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Abstract

Background: Multi-drug resistance in microorganisms is a serious problem at national as well as at a global level.
Many researches have suggested alternatives to antibiotics with minimal or no major side effects. LAB is one of the
most human-friendly probiotic strains known to mankind from times immemorial. With the objective to deal with
progressing antibiotic resistance among microorganisms, the present work demonstrates the inhibitory activity of
LAB consortium against MDR clinical isolates.

Methods: Total of nine hospital isolates of staphylococci were obtained and distinguished as S.aureus and
coagulase-negative Staphylococcus (CoNS) based on their ability to ferment mannitol and form clumping with
citrated plasma. All the test organisms were tested for antibiotic sensitivity with HiMedia (India) Octadisc Combi 92.
Sets of L .plantarum, L .acidophilus and L.casei var. rhamnosus were prepared and tested against a standard culture
of S.aureus NCIM 2129 by agar well diffusion method. To identify the primary source of substances responsible for
inhibitory action, whole broth, cell-free supernatant, and cell lysate was prepared from the above-mentioned set.
These were tested for their inhibitory action initially against standard S.aureus NCIM 2127, followed by clinical
isolates.

Results: The antibiotic sensitivity profile revealed that all clinical isolates were multi-drug resistant. The maximum
inhibitory potential was seen in a combination of the three LAB in the ratio 1:1:1. Highest antagonistic activity was
observed with whole broth and cell lysate of LAB consortium. In liquid broth assay, the cell lysate of LAB
consortium astoundingly exhibited up to 85% inhibition of multi-drug resistant Staphylococcus isolates.

Conclusions: Our results suggest antagonistic role of LAB metabolites against methicillin resistant staphylococci.
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Background
Extensive use of antibiotics, even to cure a common
cold, has led to the heightened development of resist-
ance towards a variety of drugs amongst pathogens all
around the globe [1]. Staphylococci are Gram-positive,
clump-forming, salt tolerant and often hemolytic
pathogens, responsible for numerous infections like skin
lesions, abscesses, osteomyelitis, endocarditis, furunculosis,
urinary tract infections, toxic shock syndrome, and food
poisoning. They are the leading cause of nosocomially

acquired infections like catheter-associated bacteremia and
necrotizing pneumonia [2]. Staphylococcus species can be
classified as coagulase-positive staphylococci (CoPS), and
the coagulase-negative staphylococci (CoNS). CoPS mainly
represent Staphylococcus aureus, an opportunistic micro-
organism with many potential virulence factors like surface
proteins and other agents that promote colonization of
host tissues, inhibit phagocytosis and damage host tissues
causing disease symptoms. CoNS represent diverse species
of staphylococci, like S. epidermis, S. haemolyticus, S. lug-
dunensis, and S. saprophyticus, with normally fewer viru-
lence factors but an ability to form biofilms on implanted
devices causing severe issues [3].* Correspondence: neeta.bhadekar@gmail.com
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Staphylococci are well known for their ability to become
resistant to antibiotics [4, 5], inclusive of second and third
line drugs [6, 7]. Methicillin-Resistant Staphylococcus aur-
eus (MRSA) is a perilous group of the bacterial pathogen
which combines virulence, antibiotic/ drug-resistance, and
a heavy rate of transfer. These infectious pathogens not
only do increase treatment cost tremendously but also
contribute to increased mortality and morbidity rates [8].
Limited established treatment options exist for such inva-
sive infections [9]. Multiple drug resistance in Staphylo-
cocci is a major and growing problem and is now
subdivided into hospital-acquired MRSA (HA-MRSA)
and community-acquired MRSA (CA-MRSA) [10]. The
epidemiology of MRSA is constantly changing, resulting
in a variation in drug-resistance patterns throughout re-
gions and countries [11]. Vancomycin once represented
the paragon to treat such invasive infections. However, an
increase in reports of in vitro resistance to vancomycin
and clinical failures with such invasive infection accentu-
ated the need to develop alternative therapies for treat-
ment [10–12].
Similarly, the prevalence of multi-drug resistant (MDR)

