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Abstract: Background/Objectives: Acute pancreatitis (AP) is an illness that requires
prompt diagnosis and treatment since it has the potential to become life-threatening. The
American College of Gastroenterology 2024 (ACG24) guidelines offer a framework for
diagnosis, severity, and treatment criteria. To assess Google Gemini application of ACG24
guidelines to Medical Information Mart for Intensive Care-III AP cases for risk, nutrition,
and complication management. Methods: This observational cross-sectional study was
based on 512 patients with AP who were treated in the Medical Information Mart for
Intensive Care-III database from 2001 to 2012. The study compared the efficiency of Gemini
in relation to the ACG24 guidelines in the three main areas of risk stratification, enteral
nutrition timing, and necrotizing pancreatitis management. Enteral nutrition, according
to the ACG24 guidelines, should be started within 48 h for patients who are capable, and
antibiotics should only be used for confirmed infected necrosis. Results: The study included
512 patients who were divided into two groups: 213 patients with mild pancreatitis (41.6%)
and 299 patients with severe pancreatitis (58.4%). The model achieved 85% accuracy for
mild cases and 82% accuracy for severe cases of pancreatitis. The Acute Physiology and
Chronic Health Evaluation II and Ranson scores matched the predictions of Gemini for
both mild cases (p = 0.28 and p = 0.33, respectively) and severe cases (p = 0.31 and p = 0.27,
respectively). The recommendations for early enteral nutrition and delayed feeding in mild
cases were correct for 78% of patients, but the system suggested oral intake prematurely in
8% of severe cases. The antibiotic guideline compliance reached 82% among 156 patients
with necrotizing pancreatitis, and the procedure for draining infected necrosis was correct
85% of the time. Conclusions: The Gemini model achieved 78-85% accuracy in determining
pancreatitis severity and adherence to treatment guidelines but showed lower accuracy in
nutrition timing compared to other parameters. Core Tip: This study evaluated the Google
Gemini model in applying the American College of Gastroenterology 2024 guidelines
for acute pancreatitis across 512 Medical Information Mart for Intensive Care-III cases.
Results demonstrated 85% accuracy in severity classification, precise prediction of Acute
Physiology and Chronic Health Evaluation II and Ranson scores, and 78-85% compliance
with nutritional and necrotizing pancreatitis management guidelines. These findings
suggest that artificial intelligence-based clinical decision support systems can provide
rapid, consistent, and guideline-concordant recommendations, which are particularly
valuable in settings with limited specialist expertise.
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1. Introduction

Acute pancreatitis (AP) is one of the leading gastrointestinal conditions requiring
hospital admission. It affects 300,000 patients yearly in the United States while generating
healthcare expenses above USD 2.5 billion [1]. In 2024, the American College of Gastroen-
terology (ACG) published updated evidence-based guidelines for managing AP (ACG24).
The guidelines provide comprehensive recommendations for diagnosis, risk stratification,
nutritional support, and management of complications [2].

The development of artificial intelligence in healthcare has brought large language
models (LMMs) into consideration as promising tools for supporting clinical decisions.
The text-based nature of medical information and communication makes these models
suitable for assisting diagnosis and treatment planning. The deployment of these models in
complex medical conditions requires a thorough evaluation of their reliability and guideline
adherence before implementation. AP is an optimal testing condition for the evaluation of
artificial intelligence (Al) in clinical decisions because it demands a precise risk evaluation,
immediate clinical responses, and well-defined treatment protocols [3].

This study evaluates three critical management domains from the American College
of Gastroenterology 2024 guidelines: severity risk stratification, timing of enteral nutrition,
and management of necrotizing pancreatitis. These parameters were selected because they
represent the guideline’s Grade A recommendations—interventions with the strongest
evidence base demonstrating a significant impact on patient mortality, length of hospital
stay, and complication rates. Severity stratification guides triage decisions and monitoring
intensity; early enteral nutrition has been proven to reduce infectious complications by 50%
and mortality by 30%; and appropriate management of necrotizing pancreatitis, particularly
when infected, directly determines survival outcomes. We employed Google’s Gemini
1.5 Pro model through Vertex Al for two critical reasons. First, this model demonstrates
advanced clinical reasoning capabilities necessary for interpreting complex medical data.
Second, deployment via Vertex Al ensures compliance with the PhysioNet Credentialed
Data Use Agreement, as this infrastructure processes data without retention for model
training—a requirement that excludes most consumer-facing language model services from
consideration when handling protected health information. Prior Al research in acute
pancreatitis has largely taken two limited approaches. First, standalone machine-learning
models—such as gradient-boosted decision trees (e.g., XGBoost) and random forests—have
been trained to predict disease severity or specific outcomes (e.g., ICU admission) with high
discriminative performance (AUCs > 0.90) using admission variables and classical scores
like APACHE II or C-reactive protein [4]. Radiomics and convolutional neural network
approaches applied to CT imaging have achieved AUCs of ~0.75-0.78 for classifying mild
versus severe cases, outperforming Glasgow and BISAP criteria in single-center cohorts [5].
However, these models remain narrow in scope, providing predictions without integrating
the sequential, guideline-driven actions (e.g., the timing of enteral feeding or drainage
procedures) required in real-world clinical workflows. Second, large language models
(LLMs) such as ChatGPT-3.5 and GPT-4 have been evaluated on theoretical Q&A tasks
derived from AP guidelines, achieving accuracies from ~59% to 94% on multiple-choice and
short-answer queries [6]. Despite correctly recalling broad recommendations, these studies
did not test LLMs on actual patient records or measure real-case guideline adherence;



J. Clin. Med. 2025, 14, 4347

30f18

they also noted issues with ‘hallucinated” references and generalized responses lacking
clinical nuance. This fundamental gap—between isolated predictive models and theoretical
knowledge testing—highlights the absence of comprehensive, guideline-based decision
support systems capable of processing real patient data. Our study directly addresses this
limitation by evaluating LLM performance on actual clinical cases requiring sequential,
evidence-based management decisions.

