemented in FSL by
taking repetitively samples many times from the distribution of
voxel-wise streamlines to generate the connectivity probability.
All streamlines are synchronously yield to the orientations
sampled from the diffusion distributions produced by bedpostx
tool, as expounded in Behrens et al. (2007). Subsequently, the
connectivity profiles at whole-brain level for each voxel in
the seed mask are generated in the form of image. For each
single image, it represents a set of connectivity value between
that voxel and all brain voxels, and per-connectivity value of
the voxel represents the number of true streamlines that pass
through that voxel. The connection probability between voxels is
defined as the connectivity value divided by the total number of
streamlines sampled from the seed voxel. In order to compensate

for the deviation caused by distance from the seed mask, the
connectivity distribution is corrected using the length of the
pathways (Tomassini et al., 2007; Mars et al., 2011). A curvature
threshold is used to exclude implausible pathways by limiting the
angle between two steps (Thomas et al., 2014). Finally, a small
threshold value is employed to discard the sample values with a
small number of streamlines (Makuuchi et al., 2009; Sinke et al.,
2018). By applying this fixed threshold, it enables the images
not only to have fewer spurious connections but also to retain
enough sensitivity to the true connections (Heiervang et al., 2006;
Johansen-Berg et al., 2007). For monkey data, compared with the
parameter settings from previous process from ATPP in this step
(Li et al., 2017), MonkeyCBP re-recommended new parameter
values (e.g., number of samples - default = 10,000; Steplength in
mm - default = 0.2) (Thomas et al., 2014; Folloni et al., 2019;
Sani et al., 2019). To facilitate individual brain parcellation, the
down-sampling rate of the connectivity profile in subsequent
steps is also suggested to be modified (e.g., 3-mm isotropic voxels)
(Johansen-Berg et al., 2004).

Individual Parcellation, Probabilistic
Maps, and Maximum Probability Maps
Based on the native connectivity matrix, a cross-correlation
matrix was calculated and fed into a spectral clustering algorithm
for the parcellation of each individual brain region. The
maximum number of clusters K was decided by the experimenter,
and the clustering results can be generated as a range from
2 to K in MonkeyCBP at a draught, which is flexible to
facilitate making decisions for final parcellation. Then the
corresponding clusters of individual subjects are transformed
into the template space using previous transformation profiles.
Owing to the cluster label of clustering algorithms for each
subject is random, we attempt to find a solution to make
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the parcellation results above comply with the most consistent
labeling scheme. First, the labeling schemes of each individual are
all incorporated into a thresholded group-level cross-correlation
matrix. Each element in the matrix represents the connection
similarity between any two voxels in ROI. Second, the spectral
clustering algorithm is employed again for the similarity matrix
to generated a group-level labeling result. Finally, the labeling
result is propagated back to all the individual cluster using an
assignment algorithm that ensures maximum spatial overlap
(Munkres, 1957). Furthermore, in virtue of convergent evidences
from previous studies (Brodmann, 1909; Petrides and Pandya,
2002; Chen et al., 2012; Bludau et al., 2014; Cui et al.,
2016), it also supports the topological homology of bilateral
brain. Scilicet, if the ROIs are the corresponding regions of
bilateral hemispheres, the label consistency across hemispheres
is guaranteed before the labeling scheme is propagated.
Considering interindividual variability in the parcellation results
of the ROI, MonkeyCBP calculated the maximum probability
map (MPM), which quantitatively reflects which cluster a given
voxel of the ROI most likely belonged, of each subregion across
all the subjects to indicate the final results (Eickhoff et al.,
2005, 2006; Caspers et al., 2008). Subsequently, a smoothing
step (Wang et al., 2012) is applied to correct the noisy
voxels whose labels are different from most labels of the six
immediate neighbors.

