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Abstract

Microtubules are structures within the cell that form a transportation network along which motor 

proteins tow cargo to destinations. To establish and maintain a structure capable of serving the 

cell’s tasks, microtubules undergo deconstruction and reconstruction regularly. This change in 

structure is critical to tasks like wound repair and cell motility. Images of fluorescing microtubule 

networks are captured in grayscale at different wavelengths, displaying different tagged proteins. 

The analysis of these polymeric structures involves identifying the presence of the protein and the 

direction of the structure in which it resides. This study considers the problem of finding statistical 

properties of sections of microtubules. We consider the research done on directional filters and 

utilize a basic solution to find the center of a ridge. The method processes the captured image by 

centering a circle around pre-determined pixel locations so that the highest possible average pixel 

intensity is found within the circle, thus marking the center of the microtubule. The location of 

these centers allows us to estimate angular direction and curvature of the microtubules, statistically 

estimate the direction of microtubules in a region of the cell, and compare properties of different 

types of microtubule networks in the same region. To verify accuracy, we study the results of the 

method on a test image.
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1. Introduction

Microtubules are part of the cellular cytoskeleton and one of their main functions is to serve 

as a transportation network within the cell. They are made of two subunits: α- and β-tubulin. 

A microtubule is typically formed by thirteen protofilament chains made of these α-β 
heterodimers, arranged into a hollow tube approximately 25 μm in diameter [1]. Molecular 

motor proteins like kinesin can move along the surface of the microtubule, which allows 

them to tow cargo like organelles and vesicles to other parts of the cell, giving the cell the 

ability to distribute its contents according to need. Although the microtubule network is 

distributed throughout the cell, individual microtubules are dynamic and can depolymerize 

and repolymerize rapidly. This dynamic behavior allows the cell to change the distribution 

and organization of the entire network quickly when functions such as cell motility and 
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wound repair demand. For example, when the cell is migrating, many microtubules will 

reorient or repolymerize toward the direction of cell travel, which allows for the delivery of 

cargos and material to the active leading edge. One of the most dramatic instances of 

microtubule networks reorganizing occurs during cell division, where the entire microtubule 

network is restructured to form the machinery of chromosome segregation.

In the cell, it is typically not necessary for individual microtubules to have a precise 

subcellular localization. Rather, microtubule networks function normally if they are 

sufficiently dense and enough segments of microtubules have the appropriate orientation. By 

segments, we mean parts of a mictrotubule along the entire length of the microtubule. These 

segments could be defined in several ways. In this study, we consider segments of 

microtubules between where microtubules overlap or cross.

A current problem in microtubule research is determining appropriate statistical measures 

that quantify the distribution and organization of microtubule networks. Appropriate 

statistical measures that describe the overall organization of the microtubule network and 

how the network changes under different conditions can lead to a better understanding of 

how the cell’s transportation network functions and how it responds to varying external 

conditions. Two measures that will help in understanding the microtubule network are angle 

direction and curvature. A distribution of angle direction of segments of microtubules will 

show the general direction of the microtubules. For instance, a travelling cell will have more 

microtubule segments oriented in the direction of travel. A distribution of curvature of the 

segments of microtubules will indicate changes in the orientation of segments of 

microtubules.

There is a large body of work studying the detection of the direction of ridges, edges, and 

lines; see [2]-[13]. Steerable filters are filters of any orientation created from linear 

combinations of oriented filters called basis filters [2]. Steerable filters can be used to 

determine the approximate orientation of an edge and can also be used to trace objects in 

images. For example, Yu et al. improved the accuracy of steerable filters using Gaussian 

functions as basis filters [6]. This resulted in directions that were more precise, and noisy 

edges were more distinguishable. In another paper, Jacob and Unser designed optimality 

criteria for steerable filters to detect edges, and published their software for use in a popular 

image analysis tool [4]. Steerable filters can work on edges with varied pixel widths, can 

determine the orientation of junctions with many branches, and can work for three-

dimensional data. The returned orientation of an edge or junction is often dependent on the 

placement of the filter. As described by the above authors, a steerable filter may suggest, for 

instance, that a straight edge in an image is “bent” at an angle if the filter is centered beside 

the edge instead of directly on the edge. Because of this, centering the steerable filter is 

