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EMT- and stroma-related gene expression and
resistance to PD-1 blockade in urothelial cancer
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Cancers infiltrated with T-cells are associated with a higher likelihood of response to PD-1/

PD-L1 blockade. Counterintuitively, a correlation between epithelial–mesenchymal transition

(EMT)-related gene expression and T-cell infiltration has been observed across tumor types.

Here we demonstrate, using The Cancer Genome Atlas (TCGA) urothelial cancer dataset,

that although a gene expression-based measure of infiltrating T-cell abundance and EMT-

related gene expression are positively correlated, these signatures convey disparate prog-

nostic information. We further demonstrate that non-hematopoietic stromal cells are a major

source of EMT-related gene expression in bulk urothelial cancer transcriptomes. Finally, using

a cohort of patients with metastatic urothelial cancer treated with a PD-1 inhibitor, nivolumab,

we demonstrate that in patients with T-cell infiltrated tumors, higher EMT/stroma-related

gene expression is associated with lower response rates and shorter progression-free and

overall survival. Together, our findings suggest a stroma-mediated source of immune resis-

tance in urothelial cancer and provide rationale for co-targeting PD-1 and stromal elements.
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Immune checkpoint blockade has recently changed the treat-
ment landscape for patients with metastatic urothelial cancer
(UC). After several decades without significant therapeutic

advances, clinical trials have demonstrated that durable responses
are achieved in ~15–25% of patients with cisplatin-resistant
metastatic UC treated with PD-1/PD-L1 blockade leading to
regulatory approval of five distinct antibodies in the United
States1–6. Because only a subset of patients benefit from treat-
ment, there remains a critical need to understand mechanisms of
intrinsic resistance.

Tumors infiltrated with T-cells, commonly referred to as “hot”
tumors, are associated with a higher likelihood of response to
immune checkpoint blockade5–9. These findings have led to the
conceptual framework of “hot” vs. “cold” tumors as an approach
to understanding mechanisms of sensitivity and resistance to
treatment10. Although considerable emphasis has been placed on
dissecting the immunobiology of “cold” tumors11, a large pro-
portion of patients with “hot” tumors also do not respond to PD-
1/PD-L1 blockade, highlighting the need to better define resis-
tance mechanisms in this latter group.

The biological process of epithelial–mesenchymal transition
(EMT) involves epithelial cells assuming a mesenchymal pheno-
type, with enhanced capacity for invasion and metastasis. In
studies encompassing a wide spectrum of malignancies, including
UC, a positive correlation has been observed between T-cell
infiltration and EMT-related gene expression12–17. The consistent
association between EMT-related gene expression and T-cell
infiltration has led to speculation regarding how EMT might
impact the development of antitumor immunity and response to
immune checkpoint blockade18,19. Indeed, some studies have
suggested that patients with tumors with higher EMT-related
gene expression should be more likely to benefit from immune
checkpoint blockade15,16 whereas others have linked EMT-related
gene expression with immunotherapy resistance20. The seemingly
counterintuitive relationship between EMT and T-cell infiltration,
and contradictory clinical implications posed by prior studies,
raise several critical questions: What is the cellular origin of EMT-
related gene signatures derived from bulk UC transcriptomes?
Does EMT-related gene expression indeed reflect the biological
process of EMT? How do EMT-related gene expression and T-cell
infiltration together impact outcomes in patients with UC treated
with PD-1/PD-L1 blockade?

Here, using data from both TCGA and a cohort of UC
patient-derived xenograft models, we provide support for a
non-hematopoietic stromal source of EMT-related gene
expression. Using data derived from a large clinical trial of
patients with UC treated with the PD-1 inhibitor nivolumab we
demonstrate that in patients with T-cell infiltrated tumors,
higher EMT/stroma-related gene expression is associated with
lower response rates and shorter progression-free and overall
survival. Finally, we demonstrate that in T-cell infiltrated
tumors with increased EMT/stroma-related gene expression, T-
cells may be spatially separated from cancer cells. Together, our
findings suggest a stroma-mediated source of immune resis-
tance in UC and provide rationale for co-targeting PD-1 and
stromal elements.

