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Abstract: Protopanaxadiol (PPD), a native active triterpenoid present in Panax ginseng, has been
reported to exert immune-related effects. We previously created PPD-producing transgenic rice
by introducing the P. ginseng protopanaxadiol synthase and dammarenediol-II synthase genes into
Dongjin rice. In the present study, the seeds of the T4 generation of this transgenic rice were tested
for their immunomodulatory effects in RAW264.7 macrophage cells. Treatment with transgenic rice
seed extract in RAW264.7 cells (i) significantly enhanced nitric oxide (NO) production in a dose-
dependent manner without any cytotoxicity (up to 100 µg/mL), (ii) upregulated the expression of
immune-related genes and increased production of the inflammation mediator prostaglandin E2

(PGE2), and (iii) activated nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK)
by promoting the phosphorylation of NF-κB p65, p38 MAPK, and c-Jun N-terminal protein kinase
(JNK). In lipopolysaccharide (LPS)-treated RAW264.7 cells used to mimic the inflammation condition,
treatment with transgenic rice seed extract significantly reduced NO production, proinflammatory
cytokine expression, and PGE2 production, all of which are LPS-induced inflammation biomarkers,
by inhibiting the phosphorylation of NF-κB p65, p38 MAPK, and JNK. Collectively, these results
indicate that PPD-producing transgenic rice has immunomodulatory effects.

Keywords: transgenic rice; protopanaxadiol; PPD; immune enhancement; anti-inflammation;
macrophage cells; NF-κB; MAPK

1. Introduction

The immune system in the host cells plays an important role in defense against
pathogens and various other stimuli. Depending on the functional activities, it is divided
into two groups—innate and adaptive immune responses [1,2]. Macrophages, which are
active in both types of immune responses, offer protection against foreign microorganisms
through phagocytosis as well as the release of proinflammatory cytokines and mediators,
e.g., interleukin (IL), tumor necrosis factor (TNF), and nitric oxide (NO) [3–5]. Macrophages
can exhibit different phenotypes depending on their activation mode [6]. Based on
their polarization, they are mainly categorized as classical (M1) and alternative (M2)
macrophages [7]. M1 macrophage is associated with an inflammatory microenvironment,
whereas M2 macrophage is associated with an anti-inflammatory microenvironment [8].
Immune protection against pathogens also involves the activation of various signaling path-
ways, including mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB)
pathways [2].

Ginseng (Panax ginseng Meyer) is widely used as a natural pharmaceutical herb
worldwide, particularly in Asia [9]. Ginseng is recognized for its potential to enhance
immune responses, homeostasis, and self-healing [10,11]. The active compounds isolated
from ginseng include ginsenosides [12], polyacetylenes [13], polysaccharides [14], and
phenolics [15]. Ginsenoside is the main active compound of ginseng and can be divided
into two major groups: protopanaxadiol (PPD) and protopanaxtriol glycosides [8]. Several
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studies have reported the immune-related effects of PPD, which include anticancer [16–18],
antistress [19], immune boosting [20,21], and anti-inflammatory effects [19,22,23].

We previously created transgenic rice that overexpresses the P. ginseng dammarenediol-
II synthase and protopanaxadiol synthase genes [24]. This transgenic rice produces PPD
and dammarenediol-II, which are not found in normal [Dongjin (DJ)] rice. In the present
study, we evaluated the immune-related effects of the seed extract of this transgenic rice in
RAW264.7 macrophage cells with and without lipopolysaccharide (LPS) induction (used to
mimic inflammation). Overall, our study shows that PPD-producing transgenic rice exerts
immunomodulatory effects in RAW264.7 macrophage cells.

2. Materials and Methods
2.1. Sample Extract Preparation

Brown rice grains were collected and ground using a blender. To prepare sample
extracts, 5 g of each sample powder was added to 100% methanol and sonicated for 1 h.
The mixture sample was then filtered through 5 µm filter paper (Hyundai Micro, Seoul,
Korea). The filtered solution was concentrated by removing the solvent using a rotary
evaporator at 50 ◦C, and lyophilization was used to collect the crude extract. Crude extracts
were adjusted to concentrations of 10, 25, 50, and 100 mg/mL using dimethyl sulfoxide
(DMSO) in preparation for an in vitro immunomodulatory assay.