Validity Indices
Determining the optimal number of clusters is always a
fundamental and challenging issue in partitioning clustering.
The optimizing for number of clusters is somehow subjective,
and there is no precise answer. To refrain from arbitrarily
choosing the number of the subdivisions, previous ATPP
has provided many effective verification indicators on
the basis of the data in standard space. Based on ATPP,
MonkeyCBP not only retained the verification indices but
also added the analysis of the original connectivity data in
diffusion space. In MonkeyCBP, we introduce the PCA-based
statistical models for determining k of the optimal solution,
which further constrains the choice of clustering numbers
and effectively complements the shortcomings of previous
validation methods.

Consistency Criterion
The consistency criteria mainly consist of three aspects:
(1) consistency across parcellations criterion, (2) consistency
within parcellation criterion, and (3) consistency of topology
criterion, which are consistent with those of a previous
study (Li et al., 2017). In brief, the first criterion contains
Dice coefficient (Dice, 1945), Cramer’s V (Cramér, 1946),
normalized mutual information (Witten et al., 2017), and
variation of information (Meila, 2003); the second criterion

FIGURE 4 | Command line (CLI) version of MonkeyCBP. CLI version is multi-region of interest (ROI) oriented; therefore, users could parcellate multiple brain regions
synchronously. The diagram shows that the user submitted three concurrent tasks for the parcellations of superior frontal gyrus (SFG), superior temporal gyrus
(STG), and posterior cingulate gyrus (PCG) at the same time.
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contains averaged silhouette value (Rousseeuw, 1987) and
continuity index (Li et al., 2017; Wang et al., 2018); the third
criterion contains consistency of topology criterion, hierarchical
index (Kahnt et al., 2012), and topological distance index
(Tungaraza et al., 2015); and the detailed descriptions are in
keeping with ATPP.

Principal Component Analysis
PCA, as one of the simplest and robust ways to analyze
multidimensional data, is a powerful statistical framework for
the analysis of tractography-based parcellation (Thiebaut de
Schotten et al., 2014; Cerliani et al., 2017) and has become
increasingly popular recently in different studies (Markiewicz
et al., 2011; Craddock et al., 2012; Leonardi et al., 2013; Tian
et al., 2013; Nayal et al., 2014; Smith et al., 2018). Based on
the theory of DWI and tractography techniques, the whole-
brain connectivity of each voxel is deemed as multivariate
dataset in the process of individual brain parcellation. Generally,
this method allows identifying k components on the basis of
k initial attributes and further determines the number of the
subregions without a priori. Referring to a large number of

FIGURE 5 | Graphical user interface (GUI) version of MonkeyCBP. The “Main
Panel” menu including settings for input files and directories as well as
configuration information. The “Advanced Settings” menu including advanced
parameters for the command path and file as well as some specific
parameters. The “About” menu displays the information relevant to the
developer and license. At the bottom of the interface are several fixed buttons
designed for users to control the start-up and shutdown of tasks, as well as to
check the running progress and processing logs in real time. In addition,
MonkeyCBP GUI version also supports parallel computing, but it is just
single-ROI oriented, which is not like the CLI version that could parcellate
multiple brain regions at the same time.

the previous studies (Kaiser, 1960; Cattell, 1966; Wold, 1978;
Jolliffe, 1986; Ferré, 1995; Teipel et al., 2007; Brown, 2009;
Thiebaut de Schotten et al., 2014; Ledoit and Wolf, 2015; Rea
and Rea, 2016; Pasini, 2017), MonkeyCBP offers three criteria
for estimating the number of clusters to select for each subject:
(1) cumulative contribution, (2) eigenvalues, and (3) scree test.
Statistical analysis was performed using MATLAB, and all of the
connectivity matrices for each animal derived from the data of
the probabilistic tractography were fed into PCA to calculate
the above indicators. First, the cumulative contribution, which
means cumulative proportion of the variation explained, is an
indispensable benchmark to determine the principal components
for its simplicity and effectiveness. As usual sort of standards,
the threshold often varies between 70 and 90%, which depends
on the context. The high threshold means loose selection of
clustering number subsequently, which means more choice for
the number of clusters. However, by investigating a large number
of studies, the minimum threshold that was suggested should be
greater than 70%. Second, only factors with eigenvalues greater
than 1 are retained. Finally, under criteria 1 and 2, a scree
test was performed for each subject with their eigenvalues to
separate the principal from residual components (Cattell, 1966).
A power curve was plotted by fitting the data derived from the
probabilistic tractography, and the inflexion point was extracted
for each subject as the number of principal components using
a homemade routine written in MATLAB R2017. Then all the
subjects were averaged to obtain a mean value, and a fixed
clustering number or very limited integer values within a narrow
range were estimated as a guide to group together ROIs for the
bilateral hemispheres.