Results
EMT-related gene expression is associated with T-cell infiltra-
tion in UC in TCGA. Gene expression of immune cell markers
has been widely used to estimate blood cell components21,22 and
tumor infiltrating immune cell abundance23,24. We used a similar
approach to estimate tumor-infiltrating T-cell abundance (ITA)
in TCGA UC cohort (see Methods). Figure 1a shows 144 genes
that were overexpressed in T-cells, and Fig. 1b shows the

expression of the same 144 genes across UC tumor samples in
TCGA.

We then searched for genes whose expression correlated with
ITA and pathways enriched with these ITA correlated genes. The
most highly enriched pathways positively correlating with ITA
(Fig. 2a) included immune-related pathways, such as interferon,
inflammatory and TNF pathways, as well as EMT (Molecular
Signatures Database [MsigDB], hallmark EMT gene set25). EMT-
related gene signature expression, calculated by average expres-
sion of 200 genes in the MsigDB EMT gene set, was also
significantly correlated with ITA (Fig. 2b, Pearson’s ρ= 0.60, p-
value < 1e−4). Similar results were observed when using other
EMT-related genes sets (see Supplementary Note 1 and
Supplementary Fig. 1)15,26.

Several groups have defined molecular subtypes of UC
based on gene expression profiling (e.g., luminal and basal
subtypes)27–29. We questioned whether EMT-related gene
expression and ITA were enriched in specific molecular subtypes.
We classified UC samples in TCGA (n= 408) into luminal,
luminal-papillary, luminal-infiltrated, basal-squamous, and neu-
ronal subtypes according to the most recent TCGA sub-
classification30. Both EMT-related genes and ITA were most
highly expressed in the luminal-infiltrated and basal-squamous
subtypes (Fig. 2c, d), though EMT-related gene expression was
slightly higher (p= 0.047 by two-sided Wilcoxon rank sum test)
in the luminal-infiltrated (median= 10.23, n= 78) compared to
the basal-squamous subtype (median= 10.00, n= 142) despite
similar ITA (median= 5.54 and 5.55 for the two aforementioned
subtypes, p= 0.89 by two-sided Wilcoxon rank sum test). The
relationship between EMT-related gene expression and ITA
within each subtype is shown in Supplementary Fig. 2.

The positive correlation between EMT-related gene expression
and ITA in UC is dependent on tumor purity. Recent studies in
colorectal cancer have revealed that genes comprising EMT sig-
natures may be expressed predominantly from stromal cells
rather than cancer cells31–33. Therefore, we next explored the
relationship between EMT-related gene expression, ITA, and
tumor purity as estimated by the computational tool ESTIMATE
(Estimation of Stromal and Immune cells in Malignant Tumor
tissues using Expression data)23. The ESTIMATE computational
tool defines two gene signatures (referred to as immune_ESTI-
MATE and stromal_ESTIMATE, hereafter) to infer the propor-
tion of the immune and stromal components from bulk
transcriptomes and combines these individual components to
estimate tumor purity. Using TCGA UC dataset (n= 408), we
demonstrated that both ITA and EMT-related gene expression
were highly positively correlated with lower tumor purity (Fig. 3a
Spearman’s ρ=−0.85 and Fig. 3b Spearman’s ρ=−0.84,
respectively). The strong positive correlation between EMT-
related gene expression and ITA was no longer apparent (Fig. 3c,
Spearman’s ρ=−0.23) after accounting for tumor purity. EMT-
related genes demonstrated a stronger positive correlation with
stromal_ESTIMATE genes (Spearman’s ρ= 0.94, Fig. 3d) than
with immune_ESTIMATE genes (Spearman’s ρ= 0.68, Fig. 3e)
despite only a subset of genes in common between the gene sets
(Fig. 3f). In contrast, ITA was more highly correlated with
immune_ESTIMATE genes than with stromal_ESTIMATE genes
(Supplementary Fig. 3). Together, these findings raised the pos-
sibility that EMT-related gene expression in UC may emanate
from stromal cells in the tumor microenvironment rather than
epithelial cancer cells.