2.2. RAW264.7 Macrophage Culture

RAW264.7 cells were obtained from Korean Cell Line Bank (Seoul, Korea) and cultured
in RPMI-1640 medium. The culture medium contained fetal bovine serum (10%) and an-
tibiotics [penicillin/streptomycin (1%)]. The cells were incubated in a humidity-controlled
incubator at 37 ◦C with 5% CO2 and maintained through weekly cell passaging.

2.3. NO Production and Cell Viability Assays

Cells (1 × 105 cells/well) were seeded and incubated at 37 ◦C for 24 h. The culture
medium was replaced with various concentrations of the rice seed extract treatments.
After 1 h of pretreatment, some cells received LPS (1 µg/mL) stimulation, whereas some
cells received no stimulation, and the assay plate was incubated for a further 24 h. NO
production was evaluated using Griess reagent (Sigma-Aldrich, St. Louis, MO, USA) and
quantified by constructing a standard curve of sodium nitrite (NaNO2). An EZ-Cytox Cell
Viability Assay Kit was used to measure the cytotoxicity of the crude extracts. Cell viability
was calculated based on the following formula:

Cell viability (%) =
A450 of treatment − A450 of blank

A450 of control − A450 of blank
×100,

where A450 represents the absorbance at 450 nm and “control” represents the nontreatment
group.

2.4. RNA Extraction and cDNA Synthesis

The cells with or without LPS stimulation were harvested after 6 h. TRI reagent™
(Invitrogen, Waltham, MA, USA) was used to extract total RNA, and 100% isopropanol
was used to precipitate RNA. RNA was collected via centrifugation at 13,000 rpm and 4 ◦C
for 10 min. The RNA pellet obtained was washed with 70% EtOH. After drying, the total
RNA pellet was resuspended in 20 µL of nuclease-free water. Total RNA was quantified
using a SpectraMax® ABS Plus Microplate Reader (Molecular Devices, San Jose, CA, USA),
and cDNA was synthesized using 500 ng of this RNA and a Power cDNA Synthesis Kit
(Intron Biotechnology, Seongnam-Si, Korea), according to manufacturer’s instructions.
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2.5. Quantification of the mRNA Expression of Immune-Related Genes Using Real-Time
Quantitative Polymerase Chain Reaction (qPCR)

The mRNA expression of immune-related genes was evaluated using RealMOD™
Green W2 2× qPCR Mix (Intron Biotechnology, Seongnam-Si, Korea) in a CFX Connect
Real-Time PCR System (Bio-Rad, Hercules, CA, USA). The PCR reaction included 5 ng
of cDNA template and 0.375 µM of each specific primer and was conducted as follows:
predenaturation (95 ◦C for 10 min), 40 cycles of PCR (denaturation: 95 ◦C for 20 s; annealing:
60 ◦C for 20 s; extension: 72 ◦C for 30 s), and final extension (72 ◦C for 5 min). The sequences
of IL-1β, IL-6, COX-2, iNOS, TNF-α, and β-actin were used as described by Monmai et al. [25];
moreover, the sequences of TLR-4 (NM_021297.3; forward: 5′-CGC TCT GGC ATC ATC
TTC AT-3’; reverse: 5′-GTT GCC GTT TCT TGT TCT TCC-3′) were used. The results were
analyzed using CFX Maestro software, and β-actin was used as the reference gene.

2.6. Prostaglandin E2 Quantification

The supernatant was collected via centrifugation at 3000 rpm for 10 min, and
prostaglandin E2 (PGE2) production was evaluated using a PGE2 ELISA Kit (Enzo Life
Sciences, Farmingdale, NY, USA) according to the manufacturer’s instructions. This experi-
ment was performed twice, and PGE2 production was calculated based on a standard curve.

2.7. Phagocytosis Assay

The phagocytosis activity of RAW264.7 cells was evaluated using a neutral red uptake
method [26] with slight modifications. The cells were treated with transgenic rice seed
extract samples at 100 µg/mL or with 1 µg/mL of LPS. After 24 h of incubation, the culture
medium was removed, and the cells were washed with 1× phosphate-buffered saline (PBS).
Neutral red (0.075%; Sigma-Aldrich, St. Louis, MO, USA) was added to each well, and the
plate was incubated at room temperature for 2 h. The cells were then washed five times
with 1× PBS to remove excess dye and dried. Images of the cells were captured under
an IM-3 Series microscope (Optika, Bergamo, Italy). Subsequently, lysis solution [50%
EtOH:glacial acetic acid (1:1)] was added to each well. After 2 h of lysis, the absorbance
was measured at 540 nm.