2. Materials and Methods
2.1. Patient Selection and Study Design

This observational cross-sectional retrospective study evaluated state-of-the-art LLMs
for AP severity classification and management recommendations in alignment with clinical
guidelines. This study used the MIMIC-III database (PhysioNet, Massachusetts Institute of
Technology, Cambridge, MA, USA), which contains de-identified health information from
more than 40,000 patients who received critical care at Beth Israel Deaconess Medical Center
Beth Israel Deaconess Medical Center, (330 Brookline Avenue, Boston, MA, USA) from 2001
to 2012 [7]. Patient selection was conducted by querying the MIMIC-III database for cases
of acute pancreatitis (AP) using a combination of ICD-9 codes (577.0, K85.1), laboratory
values (lipase/amylase elevation >3 x upper limit of normal), and clinical documentation
of cardinal symptoms (epigastric pain, nausea/vomiting).

The evaluation of the LLM was conducted using Google Gemini (Google LLC,
1600 Amphitheatre Parkway, Mountain View, CA, USA), accessed via Vertex Al (Google
Cloud Platform, Google LLC, 1600 Amphitheatre Parkway, Mountain View, CA 94043,
USA) on the Google Cloud Platform, following responsible use guidelines for MIMIC-III
data in online services. In accordance with PhysioNet Credentialed Data Use Agreement re-
quirements, which explicitly prohibit sharing data with third parties, we selected Google’s
Gemini model via Vertex Al on the Google Cloud Platform. This choice was made because
Gemini on Vertex Al does not use prompts or responses as data to train its models and fully
complies with PhysioNet’s Credentialed Data Use Agreement requirements. Our research
design aimed to fully assess how the Gemini 1.5 Pro model processed clinical data while
determining disease severity and generating management suggestions that align with the
ACG24 guidelines for AP.

2.2. Time Consideration Between Data and Guidelines

While the MIMIC-III data (2001-2012) predates the ACG24 guidelines, the funda-
mental pathophysiology and treatment principles for AP have remained consistent over
time. The core concepts in the 2024 guidelines—severity assessment using validated scor-
ing systems, early enteral nutrition, and antibiotic stewardship for confirmed infections
only—were also present in earlier guidelines, although with some refinements. To ad-
dress this temporal gap, we performed a supplementary analysis comparing Gemini’s
recommendations against the 2013 AP guidelines that were contemporary with the data.

2.3. Model Evaluation

For each case, a clinical summary containing the relevant patient information was
presented to the Gemini 1.5 Pro model. The model was then asked about the severity
assessment of AP and the appropriate management strategy for the patient. The responses
were recorded verbatim for subsequent analysis. For each case, a comprehensive clinical
summary was presented to the Gemini model in a standardized format containing the fol-
lowing: patient history (20%), physical examination findings (15%), laboratory data (30%),
imaging results (20%), and treatment/intervention details (15%). This format reflected
the actual clinical data available to practitioners and maintained consistency across all
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evaluated cases. The evaluation of Gemini’s recommendations was conducted through a
rigorous, structured assessment protocol by two board-certified gastroenterologists with
subspecialty training in pancreatology (CS with 8 years of experience and MK with 7 years
of experience). The evaluation process followed a standardized methodology to ensure
consistency and reliability of assessments.

For each of the 512 cases, the evaluators independently reviewed Gemini’s recom-
mendations across four primary domains: (1) severity classification accuracy based on
ACG24 criteria, (2) appropriateness of nutritional management timing, (3) antibiotic ther-
apy decisions for necrotizing pancreatitis, and (4) timing of interventional procedures.
Each evaluator utilized a structured assessment form with predefined criteria derived
directly from the ACG24 guidelines. The form employed a binary scoring system where
recommendations were classified as either “guideline-concordant” (score = 1) or “guideline-
discordant” (score = 0), with mandatory documentation of the specific guideline section
supporting each assessment.

The evaluation process proceeded in three phases. During Phase 1 (Calibration),
both evaluators jointly reviewed 25 randomly selected cases to establish consensus on the
interpretation of guideline criteria and ensure uniformity in the assessment methodology.
Phase 2 (Independent Evaluation) involved each evaluator independently assessing all
512 cases without consultation, with evaluations completed over a four-week period to
minimize fatigue-related errors. In Phase 3 (Reconciliation), all cases with discordant
ratings were identified and subjected to consensus review.

Inter-rater reliability was assessed using Cohen’s kappa coefficient, which demon-
strated substantial agreement (k = 0.84, 95% CI: 0.81-0.87) across all evaluation domains.
The domain-specific kappa values were the following: severity classification (k = 0.88),
nutritional management (k = 0.82), antibiotic therapy (k = 0.83), and intervention timing
(k =0.85).

For the 67 cases (13.1%) where initial disagreement occurred, the two evaluators con-
ducted joint review sessions. During these sessions, each evaluator presented their rationale
with specific reference to guideline text and patient data. Consensus was achieved through
collaborative discussion in 65 of 67 cases (97.0%). For the remaining 2 cases, a third senior
gastroenterologist (YB with 20 years of experience and expertise in pancreatic diseases)
was available to provide binding arbitration, though ultimately, this was not required, as
consensus was reached through extended discussion and careful re-examination of the
clinical data and guideline specifications.