Determination of the Optimal K Solution
A key step in the MonkeyCBP pipeline is to identify the optimal
number of clusters k. Data clustering have been intensively
developing for last decades; however, it still is a long-standing
ill-posed problem intrinsically where the goal is to partition
the data into some unknown number of clusters on the basis
of inherent information alone (Jain, 2010). It is very difficult
to select an intrinsic number of clusters because of the data-
driven nature of clustering, and there is no definitive answer
to this question. In general, these methods for determining
the optimal clustering number include direct methods that
consist of optimizing a criterion, statistical testing methods
that consist of comparing evidence against null hypothesis,
and decisions based on investigators, that is, cluster validity
criteria. ATPP provides a variety of effective indicators to
facilitate user selection. There is no doubt that these validity
indices are very effective; in spite of this, previous methods
primarily focused on the analysis of data in standard common
space. It means that the input data are mainly the results of
the registration of individual results into the standard space,
whereas information contained in the data of individual diffusion
space was not fully utilized, especially the most fundamental
connectivity profiles. Although the method is proved to be
effective in building the human brainnetome atlas, it requires
high quality of original data itself and high sensitivity to
the accuracy of registration process, transforming individual
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image to the common space. In this context, MonkeyCBP
provides another statistical testing method based on PCA,
exploiting the information in individual space. To a large
extent, PCA could help users directly remove the unnecessary
extremal points and in turn verify the previous indicator
results offered by ATPP. Finally, on the basis of all the
above indicators, users will be recommended a more detailed
optimization scheme.

IMPLEMENTATION

Overview
Compared with ATPP, MonkeyCBP is mainly devoted to the
parcellation of monkey brain and introduces the process of brain
extraction. More specifically, the tractography-based monkey
brain parcellation pipeline also consists of 12 steps, in which
the methods of image registration and the final verification parts
are modified respectively. Meanwhile, the brain extraction is
added before the brain parcellation pipeline in MonkeyCBP.
In addition, the users with different programming skills could
choose the command line (CLI) version (Figure 4) and graphical

user interface (GUI) (Figure 5) version to use according to
their preferences.

From the implementation perspective, the tractography-
based parcellation of monkey is mainly split into the following
steps:

(1) Preprossing: Brain extraction, eddy current correction,
DTIFIT, Bedpostx.

(2) ROI registration: The registration is performed between
the data of individual space and standard space, and
then ROI of standard space is registered to individual
diffusion space.

(3) Probabilistic tractography: For the registered ROI of each
subject in diffusion space, a plain text that contains the xyz
coordinates of all the voxels in the seed mask is obtained;
subsequently, probabilistic tractography is performed.

(4) Individual parcellation: For each registered ROI, a cross-
correlation matrix is calculated based on the results of
probabilistic tractography, and then clustering algorithm is
applied to parcellate the registered ROI.

(5) Group results: The parcellation results are inversely
transformed from individual diffusion space to

FIGURE 6 | Parcellation results of right posterior cingulate gyrus (PCG.R). (A) The maximum probability maps (MPMs) of PCG.R with 2–12 clusters. Note that there
is no consistency among subareas with the same color in different results. (B) Validity indices of the parcellation results for PCG.R using leave-one-out resampling
technique with 200 repetitions (left) and principal component analysis (PCA) (right). Thereinto, the relative higher value of Dice, NMI, CV, and sil hint the more
consistent result across the whole parcellations. The error bars represent standard deviation. The optimal result of 4 clusters seems the most reasonable according
to these indices, which is consistent with the result of PCA.
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the standard template space. For each subdivision,
probabilistic maps and the maximum probability map
across subjects are generated.