crucial to a reliable approximation of curvature and an issue we discuss further. Other work 

presents junction detectors, which find ridges or lines in an image that branch. Junction 

detectors play an important role in the study of the blood vessels and identify objects in an 

image. For instance, Tsai et al. and Sofka and Stewart present work on detecting junctions in 

retinal blood vessels to aid in the detection of low-contrast blood vessels and develop an 

automated technique due to the large quantity of images needing analysis [10] [11]. While 

microtubules have no junctions, two-dimensional images of overlapping microtubules 
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appear to have many junctions where individual microtubules cross. In images of 

microtubules in the cell, determining the orientation of an individual microtubule can be 

complicated by two overlapping microtubules in cases where there is little sign on which 

microtubule went in which direction after a junction. In this way, junctions in microtubule 

images are an impediment. However we stress that we are not concerned with whole, 

individual microtubules. We instead focus on segments of microtubules, specifically the 

segments created between where microtubules overlap which appear as junctions in the two-

dimensional image. Using segments of microtubules, our primary concern is for the 

structural properties of the entire network of microtubule segments. Thus we try to obtain a 

statistical understanding of the microtubule network found through analyzing the segments 

between junctions.

In this study, we propose a simple method to approximate the center of a microtubule by 

calculating average pixel intensity within a circle translated across the microtubule. This 

method has the benefit of being simple to understand conceptually. In the first part of this 

paper a method is developed to determine the center of a digital representation of fluorescing 

microtubules. With this center, an approximation for angle direction is possible. In the 

second part of this paper, we calculate curvature by finding three neighboring centers on a 

microtubule. Using both of these measures obtained from the method presented, we can 

better understand the organization of the microtubule network.

The goal of developing this method is to distinguish between microtubule network 

organizations under different cellular conditions, or to distinguish between different 

subpopulations of microtubules, such as those in which the tubulin subunits are post-

translationally modified, by using a consistent and accurate technique for analyzing images 

of the microtubule network. The performance of the method will be studied using 

constructed “test” images with representations of microtubule-like structures in the form of 

circles, ellipses, and lines. The data collected from applying the method to these constructed 

microtubules can be compared to theoretical values to analyze accuracy.

There are different approaches to microtubule network structure. One is to map individual 

microtubules and collect appropriate statistics on direction. A second is to determine a 

statistical description of microtubule angles along with a probability density of microtubule 

presence. Here, an approach is adopted that obviates the need to map whole microtubules, 

but adds information on direction changes to the statistical approach. This is done by 

considering segments of microtubules and the distributions of angle direction and curvature 

of these segments. The probability of a microtubule with a determined direction is calculated 

within an analyzed area of the cell. This approach may produce a more rigorous, statistical 

analysis of microtubule network structure to determine any differences between different 

networks of microtubules.

2. Theoretical Foundations

Many situations involve spatial structures whose exact locations are of less concern than 

their density. In addition, structure directions are often of interest. Microtubules appear on 

the cellular scale as one-dimensional structures spanning large portions of a cell. 
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Microtubule position and direction are determined by molecular scale processes such as 

dynamic instability, which could allow the structures to change in response to different 

conditions.

For the purposes of this study, we assume that a probabalistic description is appropriate. 

Thus, we seek a probability density function P (x,τ,κ), such that P (x,τ,κ) dxdτdκ describes 

the probability that a microtubule is found within dx of spatial point x, having direction 

within solid angle dτ, and having curvature within dκ of κ. The event space is the set of all 

cells subject to the same conditions.

The theoretical procedure for estimating probabilities is to sample many cells from the set of 

equivalent cells, locate the point x in each cell, and determine whether there is a microtubule 

within dx of x and, if so, determine if the direction of the microtubule is within dτ of the 

direction τ and within dκ of curvature κ. Thus it is straightforward to consider the joint 

probability density function as a product of the absolute probability of microtubule presence 

P (x) and the conditional probability density function for direction and curvature, given that 

there is a microtubule at x. We have

P(x, τ, κ) = P(x)P(τ, κ x) .

There is much image data that is essentially two dimensional. In this case, the probability 

identity is

P(x, y, θ, κ) = P(x, y)P(θ, κ x, y) .