2.8. Western Blot Assay

Cells were lysed on ice for 30 min with radioimmunoprecipitation assay buffer (Ge-
neall Biotechnology, Seoul, Korea) supplemented with 1× Protease Inhibitor Cocktail Kit 5
(Bio-Medical Science Co., Ltd., Seoul, Korea). Proteins were collected via centrifugation at
13,000 rpm and 4 ◦C for 30 min, and their concentrations were quantified using Bradford
reagent (Sigma-Aldrich, St. Louis, MO, USA) and compared with a bovine serum albumin
standard curve. An equal amount (30 µg) of protein sample from each treatment was sepa-
rated using 10% sodium dodecyl-sulfate polyacrylamide gel electrophoresis and transferred
to a nitrocellulose membrane. The membranes were incubated with antibodies specific
to the phosphorylation of NF-κB p-65, p38 MAPK, and c-Jun N-terminal protein kinase
(JNK) (Cell Signaling, Danvers, MA, USA). Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH; Santa Cruz Biotechnology, Dallas, TX, USA) was used as the protein loading
control. Protein signaling was detected using Clarity™ Western ECL Substrate (Bio-Rad,
Hercules, CA, USA), and the detected signals were imaged and quantified in terms of
intensity using a ChemiDoc Imaging System (Bio-Rad, Hercules, CA, USA).

2.9. PPD Quantification Using Liquid Chromatography–Mass Spectrometry (LC–MS)

Brown rice grain powder was mixed with 100% methanol and sonicated at 40 ◦C for
30 min. The mixture was then centrifuged at 13,000 rpm for 30 min, and the supernatant
was filtered through a SepPak C-18 Cartridge (Waters, Milford, MA, USA) before LC–MS
injection. The calibration curve was constructed using six calibration standard samples of
PPD (Figure 1) that included a concentration range of 0.01562–0.50000 ppm. The amount of
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PPD in each treatment group was quantified using the area under the curve comparison
with the calibration curve.
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2.10. Statistical Analysis

Data are shown as means ± standard deviations. Statistix (Version 8.1; Statistix,
Tallahassee, FL, USA) was used to conduct statistical analysis. Data were analyzed using
one-way analysis of variance followed by post hoc Duncan’s multiple range tests. The
differences between two groups were assessed using t-tests (p < 0.05).

3. Results
3.1. Viability and NO Production of LPS-Stimulated RAW264.7 Cells Incubated with Transgenic
Rice Seed Extracts

To evaluate the effects of the transgenic rice seed extracts on cell viability, RAW264.7 cells
were pretreated with various concentrations of each sample and stimulated with 1 µg/mL
of LPS. Compared with no treatment [nontreated (RPMI) cells], treatment with transgenic
rice seed extract (up to 100 µg/mL) did not exert cytotoxic effects on LPS-stimulated
RAW264.7 cells (Figure 2a). Moreover, the transgenic rice seed extracts exerted proliferative
effects on the cells at 10–100 µg/mL. Similar results were observed in the DMSO group;
however, no significant difference was observed between the aspirin and RPMI groups.
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Figure 2. Effects of transgenic rice seed extracts on LPS-stimulated RAW264.7 cells. Effects on (a) cell
viability and (b) NO production. The concentration of DMSO and aspirin were 0.1% and 200 µg/mL,
respectively. Data are presented as means ± standard deviations. Significant differences at p value of
<0.05 (*) were determined via comparisons with the RPMI group. Lowercase letters (a, b, c, and d)
indicate significant differences at p value of <0.05 among treatments at the same concentration.

The inhibition of LPS-induced NO production was assessed using the Griess reagent.
The increasing concentration of transgenic rice seed extract resulted in significant sup-
pression of NO production in RAW264.7 cells (Figure 2b). Treatment with sample #8 at
100 µg/mL led to the highest suppression of NO production among the transgenic rice
seed extracts.