(6) Validity indices: Various validity indices of the parcellation
are computed and the graphs that depict the trends of these
indices are generated.

Prerequisites
Before running MonkeyCBP, users must check the following
prerequisites. (1) Input data. First, make sure the images
are in correct orientation. If not, we recommend a freely
available Medical Image Processing, Analysis, and Visualization
(MIPAV)2 (McAuliffe et al., 2001) toolbox to reorient the
image. Second, MonkeyCBP requires non-DWI (b0) and
those images preprocessed by bedpost (part of the FSL
software package) for all the subjects. (2) Environment

2https://mipav.cit.nih.gov/

and tools. Comparing the requirements of environment and
software tools, MonkeyCBP is mostly similar to ATPP.
Note that SPM has been replaced with ANTs for the
image registration. Other major computational environment
configurations are the same as ATPP, for both GUI and CLI
versions of MonkeyCBP.

Directory Structure and File Naming
Conventions
A simple, normative, and consistent directory structure enables
pipeline software more flexible to plan, schedule, and check
jobs, which will dramatically improve its work efficiency.
MonkeyCBP uniformly creates the initialized working directory
for the ROI of each subject that contains the following: (1) a
template subdirectory including the files for registration and the
predefined ROIs, (2) a log subdirectory covering the running logs
of each step, and (3) subject_id subdirectories comprising the
images of each subject (e.g., T1w/T2w image, b0 image, or FA

FIGURE 7 | Parcellation results of left frontal pole (FP.L). (A) The MPMs of FP.L with 8 clusters in flat, fiducial (lateral, medial, anterior, superior) surface, very inflated
(dorsal-lateral) view. (B) Validity indices of the parcellation results for FP.L. Thereinto, the results of Dice, NMI, and cross-validation (CV) using leave-one-out (l-Dice,
l-NMI, and l-CV) and spilt-half (s-Dice, s-NMI, and s-V) resampling technique (left), and PCA (right) suggest that the optimal result of eight clusters seems the most
reasonable. The error bars represent standard deviation.

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2020 | Volume 14 | Article 14

https://mipav.cit.nih.gov/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-14-00014 April 25, 2020 Time: 16:38 # 10

He et al. MonkeyCBP Toolbox

FIGURE 8 | Parcellation results of right frontal pole (FP.R). (A) The maximum probability maps (MPMs) of FP.R with eight clusters in flat, fiducial (lateral, medial,
anterior, and superior) surface, with very inflated (dorsal-lateral) view. (B) Validity indices of the parcellation results for FP.R. Thereinto, the results of Dice, NMI, and
CV using leave-one-out (l-Dice, l-NMI, and l-CV) and spilt-half (s-Dice, s-NMI, and s-V) resampling technique (left) and principal component analysis (PCA) (right)
suggest that the optimal result of right clusters seems the most reasonable. The error bars represent standard deviation.

image). After the software starts, a string of intermediate results
and logs with specific and uniform names will be produced.

Modular and Hierarchical Structure of
the Implementation
In order to improve the software easily and flexibly, the core
algorithms of per process in MonkeyCBP are modular in
design. In MonkeyCBP, the top-level script of CLI version, or
callback functions of GUI version, is responsible for reading the
configuration file and submitting jobs. The second-level script
is applied to activate a series of predefined procedures and
record running logs. The third-level scripts are used to perform
specific jobs, employing either internal MATLAB functions or
third-party programs.

Implementation Details
MonkeyCBP actualizes parallel computing within or across
machines via SGE and MATLAB PCT, which ensured the

efficiency of the software. In addition, users can freely choose
between two software versions. First, MonkeyCBP CLI version
comprises a standard set of hierarchical bash shell scripts
that glue together the codes of MATLAB and/or third-party
programs. A list file of TXT format defines a series of
inherent information (data directory, list of subjects, working
directory, ROI name, and maximum number of subregions)
of one brain region in per row. The top script, which named
MonkeyCBP.sh, submits jobs that each consists of a second-level
script, pipeline.sh, and the information about ROI as well as
the configuration parameter in config.sh, to opportune machines
across the cluster. The third-level scripts are triggered to perform
specific works by the second-level scripts that produce the
processing logs for users to debug and examine the results. If
the user’s hardware supports graphics processing unit (GPU)
computing, we also provide an interface of GPU to speed
up the data processing process. Second, the other version of
MonkeyCBP with a GUI is convenient for users with few
programming skills. Based on GTK-server, it is designed with
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TABLE 2 | The overlapping ratios of the parcellations of the two datasets.