Additionally, it is difficult to obtain samples of “equivalent” cells when the cells are not 

symmetric. In this case, we shall consider sub-areas of images that are nearly equivalent. For 

example, in Figure 1, the lower lune appears to contain microtubules that are equivalent in 

density and direction. One such sub-area is shown in Figure 2. The image in such a 

rectangular area centered at a point (x, y) and of size (Δx, Δy) can be described in terms of 

the pixel intensity I (i, j) at pixel (i, j), located at (x = iδx, y = jδy), where the pixel size is 

(δx,δy). Then

P(x, y) ≈ v ∑
i = iL

iR
∑

j = jB

jT
I(i, j),

where (iL, iR) and (jB, jT) delineate the rectangle of dimensions (Δx, Δy) centered at (x, y), 

and v is a normilization constant,

v = 1
iR − iL + 1 jT − jB + 1 Imax

,

where Imax is the maximum pixel value in the sample area.
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What remains to be found is the conditional probability of microtubule direction θ and 

curvature κ. In this paper, the method proposed obtains this probability by mapping 

microtubules in the image rectangle x − Δ x
2 < iδx < x + Δ x

2 , y − Δ y
2 < jδy < y + Δ y

2 , while 

gathering statistics about direction and curvature.

3. Finding Points on Microtubules

Images of microtubules are two-dimensional grayscale images taken at several vertical 

positions through the cell (optical sections). Although the cell is three-dimensional, these 

cells are relatively flat (<5 μm tall). However, we typically take 8 – 15 optical sections per 

cell to maximize resolution, and then combine these layers using a maximum projection 

algorithm with image manipulation software such as Image J. Microtubules are labeled with 

a fluorescently tagged antibody to the tubulin subunit. The distribution of these antibodies 

along microtubules is generally considered to be uniform. These fluorescent molecules 

create the brighter pixel intensities shown in Figure 1 and Figure 2. One must remember that 

the images used are not actually images of microtubules, but fluorescent molecules attached 

to the microtubules. These molecules mark the location of microtubules like streetlights 

mark the location of roads in a satellite image. Each fluorescing body emits light from a 

central location in a gaussian distribution. Brighter areas of an image, therefore, are not 

typically the result of more fluorescent molecules on a microtubule in that area, but more 

likely represent several microtubules that are bundled in that area. One must also remember 

that what may look like a representation of a microtubule is actually several times larger 

than a microtubule because of the nature of fluorescence imaging.

3.1. Finding Points near the Center of Microtubules

Before finding a point near the center of the microtubule we first provide a loose definition 

of the center of a microtubule. Microtubules are cylindrical and a two-dimensional 

representation of them would allow for the center of the microtubule to be equi-distant from 

each side of the two-dimensional representation. However, the images we have of 

microtubules are, as mentioned elsewhere, actually images of fluorescents attached to 

tubulin subunits of the microtubule in an assumed uniform distribution. Because of this, the 

sides of the profile of a microtubule are difficult to define and thus so is the center in this 

way. Instead we define the center of a microtubule as it affects the curvature of that 

microtubule segment. A point is on the center of a microtubule if the curvature of the 

microtubule segment at that point is equal to the real curvature of the microtubule segment. 

For example, if the microtubule segment were straight and thus had a curvature of 0, a point 

on the microtubule segment is on the center if the angle between each direction (forward and 

backward) of the microtubule segment is π and thus the curvature would be 0.

To find points on the microtubule that are close to the center, we find local maxima in the 

rows and columns of pixel data. These local maxima are at pixel locations with pixel 

intensity above that of neighboring pixels (in the row only or column only) by a specified 

amount d. Points found this way are then filtered so that no two points are within one pixel 

of each other; this avoids double counting at that pixel location. Using this process with a 

reasonable choice for d finds initial points on nearly all microtubules quickly. The process 

DiLorenzo et al. Page 5

Appl Math (Irvine). Author manuscript; available in PMC 2019 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



avoids picking initial points by hand which can create bias, or picking points randomly 

which often will not be well-centered on the microtuble. Figure 3 and Figure 4 show the 

initial points selected for a region of microtubules and a test image of ellipse shapes 

simulating microtubules (described in detail below).