EMT-related gene expression and ITA have a disparate impact
on survival in TCGA UC cohort. We next explored the
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prognostic significance of EMT-related gene expression and ITA
in TCGA UC dataset, which is composed of patients with muscle-
invasive UC of the bladder treated with radical cystectomy.
Higher EMT-related gene expression was associated with worse
overall survival (OS) in a univariable Cox regression model
(Fig. 4a, HR= 1.45, Likelihood ratio test X2= 10.16, p= 0.0014
when treated as a continuous variable), whereas ITA was not
significantly associated with OS (Fig. 4b, HR= 0.84, Likelihood
ratio test X2= 2.96, p= 0.086 when treated as a continuous
variable). As ITA and EMT-related gene expression were posi-
tively correlated, but demonstrated a potentially disparate impact
on OS, we questioned whether combining these parameters
would yield further prognostic and biologic insights. Indeed, the

ratio of ITA to EMT gene expression was highly associated with
OS in TCGA UC cohort (Fig. 4c, HR= 0.58, Likelihood ratio test
X2= 28.16, p < 1e−4 when treated as a continuous variable).
Similarly, when both ITA and EMT-related gene expression were
included additively in a bivariate Cox regression model, their
impact on OS became more striking (HR= 2.08, Likelihood ratio
test X2= 26.49, p < 1e−4 for EMT and HR= 0.56, X2= 19.29,
p < 1e−4 for ITA in the bivariate Cox regression model when
both were treated as continuous variables). The multiplicative
interaction between ITA and EMT was not significant (Ratio of
HRs= 0.85, Likelihood ratio test X2= 0.41, p= 0.52) (Supple-
mentary Fig. 4). As shown in Fig. 4d, when categorized into four
groups based on median EMT and ITA gene expression, patients
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Fig. 1 T-cell related gene expression is enriched in a subset of UC specimens. a Expression profiles of 144 T-cell marker genes across 22 different types or
states of immune cells; b Expression profiles of the same 144 genes (the same order as in a) across 408 UC tumor samples in TCGA
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with ITAhigh EMTlow tumors demonstrated the best OS while
patients with ITAlow EMThigh tumors demonstrated the worst
OS.

Given that the impact of combined estimates of ITA and
EMT-related gene expression on survival may potentially
represent the balance of immune cells vs. immune-suppressive
stromal elements in the tumor microenvironment, we considered
whether gene expression-based estimates of specific T-cell
subsets, or other immune cell types, might provide additional
information (see Supplemental Methods). Conditioning on
EMT-related gene expression in a bivariate Cox regression
model, most immune cell types were associated with better OS,
though T-cells and NK-cells were the most significantly
associated with OS (Supplementary Table 1). Within T-cell
subsets, gamma.delta, CD4 memory.resting, and CD8 T-cells
were the most significantly associated with OS, though ITA
performed similarly well.

Although EMT-related gene expression and stromal_ESTI-
MATE genes were highly correlated, the EMT-related gene
signature was more strongly associated with OS than the
stromal_ESTIMATE gene signature. Conditioning on ITA and
EMT, the stromal_ESTIMATE (average of stromal_ESTIMATE
gene expression) signature was not significantly associated with
OS (HR= 0.84, Likelihood ratio test X2= 0.17, p= 0.68),
whereas conditioning on ITA and stromal_ESTIMATE, the

EMT-related signature remained prognostic (HR= 2.38, Like-
lihood ratio test X2= 5.54, p= 0.019). When the prognostic
significance of individual genes derived from both the EMT and
stromal_ESTIMATE signatures were evaluated, 18 of the top 20
genes (Wald p-value < 1e−6, conditioning on ITA) most
significantly associated with OS belonged to the EMT-related
gene set and are subsequently referred to as the EMT/
Stroma_core genes (Fig. 4e, Supplementary Table 2).

To determine if the prognostic impact of ITA and EMT-related
gene expression was specific to UC or a more general
phenomenon, we investigated the relationship between EMT-
related gene expression, ITA, and OS in other types of solid
tumors in TCGA. Similar to the case of UC, significant
correlations were observed between ITA and EMT in the pan-
cancer analysis, and the correlations were greatly reduced
conditioning on the purity estimated by ESTIMATE (Supple-
mentary Fig. 5). Further, the ratio of ITA to EMT was
significantly associated with OS across a variety of tumor types
(Supplementary Fig. 6, also see Supplementary Note 1).