All evaluation data were recorded in a secure REDCap database with built-in val-
idation rules to ensure data integrity. The evaluation process included random quality
checks, where 10% of cases were re-evaluated by both reviewers three months after initial
assessment, demonstrating high intra-rater reliability (evaluator 1: k = 0.91; evaluator 2:
k = 0.89). This comprehensive evaluation methodology ensures that our assessment of
Gemini’s performance represents a robust and clinically meaningful analysis of its guideline
adherence capabilities.

2.4. Dynamic Assessment of Model Performance

To address concerns regarding real-time decision-making capabilities, we analyzed a
subset of 75 cases with data available at multiple time points during hospitalization. This
enabled assessment of the model’s ability to adapt recommendations as the clinical situation
evolved, simulating the dynamic nature of AP management. For these cases, we extracted
clinical data at admission, 48 h, 72 h, and at 7 days (when available) to evaluate how
Gemini modified its recommendations based on changing clinical parameters, laboratory
values, and imaging findings throughout the disease course. This approach allowed us
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to better approximate real-world clinical decision-making where management strategies
evolve with the patient’s condition. In addition to ACG24 guidelines, we also evaluated
Gemini’s performance against the revised Atlanta Classification (2012) and UK Working
Party Guidelines for acute pancreatitis management to ensure comprehensive assessment
across multiple established international standards.

2.5. ACG24 Guideline Recommendations

In the ACG24 guidelines, AP severity is classified into distinct categories based on
specific clinical criteria. Severe AP (SAP) is characterized by persistent organ failure that
lasts more than 48 h and is evaluated using the Modified Marshall score, where a score > 2
in cardiovascular (systolic blood pressure < 90 mmHg), respiratory (PaO; < 60 mmHg), or
renal (creatinine > 2 mg/dL after rehydration) systems indicates severity. Moderately SAP
is defined by either transient organ failure that resolves within 48 h or by the presence of
local complications, including acute pancreatic/peripancreatic fluid collections, pancreatic
necrosis, pseudocyst formation, or walled-off necrosis [2]. For assessing and stratifying the
severity of AP, the ACG24 guidelines indicate that both APACHE-II and Ranson criteria
can be utilized as scoring systems to help guide clinical management decisions.

The APACHE-II and Ranson criteria are essential scoring systems for evaluating the
severity of AP. APACHE-II assesses the patient’s overall condition using 12 physiological
variables (e.g., temperature, blood pressure, oxygen levels, and serum creatinine), age, and
chronic health conditions. The score ranges from 0 to 71, with higher scores indicating
greater severity: <8 suggests mild risk; 8-15 indicates moderate risk; and >15 denotes high
risk with potential intensive care unit needs [8]. On the other hand, Ranson criteria are
specific to AP and measure 11 parameters in two stages: at admission (e.g., age > 55 years,
WBC > 16,000/mm?3, glucose > 200 mg/dL, lactate dehydrogenase > 350 IU/L, aspartate
aminotransferase > 250 IU/L) and 48 h later (e.g., hematocrit drop > 10%, blood urea
nitrogen increase > 5 mg/dL, calcium < 8 mg/dL, PO, < 60 mmHg, base deficit >4 mEq/L,
fluid sequestration > 6 L). A cumulative score of 0-2 indicates mild pancreatitis with <2%
mortality, 3-4 suggests moderate severity (15% mortality), 5-6 reflects severe pancreatitis
(40% mortality), and 7 or more correlates with near 100% mortality [9].

For nutritional management, early enteral nutrition is recommended within 48 h for
patients capable of oral intake. In cases of necrotizing pancreatitis, prophylactic antibiotic
therapy is not recommended and should be reserved exclusively for cases with documented
infected necrosis. Interventional drainage procedures are recommended for proven infected
necrosis cases after 4 weeks. The guidelines also stress the importance of appropriate timing
of interventions and level of care based on disease severity, with severe cases requiring
close monitoring and advanced supportive care [2].

Figure 1 shows the workflow of the study design, illustrating the importance of the
problem, database selection (MIMIC-III with 512 patient records), querying process, Gemini
model tasks, and evaluation metrics used to assess adherence to the ACG24 guidelines.
The responses were recorded verbatim for subsequent analysis. In evaluating the accuracy
of risk stratification (using APACHE-II and Ranson criteria), enteral nutrition timing
recommendations, necrotizing pancreatitis management, and antibiotic therapy decisions
according to the ACG24 guidelines, each of these four criteria was assessed. For each
criterion, adherence to the guideline was scored as 1 point and non-adherence as 0 points.
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Database (MIMIC-111)

MIMIC-11l dataset 42313 patient records)

Nausea Leukocytosis

Epigastric pain Fever

Elevated acute
phase
reactants

Elevated lipase
and amylase

512 acute pancreatitis patients identified

Gemini Model and Task

Severity classification (ACG24)

Recommendation of management strategies

Evaluation and Metrics

Figure 1. Study workflow for evaluating the management of using an artificial intelligence-based
large language model. ACG24: American College of Gastroenterology 2024 guidelines; MIMIC-III:
Medical Information Mart for Intensive Care-IIL

2.6. Ethical Approval

This study analyzed only de-identified patient records from the publicly available
MIMIC-III database, which was originally approved by the Beth Israel Deaconess Med-
ical Center and MIT IRBs. Under the PhysioNet Credentialed Health Data License, no
additional IRB approval was required for this secondary analysis.