strains of common bacterial pathogens is increasing
worldwide [13, 14]. Although antibiotics are available for
the treatment of these infections, because of their nu-
merous adverse effects and development of resistant
strains, there is an urgent need to search for alternatives
to synthetic antibiotics [15]. Therefore, various ap-
proaches have been adopted to deal with the progressing
multi-drug resistance among such pathogenic species.
Treatment with selected probiotic strains is one such so-
lution that is comparatively safe and stable as they do
not increase the risk of multi-drug resistance of these
pathogens [16, 17]. Most Lactic Acid Bacteria (LAB),
despite their origin, have the potential to inhibit the growth
of pathogens, including problematic antibiotic-resistant iso-
lates due to their ability to produce several antimicrobial
metabolites [18]. Many researchers have proven the inhibi-
tory activity of different probiotic strains against such infec-
tious pathogens [19–23].
The present study aimed to evaluate the in vitro anti-

bacterial activity of an effective consortium of lactobacilli
against MDR staphylococci.

Methods
Strains and culture conditions
Three Lactobacillus species, Lactobacillus plantarum
NCIM 2374 (NCIB 6376), Lactobacillus acidophilus
NCIM 2660 (ATCC 11975) and Lactobacillus casei var.
rhamnosus NCIM 2364 (ATCC 7469), were collected
from the National Collection of Industrial Microorga-
nisms(NCIM) at the National Chemical Laboratory
(NCL), Pune.

A standard strain of Staphylococcus aureus NCIM
2127 was collected from NCIM, NCL, Pune. Nine ran-
dom clinical isolates of Staphylococcus species (labeled
as A to I) were collected from the Microbiology Labora-
tory at the Bharati Hospital, Katraj, Pune, India.
For revival and maintenance of LAB, de

Mann-Rogosa-Sharpe (MRS) medium (HiMedia, India)
was used, while the clinical isolates were enriched with
Brain Heart Infusion (BHI) agar (HiMedia, India). All these
cultures were incubated overnight (about 18 h) at 37 °C at
still and at shaking (120 rpm) conditions respectively.
Colony morphology and Gram reaction of the cultures

were tested. Staphylococci strains were tested for their
reactivity with mannitol and citrated plasma, as stated
by Turner and Schwartz [24], to distinguish S. aureus
from other Staphylococcus species.

Substantiation of the multi-drug resistance
A standard Staphylococcus aureus NCIM 2127 (ATCC
9144) and clinically obtained Staphylococcus A to I were
tested for their sensitivity towards methicillin and other
antibiotics. The cultures were allowed to grow overnight
in BHI broth at 37 °C. The overnight cultures of staphylo-
cocci were adjusted to 1.0 at OD600 and swabbed on
Muller-Hilton agar plates. An octa-disc ring (OCTA-
DISCS COMBI 92 HiMedia, India) containing the follow-
ing antibiotics: Amikacin 30 μg (AK), Ciprofloxacin 5 μg
(CIP), Gentamicin 10 μg (GEN), Ceftazidime 30 μg (CAZ),
Cefepime 30 μg (CPM), Cefoxitin 30 μg (CX), Cefoxatime
30 μg (CTX) and Ceftriaxone 30 μg (CTR) was placed on
each swabbed plate. The plates were incubated at 37 °C
and were observed the next day for the zone of clearance.
Zone diameters were measured according to Barry A. et
al. [25]. and were compared with the standard measures
given by the CLSI Performance Standards for Antimicro-
bial Susceptibility Testing [26].

Antimicrobial activity
Antimicrobial activity of Lactobacillus strains was
assayed to evaluate their ability to inhibit the clinical iso-
lates of MDR microorganisms.
Seven sets of whole broth (WB) of L. plantarum, L.

acidophilus and L. casei var. rhamnosus, individually as
well as in combinations, were prepared as described as
below to test their antimicrobial activity against the
standard culture S. aureus NCIM 2127.

� I: L. plantarum
� II: L. acidophilus
� III: L. casei
� IV: L. plantarum + L. acidophilus (1:1)
� V: L. acidophilus + L. casei (1:1)
� VI: L. plantarum + L. casei (1:1)
� VII: L. plantarum + L. acidophilus + L. casei (1:1:1)
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The activity was determined using the agar well diffu-
sion method as described by Barbara et al., [27] with
slight modification. For the preparation of each set, the
culture broth of 0.5 O.D (McFarland Standard) for each
culture was used. An overnight incubated culture of S.
aureus was swabbed on 0.7% soft agar medium containing
BHI+ MRS (1:1) (with 2% agar-agar base). Wells of 5mm
diameter were then punched on these pre-swabbed plates
and 50 μl of each set was added in the wells accordingly.
Inoculated sets were allowed for diffusion for 1 h at room
temperature. The plates were then incubated overnight at
37 °C. Zone diameters were measured according to Barry
A. et al. [25]. Inhibition was scored positive if the width of
the clear zone around the well was observed.
The set giving the best result was used further to