Stromal cells comprise a key source of EMT-related gene
expression in UC patient-derived xenograft (PDX) models. To
further probe the source of EMT-related gene expression, we
took advantage of a set of UC patient-derived xenograft (PDX)
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Fig. 2 T-cell related gene expression and EMT-related gene expression are positively correlated in UC specimens. a Pathways ranked by their correlation
with ITA. Pearson’s correlation coefficient (CC) with ITA was calculated for each individual gene in TCGA UC datasets. Wilcoxon rank sum test was then
used to compare CC values in each pathway with all the other genes. X-axis shows the –log10 p-value of the Wilcoxon test for each pathway (pathways
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EMT-related gene expression for different molecular subtypes of UC in TCGA; d Plot EMT-related gene expression for different molecular subtypes of UC
in TCGA. For boxplots, boxes extend from the first to third quartiles, middle line shows median, whiskers extend to the most extreme data point which is no
more than 1.5 times the interquartile range from the box, open circles show individual values that are more than 1.5 times the interquartile range from the
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models given that the transcriptome in these models is a mix-
ture of human RNA (derived from cancer cells) and mouse
RNA (derived from stromal cells). We analyzed RNA sequen-
cing (RNAseq) data from five UC PDX models and used the
Bamcmp algorithm34 to separate RNAseq reads derived from
mouse vs. human (see Methods). The median tumor purity as
estimated by the fraction of total reads from human was 94%
(Supplementary Fig. 7), which was higher than that of UC
samples in TCGA (88% by ESTIMATE). At the individual gene
level, EMT-related genes had a median of 30% reads mapped to
mouse (Fig. 5a), which was significantly higher than that of all
other genes (6%, two-sided Wilcoxon rank sum test statistic=
1,822,400, p < 1e−4) and lower than that of stromal_ESTI-
MATE genes (91%, two-sided Wilcoxon rank sum test statistic
= 2756, p < 1e0−4, after the overlapping genes were removed).
Dissecting the source of gene expression in bulk tumor speci-
mens is not only a function of the relative proportion of reads
from cancer vs. stromal cells but also the degree to which
individual genes are expressed by these cellular compartments.
Therefore, we also calculated log2 fold change of gene expres-
sion per mouse cell vs. human cell (as measured by species-
specific reads-per-million (RPM), Fig. 5b). The median log2 FC
for EMT-related genes was 2.02, which was significantly higher
than that of all other genes, −0.47 (two-sided Wilcoxon rank
sum test statistic= 1,958,000, p < 1e−4), and lower than that of
stromal_ESTIMATE genes, 4.81 (two-sided Wilcoxon rank sum
test statistic= 4247, p < 1e−4, after the overlapping genes were
removed).

Finally, when the 18 EMT/Stroma_core genes were explored in
our UC PDX models, 11 of 18 of these genes demonstrated a
higher proportion of reads from mouse than human (Fig. 5c) and
the median log2 fold change of gene expression per mouse cell vs.
human cell was 4.23 (Fig. 5d). Together, these findings provide
further evidence that stromal cells serve as a key source of EMT-
related gene expression in UC.

EMT-related (stromal) gene expression, T-cell infiltration, and
their impact on response to immune checkpoint blockade and
patient survival. The anti-PD-1 antibody, nivolumab, has
demonstrated durable responses in a subset of patients with
metastatic UC in the phase II CheckMate 275 study, leading to
regulatory approval in the United States and Europe for use in
patients progressing despite platinum-based chemotherapy2. We
used the CheckMate 275 dataset to query the impact of T-cell
infiltration and EMT-related gene expression on objective
response, progression-free survival (PFS), and OS in nivolumab-
treated patients with metastatic UC. For this study, we did not use
RNA-seq data to estimate the ITA and EMT signals. Rather, we
used assays that potentially have a clearer path to clinical appli-
cation. Targeted gene expression data from the EdgeSeq platform
(HTG Molecular), and CD8 cell count based on immunohis-
tochemistry (IHC), were generated from baseline archival tumor
specimens. Of 270 patients enrolled, gene expression or CD8 IHC
data were available from 217 and 263 patients, respectively; the
final ‘biomarker cohort’ comprised 214 patients with both gene
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expression and CD8 IHC data. The baseline characteristics of the
biomarker cohort and overall CheckMate 275 cohort were very
similar (Supplementary Table 3). Among the 200 genes in the
EMT-related gene signature, 133 were included in the EdgeSeq
expression panel. Among the 18 genes in the EMT/Stroma_core
gene set, 8 were included in the EdgeSeq expression panel (FLNA,
EMP3, CALD1, FN1, FOXC2, LOX, FBN1, and TNC). Results of
analyses using the 8-gene EMT/Stroma_core signature were
similar to results using the 133 EMT-related gene signature (data
not shown). Therefore, we present results focused on the poten-
tially more clinically tractable EMT/stroma_core signature.