From these points, we find points “centered” on the microtubule. We accomplish this by first 

finding the angle direction of the microtubule at that location and then translating a circle 

along the perpendicular angle direction. At many steps along this line, we calculate the 

average pixel intensity for pixels within the circle. We consider the “center”of the microtuble 

to be at the center of the circle with the highest possible average pixel intensity. We describe 

the technique used to find angle direction and the “centering” technique in more detail 

below.

3.2. The Centering Technique

To implement the centering technique, we first consider that pixel values can be mapped to 

integer locations on a Cartesian plane, where location is determined by the matrix location 

of the pixel in the image. For example, pixel (i, j) is located on the Cartesian plane at (x, y) = 

(i, j). On this plane, we can use geometric constraints like a circle with a radius of r pixels. 

In this way, we translate a circle across the width of a microtubule and calculate average 

pixel intensity at each step. The steps for this process are as follows:

1) Pick, as an initial point, a point with local maximum pixel intensity as discussed 

earlier.

2) From this initial point, calculate the angle direction of the microtubule.

3) Create a circle-shaped closed constraint centered on this point and translated 

perpendicular to the found angle direction through n steps in both directions. At 

each translation step, calculate the average pixel intensity within the circle-

shaped closed constraint.

4) The center of the circle corresponding to the step with highest average pixel 

intensity is considered the center of the microtubule.

5) Repeat for a new initial point.

This process begins with an approximation to the microtuble center by first considering the 

local row and column maxima and then “centering” a circle on the microtubule, using angle 

direction and the circle as a guide. This process could be repeated multiple times by 

recalculating the angle direction at the new “center” and then re-centering the circle. For our 

proposes, we did not repeat the process. Figure 5 shows the results of this technique on 

several points.

From these centered points along the microtubule we are able to estimate curvature on test 

images. Implementing this technqiue requires two components not yet discussed: a way to 

calculate angle direction at a location, and a way to find neighboring triples of points on the 

microtubule for calculating curvature. To calculate angle direction, the steerable filters 

discussed above are a well-researched option. We explored another way to calculate angle 
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direction and find neighboring triples of points using a technique similar to the centering 

technique described above.

3.3. Direction Angle

To measure the direction angle of a digital representation of a curve, we must measure angle 

based on the location of pixels that represent that curve. However measuring direction angle 

as the slope between two pixels representing points on a curve will result in discrete angles. 

We can achieve a higher accuracy by measuring the line, or curve, generated from multiple 

pixels. For images of microtubules, where the pixelated curve has a higher intensity in the 

center of the curve and lower intensity further from the center, we can consider a two-

dimensional area of pixels to determine the direction angle of the curve at a point. We 

implemented a similar technique to the centering technique described above, using a rotated 

ellipse-shaped constraint instead of a translated circle. The angle determination method is as 

follows:

1) Pick an initial point on a microtubule.

2) Create a closed constraint shape centered on this point, and rotate the shape 

through angle π using t rotation steps. At each rotation step, calculate the 

average pixel intensity within the closed constraint shape.

3) The angle of rotation of the constraint shape corresponding to the highest 

average pixel intensity is considered the angle direction of the microtubule at the 

initial point.

4) Repeat for a new initial point.

The rotated shape with the highest average pixel intensity will best fit over a given section of 

the fluorescing microtubule, distinguished by bright pixels in the image. See Figure 6.

The problem at each initial point can be written as an integer program:

max
θ

∑ pi jbi j

s . t . C bi j, θ ≤ 0,

b ∈ 𝔹

where the pij is the pixel intensity at the image point (i, j), bij = 1 if the coordinate (i, j) 
satisfies the constraint and bij = 0 otherwise. The constraint C (bij ,θ) is a closed shape 

around a given starting point (x0,y0) and at an angle of θ. The closed ellipse-shaped 

constraint is determined by a single nonlinear contraint:

C:
y − y0 cosθ + x − x0 sinθ

m

2
+

y − y0 sinθ − x − x0 cosθ

n

2
− 1 ≤ 0,

where the parameters m and n are chosen by trial and error so that the closed shape fits well 

over the microtubule without being too small or too large that data is inaccurate. The term bij 
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is determined automatically in this case when the pixel at location (x, y) satisfies the 

constraint. This method cannot readily employ regular optimization program solvers, so the 

total pixel intensity of every rotation step must be found and then the angle with the largest 

corresponding average pixel intensity is chosen. In the result of a tie between nearby rotation 

angles, the average between the two maxima is taken.