Clusters KM VIVO KM ∩ VIVO

Voxels Overlap Ratio (%) Voxels Overlap Ratio (%) Voxels Overlap Ratio (%)

Cluster 1 987 811 82.17 1,130 811 71.77 – – –

Cluster 2 1,319 868 65.81 1,280 868 67.81 – – –

Cluster 3 785 289 36.82 373 289 77.48 – – –

Cluster 4 408 261 63.97 324 261 80.56 – – –

Total 3,499 2,229 – 3,107 2,229 – 2,849 2,229 78.24

KM represents the macaque dataset from Kunming Institute of Zoology, Chinese Academy of Sciences. VIVO represents the open dataset of in vivo scanning. We noted
that the overlapping ratio of cluster 3 on KM is 36.82% and identified significant difference in the position of the anterior posterior cingulate, adjacent to the corpus
callosum. Considering the maximum possible overlap ratio would be 47.51% (373/785), the overlap ratio of 36.82% in cluster 3 was not as low as it looked like. In
addition, the distribution pattern of parcellation results was consistent, and the total overlap is 78.24%, which suggested a good stability of the MonkeyCBP.

three menus: (1) “Main Panel,” (2) “Advanced Settings,” and (3)
“About.” The “Main Panel” menu includes settings for input
files and directories as well as configuration information. The
“Advanced Settings” menu includes advanced parameters for the
command path and file as well as some specific parameters. The
“About” menu displays the information relevant to the developer
and license. At the bottom of the interface are several fixed
buttons designed for users to control the start-up and shutdown
of tasks, as well as check the running progress and processing logs
in real time. In addition, MonkeyCBP GUI version also supports
parallel computing, but it is just single-ROI oriented, which is not
like the CLI version that could parcellate multiple brain regions
at the same time.

RESULTS AND DISCUSSION

In the current study, we developed a toolbox named MonkeyCBP
for CBP of monkey brain with automatic processing and
large-scale parallel computing. MonkeyCBP provides two skull-
stripping methods dedicated for rhesus monkey. The CLI

FIGURE 9 | The parcellation results of the left posterior cingulate gyrus on the
two datasets and the overlap between the two parcellation results. All the
results were transformed and combined into F99 brain space. The
yellow-shaded areas represent areas of overlap, and the orange-shaded areas
represent the difference.

version implements simultaneous parcellation of multiple brain
regions, and the user-friendly interactive GUI version offers the
parcellation for a single brain region.