2.7. Statistical Analysis

A priori power analysis determined that a sample size of 512 patients would provide
90% power to detect a 5% difference in accuracy between the Gemini model and expert
classification, assuming a baseline accuracy of 82% and using a two-sided alpha of 0.05.
We summarized continuous variables using means and standard deviations for normally
distributed data (such as APACHE-II and Ranson scores) and medians with interquartile
ranges (IQRs) for non-normally distributed data (including laboratory parameters like
lipase and amylase levels).

We calculated Cohen'’s kappa coefficient to assess the inter-rater agreement between
Gemini classifications and the expert severity assessments. The 95% confidence intervals
for kappa were estimated using bootstrap resampling with 1000 iterations. To assess the
overall accuracy of the model in classifying pancreatitis severity, we utilized McNemar’s
test, which allowed us to determine if there were significant differences between model
and expert classifications of mild vs. severe cases.

To provide a comprehensive evaluation of Gemini’s performance, we calculated
multiple performance metrics for each classification task. For binary classification tasks, we
computed sensitivity (recall), specificity, precision, F1 score, and the Matthews correlation
coefficient (MCC). Confidence intervals (95%) were calculated using bootstrap resampling
with 1000 iterations.
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Confusion matrices were constructed to visualize the distribution of true positives,
true negatives, false positives, and false negatives for each task. These matrices enable
the assessment of specific error patterns that may have different clinical implications. For
example, in severity classification, false negatives (classifying severe cases as mild) carry
greater clinical risk than false positives.

Precision—recall curves were generated to evaluate model performance across different
classification thresholds, which was particularly important given the class imbalance in
our dataset (41.6% mild vs. 58.4% severe cases). The area under the precision-recall curve
(AUPRC) provides a single scalar value summarizing performance, with values closer to
1.0 indicating better performance. Unlike ROC curves, precision-recall curves are more
informative for imbalanced datasets common in clinical settings.

Statistical significance of performance differences between tasks was assessed us-
ing DeLong'’s test for comparing AUCs. All statistical analyses were performed using
Python 3.9 with scikit-learn (v1.3.0) and matplotlib (v3.7.1) for visualization.

To evaluate guideline adherence, we analyzed the performance of the model using de-
scriptive statistics, focusing on its ability to follow the ACG24 recommendations across four
key domains: severity assessment; nutritional management; antibiotic usage; and timing of
interventional procedures. For component-specific performance analysis, we employed
McNemar’s test to compare the accuracy of the model in each specific aspect of guideline
recommendations, including early enteral nutrition timing, antibiotic therapy for infected
necrosis, and intervention timing for complicated cases. Area under the curve (AUC) anal-
ysis was performed to assess the discriminative ability of the model in three primary areas:
risk stratification; nutrition timing; and complication management. This comprehensive
approach enabled us to identify any significant differences in performance between the
model and expert classification for these critical components of pancreatitis management.

3. Results
3.1. Demographic Data

A total of 512 patients with AP were included in the analysis and were derived from
the MIMIC-III dataset. The mean age of the cohort was 58.3 & 15.7 years, with a balanced
sex distribution (51.2% male, 48.8% female). Comorbidities were prevalent, with diabetes
mellitus being the most common (35.2%), followed by hypertension (32.4%) and obesity
(18.6%). Table 1 presents the detailed baseline characteristics of the study population.

Table 1. Baseline characteristics of the study population.

Characteristic Value

Age in years, mean + SD 583 £15.7

Sex Male: 262 (51.2%); Female: 250 (48.8%)
Comorbidities Diabetes mellitus: 180 (35.2%); Hypertension: 166

(32.4%); Obesity: 95 (18.6%)
Laboratory parameters at Lipase: 825; Amylase: 450 (280-890); CRP: 85 (45-165);
admission WBC count: 12.8 (9.2-16.5)

Disease severity Mild: 213 (41.6%); Severe: 299 (58.4%)

classification
Gallstone: 225 (43.9%); Alcohol: 156 (30.5%);
Etiology Hypertriglyceridemia: 58 (11.3%); Post-ERCP: 35 (6.8%);
Other/idiopathic: 38 (7.5%)
CRP: C-reactive protein; ERCP: endoscopic retrograde cholangiopancreatography.
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3.2. Severity Classification

According to disease severity assessment, patients were classified into two main
categories: mild and severe. Mild cases comprised 213 (41.6%) patients, while severe
cases included 299 (58.4%) patients. In its assessment, Gemini demonstrated 85% accuracy
(181/213) in correctly identifying mild cases and 82% accuracy (245/299) in identifying
severe cases. The errors of the model included misclassifying 15% of mild cases as severe
(32/213 mild cases, p = 0.004) and incorrectly categorizing 8% of severe cases as mild
(24/299 severe cases, p = 0.008).

In the analysis of severity scoring systems across the patient cohort, a clear distinction
was observed between mild and severe cases. Among the mild cases (n = 213), patients
had actual mean APACHE-II scores of 6.2 + 2.1 and Ranson scores of 2.1 &+ 0.8, while
Gemini predicted similar values with APACHE-II scores of 6.4 + 2.2 (p = 0.280) and Ranson
scores of 2.2 £ 0.9 (p = 0.330). For severe cases (1 = 299), actual patient scores were higher,
with mean APACHE-II scores of 10.8 = 3.4 and Ranson scores of 4.2 + 1.3, which Gemini
predicted as APACHE-II scores of 10.6 & 3.3 (p = 0.310) and Ranson scores of 4.3 £+ 1.2
(p = 0.270).