In the CheckMate 275 cohort, CD8 expression by IHC and
EMT/Stroma_core gene expression were positively correlated
(Spearman’s ρ= 0.32, p < 1e−4). From single-predictor models,
greater CD8 infiltration was associated with a significantly higher
objective response rate and longer PFS and OS, whereas EMT/
Stroma_core gene expression alone was not associated with
response rate, PFS, or OS (Table 1, Supplementary Table 4,
Supplementary Fig. 8). However, when both CD8 IHC and EMT/
Stroma_core gene expression were included in the model, a
significant interaction was observed between the CD8 positive cell
proportion and EMT/Stroma_core gene expression; that is, the
negative association between EMT/Stroma_core gene expression
and PFS, OS, or objective response depended on CD8 infiltration
(Supplementary Fig. 4, 9, 10). This association was apparent at
high, but not low, CD8 infiltration levels. The positive association

between CD8 infiltration and response, PFS, and OS increased in
magnitude as EMT/Stroma_core gene expression decreased.
Patients with high CD8 infiltration and low EMT/Stroma core
gene expression had the highest response rates and longest PFS
and OS, while patients with high CD8 infiltration but high EMT/
Stroma core gene expression had worse outcomes. The CD8:
EMT/Stroma_core interaction term remained significant for PFS,
OS, and objective response even when other baseline variables
including hemoglobin, PD-L1 expression (as measured by IHC
on cancer cells), and the presence of liver metastases were
included in the model (Table 1, Supplementary Table 4). For
illustrative purposes, CD8 infiltration and EMT/Stroma_core
gene expression were dichotomized at median expression levels to
generate four patient subgroups with objective response rate, PFS,
and OS by subgroup shown in Fig. 6a–c. Together, these findings
suggest that in CD8-infiltrated UC, EMT/Stroma-related gene
expression is associated with resistance to PD-1 blockade.

We hypothesized that CD8-infiltrated tumors with high EMT/
Stroma core gene expression might represent the previously
described “immune excluded” phenotype with CD8 cells spatially
separated from cancer cells and restricted to stromal regions35.
Therefore, we performed an exploratory analysis of the spatial
localization of CD8 cells in a subset of CD8-infiltrated specimens
with higher vs. lower EMT/Stroma_core gene expression from the
CheckMate 275 cohort. A genitourinary pathologist (M. C-M.)
blinded to the EMT/Stroma_core gene expression scores
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manually counted the number of CD8 expressing cells located
intratumorally vs. in the peritumoral stroma. As shown in Fig. 7,
specimens with higher vs. lower EMT/Stroma_core gene expres-
sion exhibited significantly lower numbers of intratumoral CD8
cells (two-sided Wilcoxon rank sum test statistic= 25, p= 0.035)
and a significantly higher ratio of stromal to intratumoral CD8
cells (two-sided Wilcoxon rank sum test statistic= 87, p= 0.026).

Discussion
Immune checkpoint blockade, with anti-PD-1/PD-L1 antibodies,
is now a standard treatment for platinum-resistant metastatic UC.
However, only a subset of patients responds to treatment, high-
lighting the need to identify mechanisms of intrinsic resistance.
Here, we have shown that while EMT-related gene expression and
T-cell infiltration are positively correlated, the balance of these
parameters may have prognostic/predictive implications in
patients with advanced UC treated with PD-1 blockade.