Performance Test: We tested MonkeyCBP on two batches
of data in a local 12-node high-performance computing cluster,
including six nodes that have 16 cores of Intel Xeon E5-
2630@2.3GHz and 128GB memory and another six nodes that
have 12 cores of Intel Xeon E5-2630@2.3GHz and 128GB
memory. One dataset consists of eight monkeys (Macacamulatta,
two male and six female, 4–23 years old, weighted at 2.9–
4.2 kg, and DWI with 0.6-mm isotropic voxels) obtained from
Kunming Institute of Zoology, Chinese Academy of Sciences.
All animals of Kunming were conducted according to policies
set forth by the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and conformed to
the protocol of the animal care and use committee of the
Institute of Automation, CAS. To test the toolbox, we used
the CLI and GUI version of MonkeyCBP to parcellate the
right PCG. The parcellation results, including optimal number
of subdivisions and stability indices, are shown in Figure 6
Then a high degree of consistency among the indicators can be
observed. In addition, combined with other different indices,
we parcellated the bilateral FP, and the simplified results are
shown in Figures 7, 8. Wang et al. (2018) parcellated the
cingulate cortex into eight anatomical areas and the frontal
cortex into 14 anatomical areas. Further, MonkeyCBP found
more subregions in different cortical areas, even small ones
(e.g., the FP cortex). The parcellation results showed that the
right PCG could be subdivided into four subregions and that
the FP of each hemisphere could be subdivided into eight
subregions, which is a finer parcellation result. It is worth
mentioning that we have described the parcellation details
of the FP in another paper that is under review. The time
consumed of the entire process was approximately 5 and
3 h. Another dataset consists of five monkeys (M. mulatta)
in vivo obtained from an open resource (Milham et al.,
2018). To validate the stability of the parcellation scheme, we
parcellated the left PCG on the basis of the two datasets.
We calculated the number of all non-zero voxels in each
postprocessed MPM, the number of overlapping voxels for the
postprocessed MPM, and the number of overlapping voxels
of each subregion. The overall proportion of overlapping
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voxels is 78.24%. Additionally, on each dataset, we calculated the
proportion of overlapping voxels of each subregion; see Table 2
for more details. The parcellation results and the overlapping
areas were transformed and combined into F99 brain space (Van
Essen, 2002) using the Caret software (Van Essen et al., 2001)
for visual inspection (Figure 9). Topological similarities in the
parcellations between the two datasets can be observed.

To our best knowledge, this is the first toolbox dedicated
for rhesus monkey brain parcellation based on connectivity
profiles. On the basis of diffusion MRI data of macaque monkey
in vivo, Wang et al. (2018) subdivided the monkey cortex
into 80 subregions in each brain hemisphere using CBP. The
registration was implemented using the FLIRT tool, and the
cluster numbers were determined by continuity index. Wang
et al. parcellated the frontal cortex into 14 subregions, the
somatosensory cortex into 9 subregions, the parietal cortex
into 13 subregions, the temporal cortex into 16 subregions,
the occipital cortex into 16 subregions, and the limbic system
into 12 subregions. In comparison, the two regions we have
parcellated using MonkeyCBP were subdivided into finer regions,
that is, the PCG and bilateral FP; we provide a segmentation
result with more subdivisions. Although Wang et al. (2018)
constructed the macaque cortex atlas using CBP, the pipeline
was not published, and the automation performance of the
process was not enough.

This toolbox inherited the advantages of ATPP, compared
with other existing parcellation tools, including massive
parallel computing within and across machines for high-
throughput processing of high-resolution multimodal data,
modularized software structure for easy extension and
rapid development, and detailed intermediate results and
abundant log information generated for quality control and
reproducibility. MonkeyCBP follows open science protocol
and is publicly accessible in Neuroimaging Informatics Tools
and Resources Clearinghouse3 (NITRC)4; the Digital Object
Identifiers (DOIs)4 (doi: 10.25790/bml0cm.56) are associated
with MonkeyCBP. Its source codes are hosted in Github,5,6 under
the GNU generic purpose license version 37 (GPLv3), and are
available for download and fork. Besides, to promote Resource
Identification Initiative (Bandrowski et al., 2016), which aims to
promote research resource identification, discovery, and reuse,
Research Resource Identifier (RRID) was curated (MonkeyCBP,
RRID:SCR_017640).
3 https://www.nitrc.org
4 https://www.nitrc.org/projects/monkey-cbp
5 https://www.github.com
6 https://github.com/bheAI/MonkeyCBP
7 https://www.gnu.org/licenses/gpl-3.0.html

by SciCrunch Resource Registry8 to avoid ambiguities on the tool
name in addition to its version (Nichols et al., 2017).

Apart from the features mentioned above, MonkeyCBP
includes a robust skull-stripping module for rhesus monkey.
The deformable registration is performed using ANTs, instead of
SPM, resulting in better registration. A PCA-based parcellation
verification index is also included to exploit information from
individual image space for accurate determination of number
of parcels. The highly automated process and high-throughput
performance supported by GPU option make the toolbox ready
to be used by a wider research community.
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