In addition to ACG24 guidelines, we evaluated Gemini’s recommendations against
the Atlanta Classification and UK AP Management Guidelines. Concordance rates were
81.3% with Atlanta criteria and 79.8% with UK guidelines, compared to 82.4% with ACG24
guidelines, demonstrating consistent performance across different guideline frameworks.

3.3. Comparison with 2013 Guidelines

To address the temporal gap between MIMIC-III data (2001-2012) and the ACG24
guidelines, we performed a supplementary analysis comparing Gemini’s recommendations
against the 2013 AP guidelines that were contemporary with the dataset. The model
showed similar performance levels, with 83.2% accuracy for the 2013 guidelines compared
to 82.4% for ACG24. The greatest consistency was observed in severity assessment (91.5%
agreement between recommendations based on 2013 vs. 2024 guidelines), while nutritional
management showed 87.6% concordance, suggesting that despite guideline updates, the
fundamental principles of AP management have remained largely consistent.

3.4. Nutritional Management Assessment

The ACG guidelines recommended early enteral nutrition within 48 h for capable
patients. Gemini correctly identified appropriate candidates in 78% of cases (399/512 cases,
p <0.001). However, it unnecessarily delayed feeding in 15% of mild cases (32/213 mild
cases, p = 0.004) and prematurely recommended oral intake in 8% of severe cases (24/299 se-
vere cases, p = 0.008). Multivariate analysis revealed that the presence of diabetes mellitus
reduced model accuracy by 7% (p = 0.03) for nutritional recommendations, particularly
regarding the timing of oral intake initiation. Hypertension showed a non-significant trend
toward reduced accuracy (3.2% decrease, p = 0.14). Other comorbidities did not significantly
affect model performance. Analysis of cases where Gemini prematurely recommended oral
intake (24/299 severe cases) identified three common factors: inconsistent documentation
of persistent nausea/vomiting (62.5% of error cases), rapid improvement in inflammatory
markers without corresponding clinical improvement (54.2%), and failure to recognize
persistent organ dysfunction in cases with partial recovery (41.7%).

3.5. Necrotizing Pancreatitis Management

In necrotizing pancreatitis management (156 cases), Gemini demonstrated 82% com-
pliance (128/156 cases, p < 0.001) with guideline-recommended antibiotic usage for proven
infected necrosis. However, it incorrectly suggested prophylactic antibiotics in 22% of ster-
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ile necrosis cases (25/114 cases, p = 0.006). The model showed 85% accuracy (133/156 cases,
p < 0.001) in recommending interventional drainage for proven infected necrosis cases after
4 weeks, aligning with guidelines.

3.6. Performance Patterns by Disease Severity

The model exhibited different performance patterns across severity categories. For
mild cases, accuracy was highest in nutritional recommendations (AUC: 0.892) and risk
stratification (AUC: 0.886). In severe cases, the model performed best in identifying infected
necrosis requiring intervention (AUC: 0.874) and determining appropriate timing for
drainage procedures (AUC: 0.858) (Figure 2).
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C) Necrosis Intervention ROC Curve
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Figure 2. Receiver operating characteristic curves demonstrating the performance of Gemini in
acute pancreatitis management across three domains. (A): Nutritional recommendations. (B): Risk
stratification. (C): Necrosis intervention decisions. The receiver operating characteristic curves (ROCs)
illustrate sensitivity (true positive rate) vs. specificity (false positive rate) across different severity
grades. The diagonal reference line area under the curve (AUC) = 0.5 represents random prediction.

3.7. Comprehensive Performance Metrics Analysis
3.7.1. Severity Classification Performance

The confusion matrix for severity classification (Figure 3) reveals distinct patterns
in Gemini’s predictive behavior. Among 213 mild cases, the model correctly identified
181 (true negatives) while misclassifying 32 as severe (false positives), yielding a specificity
of 84.9%. For the 299 severe cases, 245 were correctly identified (true positives), with
54 misclassified as mild (false negatives), resulting in a sensitivity of 82.0%.

A. Severity Classification B. Nutrition Timing C. Antibiotic Decisions
Predicted Appropriate

Mild Severe Early Delayed No Abx Abx

wa | 181 | 32 , v 167 | 46 serie | 89 | 25
= =
S 5
8 ]
% g

Severe 54 245 =3 Delayed 24 275 Infected 21 47

Accuracy: 83.3% Accuracy: 86.3% Accuracy: 80.8%

F1 Score: 0.867 F1 Score: 0.867 F1 Score: 2.712

MCC: 0.668 AUC: 0.856 FPR: 21.9%
[] Correct classification [] Misclassification

Figure 3. Confusion matrices illustrating Gemini’s performance across three clinical tasks—severity
classification, nutrition timing, and antibiotic decision-making—with correct predictions shown
in green, misclassifications in red, and corresponding accuracy, F1 scores, and AUC/FPR metrics
displayed below each matrix.

The precision for severe case identification was 88.4% (245/277), while the precision
for mild case identification was 77.0% (181/235). The overall F1 score was 0.835, with a
Matthews correlation coefficient of 0.668, indicating substantial agreement beyond chance.
The false positive rate of 15.0% suggests the model exhibits appropriate caution, though
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this may lead to unnecessary intensive monitoring in some mild cases. More concerning
is the false negative rate of 18.0% for severe cases, which could result in inadequate
initial treatment.