The inverse correlation between tumor purity and EMT-related
gene expression, strong positive correlation between EMT-related
and stromal-related gene signatures and contribution of mouse
reads to EMT-related gene expression in our UC PDX models all
support the notion that stromal cells are a key source of EMT-
related gene expression in UC. Our findings are consistent with
recent studies in colorectal cancer and head and neck cancer

employing PDX models or single cell RNA-seq31,32,36. For
example, using single cell RNA-seq data from 11 primary col-
orectal cancers and matched normal mucosa, Li et al. showed that
EMT-related genes were found to be upregulated only in the
cancer-associated fibroblast subpopulation of the tumor sam-
ples32. Still, stromal elements, such as cancer-associated fibro-
blasts, have been shown to induce the biological process of EMT
in model systems and cancer-associated fibroblasts have been
posited to even possibly arise from epithelial cancer cells under-
going EMT suggesting these cellular compartments and processes
may be highly intertwined37,38 complicating definitive dissection
of each cellular compartment to EMT-related gene expression in
the current study. Furthermore, partial EMT states may exist in
only a subset of cancer cells, and in a dynamic fashion as shown
in recent studies of other cancer types36. Future studies incor-
porating single cell RNA-seq in UC may shed further light on this
subject.

We demonstrated that the balance of T-cell infiltration and
EMT-related gene expression has potentially prognostic, and/or
predictive, implications in both patients with clinically localized
UC treated with cystectomy and in patients with advanced
platinum-resistant UC treated with nivolumab, though the rela-
tionship between these variables differed slightly in the two
cohorts (Supplementary Fig. 4). Specifically, in the TCGA cohort,
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ITA was positively correlated with OS and EMT-related gene
expression was negatively correlated with OS and there was no
significant statistical interaction between the parameters. In
contrast, in the CheckMate 275 cohort, a significant statistical
interaction was observed between these parameters; that is, the
impact of EMT-related gene expression on objective response,
PFS, and OS with nivolumab was observed only in patients with
tumors harboring increased T-cell infiltration. There are practical
and mechanistic reasons that might account for these differences
Most importantly, the cohorts represent highly distinct clinical
disease states associated with different treatments and prognoses.
The assays used to measure T-cell infiltration and EMT-related
gene expression also differed between the groups. Finally, the
impact of EMT-related gene expression on prognosis in
cystectomy-treated patients with localized disease could reflect
additional biological processes (e.g., invasion, metastatic capacity,
etc) beyond those related to immune modulation. On the other
hand, the immunomodulatory effects might dominate the nega-
tive impact of EMT-related gene expression in patients with
advanced disease treated with immune checkpoint blockade such
that the effect is observed predominantly in tumors with
increased T-cell infiltration. Nonetheless, the finding that the
balance of these parameters confers potentially clinically relevant
information in both disease settings is striking and further clinical
validation and mechanistic exploration is warranted in both
settings.

There are several possible underlying mechanisms that might
contribute to the impact of EMT-related gene expression and T-
cell infiltration on outcomes. Cancer-associated fibroblasts are
among the most abundant cellular components of the stroma and
contribute to tumor growth via secretion of pro-angiogenic sig-
nals and other growth factors, chemokines, and through
orchestration of the composition of the extracellular maxtrix
(ECM)39. Recently, using data from a large phase 2 study of
patients with metastatic UC treated with the PD-L1 inhibitor

atezolizumab, Mariathasan et al demonstrated that a lack of
response was associated with a signature of transforming growth
factor-β signaling (TGF-β) derived from fibroblasts40. The
investigators further demonstrated that increased TGF-β-
signaling occurred particularly in tumors that showed exclusion
of T-cells from the tumor parenchyma that were instead found in
the peritumoral stroma. In our preliminary analysis of the spatial
localization of T-cells in specimens with increased EMT-related
gene expression, we made a similar observation. Intriguingly,
Salmon et al, using immunostaining and real-time imaging of T-
cells in viable slices of human lung tumors, showed that dense
networks of fibronectin and collagen fibers surrounding the
tumor bed were associated with reduced ability of T-cells to
migrate and contact tumor cells41. Such findings may unify the
observed stromal location of T-cells in tumors with increased
EMT/Stroma and/or TGF-β expression and support exploration
of strategies combining PD-1 blockade not only with therapies
directed at stromal cells and stroma-related cytokines but also
with therapies targeting the ECM directly.