check the activity of WB, cell-free broth (CFB), and cell
lysate (CL).
To prepare CFB, the set was centrifuged at 8000 rpm

for 15min at 4 °C. The supernatant was collected and
passed through a 0.2-μm syringe filter (BioEra, India) to
remove any remaining bacterial cells and cell debris. The
cell lysate (CL) was prepared as per the protocol by
Kang et al (2012). Cells separated from the above centri-
fugation were washed twice with saline and resuspended
in lysis buffer (10 mM Tris HCl, pH 8.0; 1 mM EDTA;
0.1% (w/v) SDS). The sample was sonicated for 5–15
min until it appears milky. The sonicated sample was
then centrifuged at 8000 rpm for 15min at 4 °C and the
supernatant was used for the experiment [28]. These
samples ie. WB, CFB, and CL were used to investigate
their activity against the clinical isolates by agar well dif-
fusion method as described above.
To understand the antimicrobial activity of CL better,

the liquid medium containing a mixture of LAB-CL with
clinically obtained microorganisms was studied according
to Barbara et al (2010) with slight modification. A 96-well
ELISA plate was used for this purpose. 20 μl of each test
organism (OD600=0.8) were mixed with 50 μl of CL. Each
well was added with 130 μl of nutrient broth. Test micro-
organisms and CL individually were considered as con-
trols. Optical Density at 595 nm was obtained with the
help of Epoch microplate spectrophotometer (Biotek,
USA).
All the experiments were performed in triplicates

independently.

Results
Determination of coagulase positive and coagulase
negative staphylococci
According to the MSA slant color change (reactivity
with mannitol) and coagulase test, Staphylococcus iso-
lates were distinguished to CoPS and CoNS. It was ob-
served that Staphylococcus isolates A, B, C, D, E, and I
were able to ferment mannitol, hence changing the MSA

slant colour to yellow and showed agglutination when
mixed with citrated plasma, hence may belong to S.aur-
eus species; whereas Staphylococcus isolates F, G, and H
neither showed any colour change on MSA nor any ag-
glutination or clumping with the citrated plasma. It was
also observed that S.aureus NCIM 2127, tested as a ref-
erence, was coagulase positive and was able to ferment
mannitol.

Substantiation of multi-drug resistance
The overnight incubated plates with antibiotic discs were
observed and the zone diameters were measured. These
zone diameters were compared with the CLSI standards
[26] to obtain inferences (Table 1).
As a result of the antibiotic susceptibility test for the

clinical isolates, all were observed to be resistant against
gentamicin (GEN) and cefoxitin (CX). Among the other
six antibiotics, amikacin (CTX) possessed the maximum
inhibitory potential against the nine Staphylococcus
strains. All the clinical isolates were MDR as they exhib-
ited resistance towards at least three antibiotics belonging
to different classes. S. aureus NCIM 2127 was observed to
be sensitive towards all the antibiotics.

Synergistic activity of Lactobacillus cultures
Agar well diffusion procedure was performed with seven
sets as described above. The overnight incubated plates
were observed and the zone diameters were measured
(Table 2).
It was observed that all the three strains of Lactobacil-

lus sp. exhibited antimicrobial activity against S.aureus.

Table 1 Antibiotic susceptibility profile of clinical isolates and
S.aureus NCIM 2127 (zone diameters achieved were compared
with the CLSI standards)

Zone diameters in mm

SAMPLES AK CIP GEN CAZ CPM CX CTX CTR

Staph A 12 (R) 11 (R) 7 (R) 17 (I) 15 (I) 17 (R) 24 (S) 16 (I)

Staph B 10 (R) 17 (I) 9 (R) 13 (R) 17 (I) 19 (R) 24 (S) 17 (I)

Staph C 11 (R) 10 (R) 8 (R) 17 (I) 17 (I) 19 (R) 24 (S) 16 (I)

Staph D 11 (R) 10 (R) 8 (R) 17 (I) 16 (I) 15 (R) 22 (I) 16 (I)

Staph E 10 (R) 17 (I) 10 (R) 16 (I) 17 (I) 15 (R) 21 (I) 14 (I)