If the closed constraint C is offset from the initial point, instead of centered on it, then the 

resulting maximum average pixel intensity would indicate the approximate direction of 

travel of the microtubule (see Figure 7). In the thesis by DiLorenzo, using this technique as a 

means of “tracing” a microtubule is explored in more detail [14]. Here, we use the technique 

as a way of finding triples of neighboring points for calculating curvature.

4. Analysis of the Method Using Test Images

We apply the method as described to several test images simulating microtubules following 

curves with known functions and curvatures: ellipses, circles, and lines. These test images 

are shown in Figure 8. The circle-shaped microtubules allow us to tune the method and 

verify accuracy. The ellipse-shaped microtubules allow us to test for invariance of the 

method under rotation and distinguish curvature distributions irom those of circles. The line-

shaped microtubules allow us to test the effect of the image resize value on the method.

4.1. Resizing the Image for Better Accuracy

The constraints detailed above only consider intensities at integer points satisfying the 

constraint. Those points correspond to the location of a pixel in the image. However, the 

light entering the aperture of the microscope to be recorded as the pixel intensity can be 

associated with a two-dimensional area in the image, centered around the integer point. 

Because of this, the pixel value of an integer point can be used to represent the pixel value in 

a unit square area around the integer point. In this situation, the intensity of the entire square 

area is considered to be the pixel value at the integer point and the intensity of a fraction of 

the square area is assumed to be the same fraction of the intensity. For example, the intensity 

of half the square area is considered to be half the pixel value at the integer point. With a 

method that only considers integer points instead of area, the pixels near or on the border of 

the contraint will be entirely included or entirely excluded, when only a fraction of their 

pixel intensity is inside of the constraint. This issue creates a convex hull of the integer 

points that differs from the real shape of the constraint, and so could lead to inaccuracies in 

the direction chosen by the method. See Figures 9–16.

To represent the constraint with more accuracy, fractions of pixel values must be 

approximated near the border of the constraint. To accomplish this, the image can be resized 

so that each pixel intensity is represented by an n × n block of points distributed over the 

inside of the square. The contraint will then include some, but not all, of the resulting resized 

pixels in the new image. This represents a fraction of the original pixel intensity and allows a 

better approximation of the constraint. Resizing the image results in a longer computation 

time, so a trade-off between computation and accuracy is necessary.
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4.2. Analysis of the Closed Constraint Shape Size

Several parameters in the method affect the accuracy, consistency, or useability of the 

method. These parameters include the resize value, the size and shape of the closed 

constraint shape, the size of the increments by which the constraint is rotated, and the 

amount by the which the constraint is offset from the center of rotation. The size of the 

closed constraint shape (determined by parameters n and m in the constraint equation) were 

varied to study their effects on the method. To test for changes in the size of the ellipse 

constraint shape, the offset value, δ, was set to one-half the length of the major axis, while 

the lengths of the minor and major axes were varied from (4, 4) to (10, 20). A resize value of 

64 was used with 36,000 rotation steps between 0 and 2π. We expect that a constraint shape 

too small will not accurately distinguish between similar optimal angle directions, while a 

constraint shape too large will “jump” from one microtubule to another. Larger constraint 

shapes require more computing time so a smaller shape is preferential. The largest of the five 

circle paths (with radius 50 pixels) is used to find curvature at the thirty-six starting points. 

The results are shown in Figure 17 for each constraint shape size. The figure on the top 

shows the error between the mean curvature of the starting points and the real curvature of 

0.02. The figure on the bottom shows the variance between the starting points scaled so the 

differences can be seen better. In each graph, the axes represent the major and minor axes 

lengths of the ellipse constraint shape, where the major axis is always greater than or equal 

to the minor axis. Note that error decreases significantly when the ellipse is widened.

4.3. Analysis of the Resize Value

To test the improvements to accuracy of the method due to increases in the resize value, a 

test was designed to exploit starting points at fractions of a pixel. A line-shaped microtubule 

was used so that the method would have no variation between starting points other than pixel 

locations. The line used was the first line from the left in Figure 8. The first starting point 

was set at an integer coordinate, then twenty-five other starting points were chosen by 

keeping the x-position constant and varying the y-position in increments of 0.02 of a pixel. 