There are potential limitations to our study. The single-arm
nature of TCGA and CheckMate 275 cohorts limits the ability to
dissect the prognostic vs. predictive nature of the T-cell and
EMT-related gene expression balance. We did not use whole-
genome transcriptomic data from the CheckMate 275 dataset but
rather gene expression data derived from defined gene panels and
therefore focused on the EMT/Stroma_core gene set for testing in
this dataset, reasoning that this approach would best facilitate
evaluation of the clinical application of the identified biomarkers
in future studies. Finally, our analysis is retrospective in nature
and validation of the findings in additional datasets is warranted.

Molecular subtypes of UC have been defined by several groups,
including TCGA, and linked with prognosis and response to
treatment. However, in prior analyses, the UC subtypes associated
with the highest response rates to PD-1/PD-L1 blockade have
been inconsistent and responses have been observed across all

Table 1 Impact of CD8 expression and EMT/Stroma_core gene expression on clinical outcomes in CheckMate 275 biomarker
cohort (n= 214): p-values

p-values*

Test Model I Model II PFS OS Objective Response

Effect of CD8_IHC alone Intercept Model I+ CD8_IHC 1.20E−04 4.37E−03 1.20E−03
Overall effect of adding EMT/
Stroma_core

Intercept+ CD8 IHC Model I+ EMT/Stroma_core
+ CD8_IHC:EMT/Stroma_core

4.45E−02 3.49E−02 2.17E−02

CD8_IHC:EMT/Stroma_core
interaction

Intercept+ CD8 IHC+ EMT/
Stroma_core

Model I+ CD8_IHC:EMT/
Stroma_core

3.51E−02 3.96E−02 3.51E−02

Effect of adding CD8_IHC to
baseline variables

Intercept+HBN+ LIVERMET
+ PDL1

Model I+ CD8_IHC 1.04E−04 2.99E−03 3.57E−04

Overall effect of adding EMT/
Stroma_core to baseline variables
and CD8_IHC

Intercept+HBN+ LIVERMET
+ PDL1+ CD8 IHC

Model I+ EMT/Stroma_core
+ CD8_IHC:EMT/Stroma_core

5.73E−03 4.89E−03 1.67E−02

CD8_IHC:EMT/Stroma_core
interaction when baseline variables
included

Intercept+HBN+ LIVERMET
+ PDL1+ CD8_IHC+ EMT/
Stroma_core

Model I+ CD8_IHC:EMT/
Stroma_core

9.00E−03 4.83E−03 3.07E−02

Effect of EMT/Stroma_core alone Intercept Model I+ EMT/Stroma_core 6.53E−01 4.18E−01 4.60E−01
Overall effect of adding CD8_IHC Intercept+ EMT/Stroma_core Model I+ CD8_IHC+

CD8_IHC:EMT/Stroma_core
3.01E−05 8.36E−04 1.50E−04

Effect of adding EMT/Stroma_core
to baseline variables

Intercept+HBN+ LIVERMET
+ PDL1

Model I+ EMT/Stroma_core 1.42E−01 2.12E−01 2.84E−01

Overall effect of adding CD8_IHC
to baseline variables and EMT/
Stroma_Core

Intercept+HBN+ LIVERMET
+ PDL1+ EMT/Stroma_core

Model I+ CD8_IHC+
CD8_IHC:EMTStroma_core

9.03E−06 1.30E−04 5.04E−05

*p-values from likelihood-ratio hypothesis tests of the effects of CD8 IHC or EMT/Stroma_core scores on PFS, OS, and Objective Response, for the CheckMate 275 biomarker cohort. Tests for PFS and
OS are from Cox PH models. Tests for objective response are from linear logistic regression models. Each test compares Model II to Model I. CD8_IHC, CD8 immunohistochemistry; EMT/Stromal_core,
EMT/Stromal_core gene expression; HBN, hemoglobin; LIVERMET, presence of liver metastases; PDL1, PDL-1 IHC score
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subtypes2,6. The luminal-infiltrated and basal-squamous TCGA
UC subtypes have been proposed for prioritization for immune
checkpoint blockade based on the relatively high infiltration of
immune cells but these subtypes are also enriched in EMT-related
genes providing potential insight for responses observed in only a
subset of patients30. Focusing on established molecular subtypes
of UC as a means of selecting patients for immune checkpoint
blockade may overlook important biology that is relevant to
sensitivity/resistance and shared across subtypes.