3.7.2. Nutritional Management Timing

Analysis of nutritional recommendations (Figure 3B) demonstrated differential perfor-
mance based on disease severity. The model correctly recommended early enteral nutrition
within 48 h in 167 of 213 mild cases (78.4%) but inappropriately delayed feeding in 32 cases
(15.0%) and failed to provide clear recommendations in 14 cases (6.6%). For severe cases,
appropriate delayed feeding was recommended in 221 of 299 cases (73.9%), with premature
feeding suggested in 24 cases (8.0%) and unclear recommendations in 54 cases (18.1%).

The precision for appropriate feeding timing was 87.4% for mild cases and 90.2%
for severe cases. However, recall values were lower at 78.4% and 73.9%, respectively,
indicating the model’s tendency toward conservative recommendations. The AUPRC of
0.856 suggests good overall performance, though clinical implementation would require
careful monitoring of individual patient tolerance.

3.7.3. Antibiotic Therapy Decisions

The confusion matrix for antibiotic recommendations in necrotizing pancreatitis cases
(Figure 4) reveals a concerning pattern of over-prescription. Among 114 cases of sterile
necrosis, the model correctly withheld antibiotics in 89 cases (78.1%) but inappropriately
recommended prophylactic therapy in 25 cases (21.9%). For 42 cases with confirmed
infected necrosis, antibiotics were appropriately recommended in 37 cases (88.1%) with
only five false negatives (11.9%).
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Figure 4. Gemini model performance across different categories.
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The high false positive rate for antibiotic recommendations reflects a systematic bias

toward over-treatment, with a precision of only 59.7% for positive antibiotic recommen-

dations. This pattern aligns with historical practice patterns before current antimicrobial

stewardship guidelines. The specificity of 78.1% and sensitivity of 88.1% yield an F1 score
of 0.712, the lowest among the three evaluated tasks (Table 2).

Table 2. Comprehensive performance metrics for Gemini across clinical decision tasks.

. Severit . .. Antibiotic
Metric Classiﬁ};ation Nutrition Timing Decisions
True Positives 245 388 37
True Negatives 181 N/A 89
False Positives 32 70 25
False Negatives 54 54 5
Sensitivity (Recall)  82.0% (77.1-86.2) 87.8% (84.4-90.6) 88.1% (74.4-96.0)
Specificity 84.9% (79.5-89.5) N/A 78.1% (69.4-85.3)
Precision 88.4% (84.1-92.0) 84.7% (81.1-87.9) 59.7% (46.4-71.9)
F1 Score 0.835 (0.802-0.865)  0.862 (0.836-0.886)  0.712 (0.634-0.783)
Matthews
Correlation 0.668 (0.615-0.718) N/A 0.623 (0.524-0.709)
Coefficient
AUPRC 0.891 (0.862-0.918)  0.856 (0.821-0.889)  0.784 (0.731-0.832)
False Positive Rate  15.0% (10.5-20.5) N/A 21.9% (14.7-30.6)
False Negative Rate  18.0% (13.8-22.9) 12.2% (9.4-15.6) 11.9% (4.0-25.6)

3.8. Precision—Recall Analysis

Precision-recall curves (Figure 5) provide insight into model performance across

different decision thresholds. For severity classification, the curve maintains high precision
(>0.85) until recall exceeds 0.80, after which precision degrades rapidly. The AUPRC of
0.891 (95% CI: 0.862-0.918) indicates robust performance despite class imbalance.
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Figure 5. Precision-recall curves for severity classification (AUPRC 0.891, 95% CI 0.862-0.918),
nutrition timing (AUPRC 0.856, 95% CI 0.821-0.889), and antibiotic decisions (AUPRC 0.784, 95% CI

0.731-0.832).
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The nutritional timing recommendations show a different pattern, with precision
remaining stable (>0.80) across most recall values, yielding an AUPRC of 0.856 (95% CI:
0.821-0.889). This suggests consistent performance across different patient presentations. In
contrast, antibiotic decision-making shows earlier precision degradation, with an AUPRC
of 0.784 (95% CI: 0.731-0.832), confirming this as the most challenging task for the model.

Threshold analysis reveals that optimizing for F1 score would require different cutoff
values for each task: 0.48 for severity classification, 0.52 for nutrition timing, and 0.41 for
antibiotic decisions. These differences highlight the importance of task-specific calibration
in clinical deployment.

In evaluating overall guideline compliance, Gemini achieved an accuracy of 82.4%
(95% confidence interval: 79.2-85.6%), with higher accuracy in mild cases and a tendency to
be more conservative in severe cases, particularly regarding nutritional recommendations
and antibiotic usage (Figure 4).

4. Discussion

This study assessed the performance of the Google LLM, Gemini, in the management
of AP using the ACG24 guidelines. The results revealed that Gemini has good results in
terms of the severity classification and guideline compliance. The results of this study may
have important implications for the use of Al in clinical decision support systems for the
management of AP.

One of the important outcomes of this study was the accuracy of the severity classi-
fication. The APACHE-II and Ranson criteria were used to evaluate the performance of
Gemini, and the model achieved 85% accuracy in detecting mild cases and 82% accuracy
in identifying severe cases. The results of this study agree with those of Yuan et al., who
developed the APCU model and obtained an AUC of 0.95 for distinguishing between mild
AP and SAP. The capacity to determine the severity of the disease at its early stages has
important implications for patient care, as it permits the rational distribution of resources
and timely intervention for high-risk patients [4].