By doing this and using the two directions found for each starting point, we collect many 

results for each resize value. We expect that the directions found from the starting points will 

have more accurate means and lower standard deviations when the resize is high. The results 

of these tests are shown in Figure 18. Note that for odd resize values the mean error is zero, 

likely because the symmetry of the image helps the constraint center on the correct angle. 

An even resize value did not allow this. For other curves, this situation is unlikely to occur, 

and the error betwen successive resize values will likely be similar. When the resize value is 

increased, the mean error for resize values decreases. This shows an overall improvement 

when increasing the resize value.

4.4. Invariance Under Rotation and Translation

An important check for the method is invariance under rotation and translation of the image. 

To test for invariance under translation, the test image of circles was reproduced by shifting 

the generating equation by one-half of a pixel value, which will create a slightly different 

circle. To test for invariance under rotation, the test image of ellipses was reproduced by 

adding rotation to the generating equation and creating images rotated from 0 to π in 
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increments of π
18 . We can conclude that the method is sufficiently invariant under translation 

and rotation of the image if the resulting data of these new images is similar to the 

corresponding data of the original two test images. Points are found and curvature is 

measured as described in the process above. A Kolmogorov-Smirnov test was used to check 

differences between two distributions. Examples of the resulting distributions can be seen in 

Figure 19.

With five circles, five translated circles, and five ellipses rotated eighteen ways, there are 

4950 non-trivial comparisons of two distributions. Of these, 287 (5.80%) of the comparisons 

resulted in a false negative or false positive, given α = 0.05 . We notice that most of these 

errors occur from a lack of distinction between the two smallest ellipses. No errors occur 

due to changes in the rotation of the image, so we conclude that the method is sufficiently 

invariant under rotation.

Four of the five translated circles are indistinguishable from their counterparts, so we 

consider the method to be sufficiently invariant under translation.

Given that the curvature of a circle is constant and the curvature of an ellipse varies, we may 

consider only the means and variances of the curvature distributions as a way of separating 

different shapes. Figure 20 shows that for circles, translated circles, and ellipses of different 

rotations, the mean and variance of curvature are similar for similar shapes.

4.5. Independence of Curvature and Angle Direction Probabilities

Thus far we demonstrated that the proposed method for detecting angle direction and 

curvature at locations of digital curves works with reasonable accuracy and variability of the 

data. We also showed that the method produces similar results despite differing orientations 

of the same curve. For these results, angle direction and curvature are always considered 

separately. However, angle direction and curvature at a location may not be independent. For 

instance, in the ellipses shown in Figure 8, points on the curve with low curvature should 

also have angle direction closer to 0 than to π
2 , and opposite for points with high curvature. 

For the circles in the same figure, we expect curvature to be independent of angle direction. 

Note that angle direction in these distributions was adjusted by subtracting the mean of the 

original data. By adjusting in this way, the distributions for rotated ellipses are similar, and 

so we see that the method gives independence of curvature and angle direction as we expect.

Indepence of curvature and angle direction is important, as then the probability density 

function, P(θ, κ | x, y),can be computed as the product of the independent probability density 

functions: P(θ | x, y)and P(κ | x, y) . The bivariate histograms in Figure 21 show these 

expectations are true for our method and suggest that the method accurately maintains 

indepence of curvature and angle direction.

5. Analysis of Data from a Section of Microtubules

With an understanding of the performance of the method, we can apply the method to the 

section of microtubules shown in Figure 2. Initial points are found as described, resulting in 
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the points shown in Figure 3. These points are centered and matched with neighboring 

points to create triples. In rare instances, the triples will form an angle too sharp to consider 

possible for real microtubules. Because of this, triples that form an angle over π
3  are removed 

from the results. The resulting distributions of curvature and angle direction are shown in 

Figure 22.

The distribution of curvature is what we use as the conditional probability density for 

curvature, given microtubule presence. Applying the probability of microtubule presence as 

described to this distribution creates the probability of microtubule curvature at a location. 

The probability density of microtubule presence is shown in Figure 23 and the resulting 

probability density of microtubule curvature is show in Figure 24. These distributions are 

independent are thus their product gives the probability of a microtubule having a given 

curvature and angle direction at a location. Distributions from sections of microtubules as 

shown here may be compared using the Kolmogorov-Smirnov test, by simply comparing 

means and variances, or other tests.