Staph F 8 (R) 9 (R) 4 (R) 11 (R) 11 (R) 10 (R) 11 (R) 11 (R)

Staph G 10 (R) 11 (R) 11 (R) 14 (R) 12 (R) 14 (R) 12 (R) 11 (R)

Staph H 11 (R) 13 (R) 11 (R) 13 (R) 12 (R) 13 (R) 13 (R) 8 (R)

Staph I 11 (R) 11 (R) 8 (R) 13 (R) 16 (I) 19 (R) 17 (I) 16 (I)

S.aureus
NCIM 2127

22 (S) 21 (S) 22 (S) 24 (S) 21 (S) 23 (S) 24 (S) 24 (S)

S sensitive, I intermediate, R resistant
Amikacin, Ak [R:< 14; I:15–16; S:> 17]; Ciprofloxacin, CIP [R:< 15; I:16–20; S:> 21];
Gentamicin, GEN [R:< 12; I:13–14; S:> 15]; Ceftazidime, CAZ [R:< 14; I:15–17; S:>
18]; Cefepime, CPM [R:< 14; I:15–17; S:> 18]; Cefoxitin, CX [R:< 21; S:> 22 (for
CoPS) R:< 24; S:> 25 (for CoNS)]; Cefotaxime, CTX [R:< 14; I:15–22; S:> 23];
Ceftriaxone, CTR [R:< 13; I:14–20; S:> 21]
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The zone of inhibition was observed to be maximum
with set VII ie. a consortium of all three LAB cultures
with zone diameter of 20.3 ± 0.47 mm. This was followed
by set IV ie. L.plantarum and L. acidophilus with a zone
diameter of 14.3 ± 0.30.

Inhibitory effect of selected LAB consortium
As discussed above, set VII showed the best activity in
the agar well diffusion assay against S. aureus NCIM
2127. Hence, it was further used as WB, CFB and CL for
comparative evaluation initially against S. aureus NCIM
2127 and then against all the clinical isolates. Data rep-
resented in Table 3 reveals the inhibitory action of ac-
tively growing cells, acid supernatant and cell lysate of
the mixture of Lactobacillus.
It was observed that WB, CFB as well as CL, all three

exhibits antibacterial activity against S.aureus, MRSt as
well as on MDR isolates.
The whole broth of set VII showed the maximum in-

hibitory effect on MRSt A to I and S.aureus NCIM 2127.
Supernatant exhibited the least inhibitory effect on all
the clinical isolates. On comparing with CFB, it was ob-
served that CL had higher inhibitory activity against all
the clinical isolates.

Quantitative assay using LAB cell lysate
To understand the action of cell lysate of LAB against
MDR organisms better, cultures were treated with cell
lysate in liquid broth and checked for the change in op-
tical density.
It was observed (Fig. 1) that the standard culture of

S.aureus NCIM 2127 showed the maximum ie. 96.6% in-
hibition. Amongst the MRSt, CoNS isolates (F, G, and
H) showed inhibition in the range of 57.4–65%. The cell
lysate was able to inhibit the MDR/MRSA isolates (A, B,
C, D, E, and I) by an average of 83.1%.

Discussion
The study revealed that from the nine clinical isolates of
Staphylococcus species, six were coagulase positive and
had an ability to ferment mannitol, hence belong to
S.aureus species; whereas three were coagulase negative
and were unable to ferment mannitol. Coagulase protein
is an important virulent agent of S. aureus which can
clot plasma into the gel [29]. However, there are reports
available showing agglutination organisms other than
Staphylococcus species [30].

A further confirmatory test is to find the ability of
S.aureus to ferment mannitol. S.aureus ferments manni-
tol sugar and produce acid as an end product. Hence on
inoculation with MSA, the color turns from pink to yel-
low [31]. CoNS do not ferment mannitol and hence the
color of the slant remains pink [3]. CoNS include species
other than S. aureus, like S. epidermis, S. haemolyticus,
S. lugdunensis, and S. saprophyticus [32].
The antibiotic susceptibility assay revealed that the