3.2. Viability and NO Production of RAW264.7 Cells Incubated with Transgenic Rice
Seed Extracts

The cytotoxicity of transgenic rice seed extracts was also determined in RAW264.7
cells without LPS treatment (Figure 3). Treatments of each sample up to 100 µg/mL did
not cause cytotoxicity in the cells; compared with no treatment [nontreated (RPMI) group],
treatment with transgenic rice seed extracts was able to enhance cell proliferation (Figure 3a).
However, for samples #557, #564, and #595, cell viability declined when the cells were
treated with higher concentrations (50 and 100 µg/mL), although the cell viability of these
groups did not differ significantly from that observed in the RPMI group. Compared with
no treatment, treatment with DJ rice seed extract increased NO production (Figure 3b). In
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the group treated with transgenic rice seed extracts, NO production significantly increased
with the increase in the concentration of the extract.
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indicate significant differences at p value of <0.05 among treatments at the same concentration.

3.3. Effects on the mRNA Expression Levels of Immune-Associated Genes in LPS-Stimulated
RAW264.7 Cells

Treatment with LPS is known to induce the expression of proinflammatory
cytokines [27]. The mRNA levels of proinflammation-related genes were evaluated to
determine the anti-inflammatory effects of the transgenic rice seed extracts. Treatment
with the transgenic rice seed extracts significantly reduced the mRNA expression levels of
proinflammation biomarkers in LPS-stimulated RAW264.7 cells (Figure 4). Moreover, the
expression of the proinflammation-related genes was dramatically suppressed by pretreat-
ment with transgenic rice seed extracts at 100 µg/mL. Compared with the treatment with
DJ rice seed extracts, treatment with a low concentration of transgenic rice seed extracts
(10 µg/mL) did not lead to a significant difference in cytokine expressions. However,
compared with the treatment with DJ rice seed extracts, treatment with transgenic rice seed
extracts at 100 µg/mL significantly decreased the expression of immune-related genes.

3.4. Effects on the mRNA Expression Levels of Immune-Associated Genes in RAW264.7 Cells

Treatment with transgenic rice seed extracts increased the expression levels of immune-
associated genes in RAW264.7 cells. Treatment with 100 µg/mL of the transgenic rice seed
extracts significantly increased the expression levels of proinflammatory cytokines (IL-1β,
IL-6, and TNF-α) and inflammation biomarkers (COX-2 and iNOS) (Figure 5). Interestingly,
treatment with sample #8 at 100 µg/mL (not at 10 µg/mL) led to the highest increase in
the expression of TLR-4, which encodes for a key receptor involved in LPS recognition [28].
These results indicated that compared with lower concentrations of transgenic rice seed
extracts, higher concentrations led to a higher PPD production; a higher amount of PPD
exerted higher immunomodulatory effects. Therefore, treatments with transgenic rice seed
extracts at 100 µg/mL were used for further experiments.
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Figure 4. Effects of transgenic rice seed extracts on the expression of immune-associated genes in
LPS-stimulated RAW264.7 cells. The expression levels of (a) IL-1β, (b) IL-6, (c) COX-2, (d) iNOS,
(e) TLR-4, and (f) TNF-α expression levels are shown. The concentrations of DMSO and aspirin
were 0.1% and 200 µg/mL, respectively. Data are presented as means ± standard deviations. Low-
ercase letters (a, b, c, and d) indicate significant differences at p < 0.05 among treatments at the
same concentration.

3.5. Production of PGE2

PGE2 production increased when RAW264.7 cells were stimulated with LPS (Figure 6).
However, pretreatments with the transgenic rice seed extracts led to the suppression of LPS-
induced PGE2 production (Figure 6a). DJ rice seed extracts, treatment with transgenic rice
seed extracts led to a markedly higher inhibitory effect on PGE2 production, particularly
treatment with sample #8. No significant differences in PGE2 production were observed
among the RPMI, DMSO, and DJ groups (Figure 6b). However, compared with the treat-
ment with DJ rice seed extracts, treatment with transgenic rice seed extracts significantly
enhanced the production of PGE2 in RAW264.7 cells.
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Figure 5. Effects of transgenic rice seed extracts on the expression of immune-associated genes in
RAW264.7 cells without LPS stimulation. The expression levels of (a) IL-1β, (b) IL-6, (c) COX-2,
(d) iNOS, (e) TLR-4, and (f) TNF-α expression levels are shown. The concentrations of DMSO and
LPS were 0.1% and 1 µg/mL, respectively. Data are presented as means ± standard deviations.
Lowercase letters (a, b, c, and d) indicate significant differences at p < 0.05 among treatments at the
same concentration.