6. Conclusion

This method maps the high pixel intensity values of an image and reliably records 

microtubule curvature except at crossings. The resulting data may be used to show a 

distinction between microtubule subsystems, just as it shows in this study a distinction 

between several simple paths. This method can be used to determine the orientation of 

segments of the microtubule network and then to analyze changes in the microtubule 

network during events such as cell motility or wound repair. This method can also map, find 

angle direction, and find curvature of other networks such as blood vessels in the eye, tree 

limbs, hiking trails, roads, and river deltas. Parameters will need to be adjusted to suit the 

image and expected properties of the network to ensure accurate results.

Throughout the above research, one issue is mentioned repeatedly that would produce 

inaccurate results for our purposes if not resolved. This is the issue of finding the center of 

ridges, or microtubules in our case. In [4] [6] [7] [9], implementing the solution at the 

incorrect center of the ridge or junction produces skewed results. We employed a simple 

centering technique that reduces much of the variation in curvature for our test images.

The parameters of this method were chosen during testing to ensure more accurate results, 

but more analysis of the parameters is needed to find a best combination. Most notably, the 

resize value, fineness of the rotation step, the parameters determining the width and length 

of the constraint ellipse and the offset value play a crucial role in gathering useful data. The 

width and length of the constraint ellipse were varied to study the data gathered on the 

circles of the test image, but the amount by which the ellipse was offset from the current 

point was not varied. Empirically, the major axis of the ellipse played a major role in 

generating poor results when too large, while the minor axis of the ellipse helped generate 

better results when larger.

With this method as a starting point, we hope to establish a process for calculating the 

curvature of a digital curve at a specified loction along the curve. Several issues must be 
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resolved to create a more useful and reliable method. One of these is computation time 

associated with a high resize and a fine mesh for the rotation steps. Another issue is 

determining the change in arc length that the closed constraint shape uses to find the 

corresponding change in angle. Lastly, we must study the differences between the true curve 

and the digital representation of the curve, in relation to choosing initial points for the 

method. This method can be used for three-dimensional situations, such as structures of 

cells, after changes to the structure of the closed constraint shape and the search area are 

made.
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Figure 1. 
Combined images of fluorescing α-tubulin.
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Figure 2. 
100 × 100 pixel image from outlined area.
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Figure 3. 
Initial points found for a region of microtubules using the described algorithm with d = 

0.04 .
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Figure 4. 
Initial points found for a test image using the described algorithm with d = 0.25 .
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Figure 5. 
The centering technique finds more accurate locations of the curve center.Red dots show the 

pixel with locally maximum intensity and red lines show the angle direction found at those 

locations. Blue Xs show locations of the curve center found using the centering technique 

and blue lines connect triples of points to estimate curvature.
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Figure 6. 
Best direction given by centered ellipse.
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Figure 7. 
Best direction given by offset ellipse.
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Figure 8. 
Test images of microtubules shaped like circles, ellipses, and lines.
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Figure 9. 
Resize of 1.
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Figure 10. 
Resize of 2.
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Figure 11. 
Resize of 3.
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Figure 12. 
Resize of 4.
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Figure 13. 
Resize of 5.
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Figure 14. 
Resize of 6.
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Figure 15. 
Resize of 7.
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Figure 16. 
Resize of 8.
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Figure 17. 
Mean error and scaled variance of the thirty-six starting points for different sizes of the 

ellipse-shaped constraint. The smaller axis is the minor axis and the larger axis is the major 

axis of the ellipse-shaped constraint.
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Figure 18. 
Mean error and variance of the twenty-six starting points along a line-shaped microtubule. 

The mean error generally trends downward with increasing resize value.
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Figure 19. 
Distributions of curvature for circles of radius 10, 30, and 50 pixels, and an ellipse.
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Figure 20. 
Mean vs. variance of curvature for all shapes. dots represent the ten circles tested. other 

symbols represent the differently sized ellipses.
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Figure 21. 
Distributions of curvature and angle direction for a circle of radius 50 pixels, and an ellipse.
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Figure 22. 
Histograms of curvature and angle distributions found for the section of microtubules.
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Figure 23. 
Histogram of microtubule presence.
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Figure 24. 
Histograms of scaled curvature and angle distributions given microtubule presence.
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