Staphylococcus isolates were resistant towards cefoxitin.
Methicillin is a semisynthetic derivative of penicillin to
treat penicillin-resistant Staphylococcus infections. Methi-
cillin resistance is a marker of resistance to β lactam anti-
biotics (i.e., the penicillin and most cephalosporin
antibiotics), which are some of the most commonly used
antibiotics globally. Further, MRSA can easily develop re-
sistance towards many other steroidal and non-steroidal
antibiotics [33]. This means that even though methicillin
is not used much these days, the resistance of bacteria to-
wards it indicates drug resistance against multiple anti-
microbial agents.
It is a well-known fact that microbes acquire multi-drug

resistance due to various factors. Two most common
mechanisms are (i) genetic mutations within the micro-
organism and (ii) triggering of mobile genetic elements
that secure drug resistance genes [34]. Aminoglycoside
(AG) antibiotics like amikacin and gentamicin are used to
treat many Gram-negative and some Gram-positive infec-
tions. Gentamicin is the most used AG antibiotic while
amikacin (semisynthetic AG) is usually prescribed less to
prevent resistance development. Amikacin is persuasive
towards most AG-resistant pathogens since it has a
refracting nature towards most aminoglycoside-modifying
enzymes. However, the upsurging resistance to amikacin
has led to limitations of drugs for the treatment of infec-
tions in neonates [35, 36]. Research by Wenchang et al.,
[37] revealed that resistance development towards amika-
cin is associated with the thickening of the bacterial cell
wall. However, resistance to AG drugs does not always
mean resistance to other antibiotics. The strains used by
the researcher showed susceptibility to antibiotics like
ceftizoxime, chloramphenicol, ciprofloxacin, gentamicin,
rifampicin, tetracycline, teicoplanin, linezolid, and vanco-
mycin. The current work partially relates to these observa-
tions as the clinical isolates of MRSA are resistant towards
amikacin and gentamicin. All of these clinical isolates can
be considered as MDR as they are resistant towards

Table 2 Diameters of growth inhibition zones of S.aureus NCIM 2127 by individually prepared sets of Lactobacillus sp.

SETS I II III IV V VI VII

Zone of inhibition (mm) 13.6 10.3 10.6 14.3 12.3 10.6 20.3

±0.50 ±0.47 ±0.56 ±0.30 ±0.6 ±0.18 ±0.47

± − Standard deviation values derived from the mean of data from three independent experiments
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antibiotics belonging to three different classes (aminogly-
cosides, quinolone and, cephalosporins) [38, 39].
The strains used in the study are Lactobacillus plan-

tarum NCIM 2374 (NCIB 6376), Lactobacillus acidoph-
ilus NCIM 2660 (ATCC 11975) and Lactobacillus casei
var. rhamnosus NCIM 2364 (ATCC 7469). All of these
are industrially used strains and were selected with refer-
ence to the study concluded by Sikorska and Smoragie-
wicz [2013]. Their study concluded that most active
strains against MRSA were Lactobacillus reuteri, Lacto-
bacillus rhamnosus GG, Propionibacterium freudenrei-
chii, Propionibacterium acnes, Lactobacillus paracasei,

L. acidophilus, L. casei, Lactobacillus plantarum,
Lactobacillus bulgaricus, Lactobacillus fermentum and
Lactococcus lactis. Their effects were mediated both
by direct cell competitive exclusion as well as the
production of acids or bacteriocin-like inhibitors [40].
Similarly, many studies have been conducted using
these LAB species to test their antimicrobial activity
against MRSA [21, 27, 41].
Set VII showed maximum inhibition against S.aureus.

These results demonstrate the synergistic effect of the
combination of L.plantarum, L.casei and L. acidophilus
(Set VII) in ratio 1:1:1, exhibiting highest antimicrobial
activity as compared to the other sets.
It can be hypothesized that a combination of probiotic

strains may complement each other’s effects or improve
benefits or properties [42–44]. The objective of this
study was, therefore, to determine if the chosen probio-
tics in the combinations tested may increase or enhance
each other’s beneficial properties and their potential ap-
plications in favoring maximum inhibition against S.aur-
eus and MDR staphylococci. The work can be co-related
with research work by Karska-Wysocki [27] where the
activity of L. acidophilus and L. casei in equal proportion
(1:1) was observed to be higher when used in a
combination.
To understand the primary action source of inhib-

ition, the action of whole broth, cell-free supernatant
and cell lysate were compared with each other. Gen-
erally, the LAB are the most implicated of the pro-
biotic organisms, particularly those of the genera
Lactobacillus and Bifidobacterium, which protects

Fig. 1 Growth of organisms measured in terms of absorbance at 560 nm when treated with cell lysate of selected LAB consortium. Error bars
indicate standard deviation. *S.aureus NCIM 2127