3.6. Phagocytosis Activity

Treatment with LPS significantly increased the phagocytosis activity in RAW264.7 cells.
Indeed, phagocytosis activity in the LPS-treated group was increased 2.80-fold compared
with that in the nontreated (RPMI) group (Figure 7). Treatment with DJ and transgenic
rice seed extracts resulted in the promotion of phagocytosis activity in RAW264.7 cells.
Compared with the treatment with DJ rice seed extracts, pretreatment with the transgenic
rice seed extracts increased phagocytosis activity in RAW264.7 cells, and the highest increase
in activity was observed following treatment with sample #8 (1.62-fold increase).
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Figure 6. Effects of transgenic rice seed extracts (100 µg/mL) on PGE2 production. Effects on
(a) RAW264.7 cells with LPS stimulation and (b) RAW264.7 cells without LPS stimulation. The
concentrations of DMSO and aspirin were 0.1% and 200 µg/mL, respectively. Data are presented as
means ± standard deviations. Lowercase letters (a, b, c, d, e, f, and g) indicate significant differences
at p < 0.05 among the treatments.
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cells. The concentrations of DMSO and LPS were 0.1% and 1 µg/mL, respectively. Data are presented
as means ± standard deviations. Lowercase letters (a, b, c, d, and e) indicate significant differences at
p < 0.05 among the treatments.

3.7. Pathway Signaling

To further assess the immunomodulatory effects of the transgenic rice seed extracts,
the production of NF-κB- and MAPK-associated proteins was evaluated using a western
blot assay. As shown in Figure 8, LPS activated the NF-κB and MAPK pathways via the
upregulation of phosphorylated (p)-NF-κB p65, -p38 MAPK, and -JNK. Treatment with
transgenic rice seed extracts significantly suppressed the production of LPS-induced phos-
phorylated proteins in LPS-stimulated RAW264.7 cells (Figure 8a). Moreover, compared
with no treatment [nontreated (RPMI) group], treatment with transgenic rice seed extracts
promoted the production of p-NF-κB p65, p-p38 MAPK, and p-JNK in RAW264.7 cells
without LPS stimulation (Figure 8b). Similar to the effects of LPS, the upregulation of
these proteins significantly activated the NF-κB and MAPK pathways. Treatment with
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sample #8 at 100 µg/mL led to the highest inhibition of p-NF-κB p65, p-p38 MAPK, and
p-JNK production in LPS-stimulated RAW264.7 cells and caused the highest increase in the
upregulation of these proteins in RAW264.7 cells without LPS treatment.
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MAPK signaling pathways. Effects on (a) LPS-stimulated RAW264.7 cells and (b) RAW264.7 cells
without LPS stimulation. The concentrations of DMSO and LPS were 0.1% and 1 µg/mL, respectively.
Data are presented as means ± standard deviations. Lowercase letters (a, b, c, d, e, f, and g) indicate
significant differences at p < 0.05 among the treatments.

3.8. LC–MS Analysis

The amount of PPD in the transgenic rice seeds was quantified using LC–MS. The
peak at the retention time of 7.344 min was the PPD signal used to identify PPD in the
standard chromatogram. The peak at the retention time of 7.334 min was observed in the
chromatograms of transgenic rice seed extracts but not in those of DJ extract (Figure 9a).
The amount of PPD in the transgenic rice seeds from line #8 was significantly higher than
that observed in the other transgenic lines (Figure 9b). The content of PPD in sample #8 was
7.28 ± 0.64 µg/g dry-weight, which was 3-fold higher than that in #595 and approximately
6-fold higher than that in #503, #557, and #564.
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line. Data are presented as means ± standard deviations. Lowercase letters (a, b, c, and d) indicate
significant differences at p < 0.05 among the treatments.