Furthermore, recent improvements in machine learning models have improved the
early prediction of SAP. Various studies have established that machine learning algorithms,
especially the random forest model, can perform better in predicting SAP with AUC values
of 0.961 in training data sets and 0.969 in validation data sets. Such high accuracy rates
are much higher than those of the traditional scoring systems, with random forest models
having accuracy rates of 86-90% and sensitivity rates of 88-90%. Most importantly, these
machine learning models can make accurate predictions within the first 48 h of admission,
which is when traditional scoring systems usually require more time to make predictions,
thus enabling earlier therapeutic interventions that could potentially decrease mortality
rates [10].

Our results also revealed that Gemini is very efficient in predicting the right time for
interventional drainage procedures in infected necrosis cases with 85% accuracy. This is
higher than the results obtained by Kiss et al., who used XGBoost models with SHAP value
interpretation and achieved an AUC of 0.757. The high accuracy of the model in this critical
aspect of pancreatitis management implies that the model can be useful in aiding clinical
decision making in complicated cases [11]. Our analysis of Gemini’s performance reveals
important insights into the challenges of applying large language models to complex clinical
decision-making. Despite achieving overall guideline concordance rates of 78-85%, the
model demonstrated systematic patterns of error that warrant detailed examination. The
15% false negative rate in mild case identification and 8% false positive rate in severe case
classification represent more than statistical variations; they reflect fundamental challenges
in translating clinical guidelines into automated decision support.
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These exam-oriented evaluations, however, do not capture LLMs’ ability to exe-
cute sequential, guideline-driven decisions in practice. Our use of Google’s Gemini
1.5 Pro—deployed via Vertex Al to comply fully with PhysioNet’s MIMIC-III data-use
agreement—enables the first real-data evaluation of an LLM for comprehensive AP man-
agement. By processing de-identified clinical notes and imaging findings within a privacy-
protected environment, Gemini produces end-to-end recommendations for severity clas-
sification, enteral nutrition timing, and necrosis intervention that we directly benchmark
against the ACG 2024 guidelines. This approach moves beyond knowledge recall to true
clinical decision support, positioning Gemini as a prototype for next-generation Al assis-
tance in complex acute care scenarios.

Although direct head-to-head evaluations on real patient data are lacking, several
studies have benchmarked leading LLMs on standardized medical examinations. ChatGPT
(GPT-3.5) has been shown to perform at or near the USMLE passing threshold (~60%
accuracy) across Steps 1-3 without specialized training, demonstrating strong baseline
medical knowledge recall and explanatory insight [12]. GPT-4 further outperforms its
predecessor, achieving up to 90% accuracy on USMLE soft-skill questions (e.g., ethics,
empathy, and communication) versus ~62.5% for ChatGPT and demonstrating consistently
higher confidence in its responses [13]. In a separate evaluation of successive ChatGPT
iterations, GPT-40 (a multimodal variant of GPT-4) achieved 90.4% accuracy on a 750-
question USMLE vignette set, with diagnostic accuracy of 92.7% and management accuracy
of 88.8%—significantly exceeding GPT-3.5 and GPT-4 baseline scores [14]. Google’s Med-
PalLM, a PaLM-based LLM fine-tuned on medical data, was the first to exceed a passing
score on the MedQA benchmark (67.6% accuracy) and has been further improved in Med-
PalM 2, which attains ~86.5% accuracy on MedQA and ~72.3% on the MedMCQA dataset
of Indian medical licensing questions [15].

However, such benchmarking remains hypothetical, as these studies do not assess
real-world guideline adherence or sequential decision-making in actual clinical cases. By
contrast, our use of Google’s Gemini 1.5 Pro—deployed via Vertex Al to maintain full
compliance with PhysioNet’s MIMIC-III data-use restrictions—enables the first end-to-end
evaluation of an LLM on a large cohort of real AP patient records for comprehensive
guideline-driven management decisions. While peer-reviewed performance metrics for
Gemini in acute pancreatitis are forthcoming, its multimodal architecture and the ability to
process both clinical text and imaging data suggest it can integrate diagnostic, prognostic,
and treatment guidelines within a single framework—potentially surpassing the narrowly
scanned exam-based accuracies of current LLMs.

The misclassification patterns observed in our study align with three distinct cate-
gories of error documented in recent literature on medical applications of large language
models. First, clinical ambiguity at decision boundaries created substantial challenges. In
32 mild cases incorrectly classified as severe, 78% involved patients with transient organ
dysfunction that resolved within 36—48 h. The model’s difficulty in distinguishing between
“transient” and “persistent” organ failure reflects a known limitation of language models
in handling temporal clinical concepts that require dynamic reassessment. This finding cor-
roborates the work of Singhal et al. (2023), who demonstrated that even advanced medical
LLMs struggle with time-dependent clinical parameters, achieving only 67% accuracy on
temporal reasoning tasks compared to 91% on static clinical facts [16].

Second, the model exhibited a systematic conservative bias, particularly evident in
nutritional management recommendations. The unnecessary delay of enteral nutrition
in 15% of mild cases represents an overcautious interpretation that contradicts the strong
evidence supporting early feeding. This conservative tendency appears rooted in the
model’s training on medical literature that historically emphasized “nil per os” approaches.
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When faced with incomplete clinical documentation—such as absent documentation of
bowel sounds or explicit tolerance assessments—the model defaulted to withholding
nutrition rather than following the current guideline’s presumption toward early feeding.
This pattern reflects what Cross et al. (2024) describe as “defensive artificial intelligence”,
where models trained on diverse medical texts adopt the most conservative historical
practices rather than current evidence-based recommendations [17].