Table 3 Diameters of growth inhibition zone of MDR
microorganisms by WB, CFB, and CL

Samples Zone of inhibition (mm)

WB CFB CL

S.aureus NCIM 2127 19.67 ± 0.06 10.34 ± 0.12 17.67 ± 0.25

Staph A 20.34 ± 0.014 9.34 ± 0.25 14.34 ± 0.26

Staph B 17.67 ± 0.40 8.34 ± 0.46 13 ± 0.60

Staph C 16.34 ± 0.5 8 ± 0.24 13.34 ± 0.12

Staph D 15 ± 0.10 8.34 ± 0.15 13.34 ± 0.42

Staph E 16 ± 0.12 7.64 ± 0.26 14 ± 0.15

Staph F 19.34 ± 0.37 10.34 ± 0.34 13.67 ± 0.12

Staph G 18.34 ± 0.15 10 ± 0.12 13.67 ± 0.12

Staph H 19 ± 0.26 8 ± 0.84 15 ± 0.34

Staph I 16.67 ± 0.12 6.67 ± 0.25 14 ± 0.26

±: Standard deviation values derived from data of three
independent experiments
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their territory by secreting acids like lactic, acetic, for-
mic, succinic, glutamic, citric, and butyric acids;
thereby creating an environment which is inhospitable
to disease-causing bacteria. Lactobacilli are known to
be microaerophilic by nature. They produce metabo-
lites which can cause alterations in the
oxidation-reduction potential, hence making the envir-
onment unfavorable for aerobic organisms. This ac-
tion contributes to the overall inhibiting effect of
these probiotic bacteria [45, 46]. Different Lactobacil-
lus species have shown significant activities against
classical antibiotic-resistant bacteria, MRSA and other
emerging antibiotic resistant microorganisms. Vora-
vuthikunchaia [47] stated that the antibacterial activity
of the lactobacilli might cause growth inhibition and
cell death with respect to the pathogen it is dealing
with. Different mechanisms to exert antimicrobial ef-
fect are shown by the LAB, but the cell envelope is
generally the target. Metabolic by-products such as
bacteriocins, hydrogen peroxide (H2O2), and organic
acids, produced by the lactobacilli during growth,
contribute to their antibacterial activity. Other mecha-
nisms proposed for their microbial antagonism are
competition for nutrition, adhesion inhibition of path-
ogens to surfaces and stimulation of the immune sys-
tem [47]. Studies have revealed that L.reuteri, isolated
from a healthy vaginal ecosystem, [47] and L.fermen-
tum [48]; can appreciably inhibit pathogens like
MRSA. It has been observed that L. casei can displace
and kill S. aureus adhering to human intestine mucus
by 39 to 44% [49]. Charlier et al. (2008) reported that
L.lactis had a specific antimicrobial activity against
S.aureus [50]. Later, Koji (2005) stated the beneficial
effects conferred by lactobacilli, including inhibition of
Gram-negative and positive pathogenic bacteria [51].
Earlier, researchers have observed that the bacterio-

cins produced by LAB get adsorbed on the cell sur-
face at specific pH [52–56]. Yang et al. [57], further
discovered a technique for the purification of bacte-
riocins, responsible for the antimicrobial activity. In
view of this, cell lysate of selected LAB consortium
(present work) was prepared and studied further for
their inhibitory action against MDR clinical isolates.
The pH of 6.0–5.5 was observed after an overnight
incubation, which is an ideal pH at which the pro-
teins get adsorbed on the cells. Hence, the cell lysate
contains both adsorbed proteins and intracellular pro-
teins. This study revealed the potential of cell lysate
of the combination of the LAB to inhibit MDR or-
ganisms. To our knowledge, antimicrobial activity by
cell lysate is very less researched and present study
gives an indication that the inhibitory activity of bac-
teriocins and some intracellular proteins of LAB can
be of great importance.

Conclusions
From all the in vitro testing, it can be clearly concluded
that S. aureus was vulnerable to the metabolites pro-
duced by the LAB cultures selected, individually as well
as in combinations. However, a combination of all the
three strains used together exhibited the best result. This
study showed the potential of the whole broth and cell
lysate of the combination of L.acidophillus, L. plan-
tarum, and L. casei var. rhamnosus as a better inhibitor
towards MDR clinical isolates.
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