4. Discussion

Macrophages play important roles in protecting the body against harmful pathogens
by facilitating immune responses [8]. The activation of macrophages is associated with the
activation of immune-associated pathways. Activation of the MAPK and NF-κB signaling
pathways leads to the production of immune-related cytokines and mediators (e.g., NO,
iNOS, COX-2, PGE2, IL-1β, and IL-6) [29,30]. The release of NO directly damages foreign
microorganisms [31,32]. IL-1β is secreted by activated macrophages to increase the viability
of T cells and antigen-presenting activity [33]. TNF-α is a crucial element in the normal
immune responses associated with the pathogenesis of various inflammatory diseases and
enhancement of macrophage phagocytosis activity [34,35]. IL-6 promotes the differentiation
of T cells and B cells [36] and increases phagocytosis activity [37]. In the present study,
compared with no treatment, treatment with PPD-producing transgenic rice seed extracts
significantly increased the production of immunomodulatory factors, such as NO (Figure 3),
proinflammatory cytokines (Figure 5), and proinflammatory mediators (COX-2 and PGE2;
Figure 6b), in RAW264.7 cells. Moreover, treatment with 100 µg/mL of the transgenic rice
seed extracts increased phagocytosis activity in RAW264.7 cells (Figure 7). Treatment with
transgenic rice seed extracts enhanced the activation of macrophages through the MAPK
and NF-κB pathways by increasing the phosphorylation of p38 MAPK, JNK, and NF-κB
p65. Shin et al. [38] reported similar results, i.e., that heat-processed ginseng containing
ginsenosides activated the MAPK and NF-κB signaling pathways, causing an increase
in TNF-α and IL-6 production. Kim and Cho [21] reported that PPD upregulates the
production of proinflammatory cytokines by activating the NF-κB and MAPK signaling
pathways. In addition, PPD has been shown to affect the innate immune response by
increasing the phagocytic uptake of macrophages [21,38].
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LPS, which is a component of the outer membrane of gram-negative bacteria, is often
used to mimic the inflammatory condition [39–41]. LPS triggering the innate immune
response is recognized by TLRs. TLR-4 is reportedly an LPS receptor (see the review of
Beutler [42]), and several studies have demonstrated that LPS activates the NF-κB and
MAPK signaling pathways via TLR-4 [43–45]. In the present study, we showed that PPD-
producing transgenic rice can suppress the activation of LPS-induced NF-κB and MAPK
pathways in RAW264.7 cells. In the transgenic rice seed extract groups, the phosphorylation
of NF-κB, p38 MAPK, and JNK was decreased significantly compared with that in the LPS
treatment group (Figure 8a). This suppression led to the inhibition of NO (Figure 2) and
PGE2 production (Figure 6a) in LPS-stimulated RAW264.7 cells, and the expression levels of
immune-related mRNAs (IL-1β, IL-6, TNF-α, iNOS, and COX-2) were also downregulated in
the transgenic rice seed extract treatment groups (Figure 4). These results are supported by
the findings of Ahmmed et al. [46], who reported that PPD-type ginsenosides reduce NF-κB
signaling pathway activity. In addition, Kim et al. [47] demonstrated the protective effects
of PPD against LPS-induced inflammation, including the inhibition of NO production and
proinflammatory enzyme expression (iNOS and COX-2). Furthermore, PPD treatment has
also been shown to reduce the LPS-stimulated mRNA expression levels of IL-1β, IL-6, and
TNF-α by blocking the activation of the NF-κB signaling pathway [48]. Similarly, PPD-
enriched red ginseng extracts potently inhibit the mRNA expression of proinflammatory
genes and proinflammatory mediator genes without causing cytotoxicity (up to 20 µg/mL)
in LPS-stimulated RAW264.7 cells [49]. We found that treatment with sample #8 led to the
highest change in immune-boosting effects in RAW264.7 cells and anti-inflammatory effects
in LPS-stimulated RAW264.7 cells. This may be attributed to the high amount of PPD
produced in transgenic rice line #8 (Figure 9), which was much higher than that produced
in other transgenic rice lines. Consequently, the enhancement of immunity in RAW264.7
cells and inhibition of proinflammatory factors during LPS-induced inflammation are
considered to be caused by the accumulation of PPD in transgenic rice seeds.

5. Conclusions

Our study demonstrated the anti-inflammatory and immune-boosting effects of PPD-
producing transgenic rice seed extracts in RAW264.7 macrophage cells. Transgenic rice seed
extracts induced macrophage activation through TLR-4-associated activation of the NF-κB
and MAPK pathways in RAW264.7 cells. These activations led to a significant increase in
NO production, phagocytosis activity, proinflammatory cytokine expression, and PGE2
production in RAW264.7 cells treated with transgenic rice seed extracts compared with
their production in cells treated with normal rice seed extracts (DJ group). Moreover, the
LPS-induced activation of the NF-κB and MAPK pathways was suppressed by treatment
with the transgenic rice seed extracts. Depending on cell conditions, transgenic rice seeds
containing PPD act as both stimulatory and anti-inflammatory agents. We suggest that
PPD-producing transgenic rice could be developed and used as an immunomodulation
agent following further research.
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