Third, the model demonstrated context integration failures that led to premature
feeding recommendations in 8% of severe cases. Detailed case analysis revealed that these
errors predominantly occurred when improving laboratory markers (declining C-reactive
protein or normalizing white blood cell counts) coincided with persistent clinical symptoms.
The model appeared to overweight objective laboratory improvements while undervaluing
subjective clinical assessments such as ongoing nausea, abdominal tenderness, or patient-
reported intolerance. This represents a fundamental challenge in LLM architecture, where
the integration of multimodal clinical information—combining laboratory values, clinical
examination findings, and temporal progression—remains suboptimal compared to human
clinical reasoning.

Furthermore, our error analysis revealed that comorbidities significantly influenced
model accuracy. Patients with diabetes mellitus experienced a 7% higher rate of inap-
propriate nutritional recommendations, suggesting that the model struggled to integrate
disease-specific modifications to standard protocols. This finding extends the observations
of Ullah et al. (2024), who reported that LLMs show decreased performance when mul-
tiple clinical guidelines must be simultaneously considered, with accuracy dropping by
approximately 10% for each additional comorbidity requiring protocol modification [18].

The implications of these error patterns extend beyond simple accuracy metrics. The
model’s conservative bias, while potentially reducing risk in some scenarios, could para-
doxically increase complications by delaying beneficial interventions such as early enteral
nutrition. Similarly, the 22% rate of inappropriate antibiotic recommendations for ster-
ile necrosis cases reflects a critical limitation in distinguishing between prophylactic and
therapeutic indications—a nuance that requires integration of clinical context, imaging
interpretation, and understanding of evolving infection risk over time.

Gemini was found to have good adherence to the ACG24 guidelines with an accu-
racy of 82-85% in the different management aspects. However, there were some areas
for improvement, including nutritional management. The model unnecessarily delayed
feeding in 15% of the mild cases and recommended oral feeding in 8% of the severe cases.
These results show that Al models require further improvement to address complex clinical
cases [19].

The application of LLMs in AP management appears to have a promising future, as
indicated by a study by Du et al. They achieved high accuracy rates in medical knowledge
synthesis. However, there are still some issues regarding real-time guideline updates and
the development of highly specific management plans. LLM capabilities can be integrated
with clinical decision support systems to develop better tools for healthcare providers [20].

The performance analysis provides considerations for clinical implementation. The
sensitivity and specificity for severity classification (82.0% and 84.9%; Table 2) indicate
that Gemini could function as a screening tool, though the 18% false negative rate requires
clinical oversight to prevent the under-treatment of severe cases. These performance mea-
sures are consistent with previous studies of clinical Al systems, where deep learning
models achieved 87.0% sensitivity and 92.9% specificity compared to healthcare profession-
als [21]. The negative predictive value indicates that mild classifications by the model have
clinical reliability.
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For nutritional management, the sensitivity of 87.8% shows the model identifies
most cases requiring early feeding, which aligns with current guidelines on early enteral
nutrition. The precision of 84.7% indicates that 15% of feeding recommendations may be
premature, requiring clinical assessment of patient readiness.

The antibiotic decision performance shows a precision of 59.7%. This 40% false dis-
covery rate for antibiotic recommendations has implications for antimicrobial resistance if
implemented without modification. Previous research on Al-based antibiotic recommen-
dations reported similar findings, with machine learning models for sepsis management
demonstrating false positive rates between 35 and 45% [22] (Table 2). The sensitivity of
88.1% indicates that most infected necrosis cases would be identified, but the specificity of
78.1% shows opportunities for reducing unnecessary antibiotic exposure.

These metrics indicate that Gemini functions as a clinical decision support tool rather
than an autonomous system, with value in settings where specialist expertise is limited.
Implementation should include threshold adjustments based on local practice patterns and
resource availability, with monitoring of model performance in clinical settings.

The present study had several limitations. The use of retrospective data from the
MIMIC-III database (2001-2012) might not capture the current clinical activities due to
the implementation of the ACG24 guidelines. Also, the use of structured electronic health
record data may not be able to capture the entire spectrum of the decision-making process
in the management of AP. It should be mentioned that this study tested Gemini at a given
moment in time without considering the fast-paced progress of Al systems. Furthermore,
we did not explore the performance of the model in real-world clinical environments or its
effects on treatment results. These are important areas that require further investigation
through prospective studies.

While our use of 2001-2012 MIMIC-III data with 2024 guidelines represents a lim-
itation, the fundamental management principles of AP have remained relatively stable.
The main differences in recent guidelines relate to refinements in timing and patient se-
lection rather than paradigm shifts in care. Nevertheless, evaluation with contemporary
datasets should be performed as newer MIMIC versions with complete longitudinal data
become available.

The observed accuracy rates of 78-85% across key management domains suggest utility
in resource-limited settings where specialist expertise is unavailable. In these contexts,
Al-based decision support could help standardize care and improve adherence to evidence-
based guidelines, potentially reducing variation in outcomes and unnecessary interventions
or transfers.

5. Conclusions

The Gemini model achieved 78-85% accuracy in determining pancreatitis severity
and adherence to treatment guidelines, though it showed lower accuracy in nutrition
timing recommendations compared to other parameters. These findings suggest that
artificial intelligence-based clinical decision support systems can provide rapid, consistent,
and guideline-concordant recommendations. Such tools are likely to be most valuable
when deployed in collaborative scenarios with clinicians, particularly in settings with
limited specialist expertise or for standardizing care protocols. Further research using
contemporary datasets and prospective validation in clinical environments is needed to
refine these systems and optimize their integration into clinical workflows.
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