Here, we show that EMT-related gene expression and T-cell
infiltration are positively correlated in UC yet confer disparate
treatment response and prognostic information. EMT-related
gene expression in UC, typically ascribed to the biological process
of EMT in the epithelial compartment, may require reinterpre-
tation given the key contribution of stromal cells to such gene
expression. The balance of T-cell vs. EMT/stromal elements may
provide a more informative snapshot of the antitumor immune
response than measures of T-cells alone. Future work is focused
on validation of these potential prognostic and/or predictive
biomarkers, dissecting the mechanistic basis for our observations,
and exploring regimens combining therapies targeting stromal
elements plus PD-1/PD-L1 blockade in UC.

Methods
Analysis of TCGA bladder cancer dataset. Bladder cancer RNAseq gene
expression data (“Level_3_RSEM_genes_normalized”) and patient survival data
were downloaded from Firehose (2016_01_28) at the Broad Institute (https://
confluence.broadinstitute.org/display/GDAC/Home/).

Estimation of ITA: To derive T-cell markers, we downloaded the gene
expression profiles of 513 cell type markers across 22 different types and states of
immune cells used by CIBERSORT42. Genes with standardized (gene-wise)
expression value >2 in at least one T-cell subtype/status were considered T-cell
markers resulting in a set of 144 T-cell markers. For each sample in the TCGA, ITA
was estimated by the arithmetic mean of the 144 T-cell marker expression levels (in
the log2 scale). We also used other sets of T-cell markers. The resultant ITA
showed very strong correlation with each other (see Supplementary Note 1 and
Supplementary Fig. 11).

EMT-related gene expression: The EMT-related gene expression signature was
comprised of 200 genes obtained from gene set “hallmark epithelial mesenchymal
transition” in The Molecular Signatures Database (MSigDB, software.
broadinstitute.org/gsea/msigdb). For each sample in TCGA, an EMT-related gene
expression score was calculated by the arithmetic mean of these 200 EMT gene
expression levels (in the log2 scale). We also calculated EMT scores based on
previous studies15,26 and obtained similar results (see Supplementary Note 1)

Purity analysis: To account for purity in analyzing correlation between ITA and
EMT-related genes, we downloaded tumor purity estimation for TCGA bladder
samples from previous studies23,43, We then adjusted the ITA value by the purity
estimation. Specifically, we used a linear regression model ITA ~ 1+ log(1-purity),

and obtained the residual of the model as the purity-adjusted ITA value. Similarly,
we adjusted EMT-related gene expression by purity. We then calculated correlation
between purity-adjusted ITA and EMT gene expression.

Survival analysis: Cox proportional hazards (PH) regression models were used
to assess the dependence of overall survival on ITA and EMT-related gene
expression. The magnitudes of associations were summarized by hazard ratios
(HRs). Reported HRs were scaled to compare the 75th and 25th percentiles of the
biomarker scores. Because the effects of the biomarkers were constrained to be
linear in these models, the HR estimates depended only on the difference between
the 75th and 25th percentiles, not on their individual values. Two-sided 95%
confidence intervals for HRs were based on Wald test statistics. Kaplan–Meier plots
based on categorization of the biomarker scores were used to illustrate associations
with OS. To obtain the EMT/Stroma_core gene list, we assessed the association of
each individual EMT gene with OS while controlling the effects of ITA using the
bivariate Cox regression model, λ(t|ITA, EMTgenej)= λ0(t)exp(β1 × ITA+ β2 ×
EMTgenej).The EMT genes were then ranked according to the p-value by Wald
test. We used a stringent cutoff of p < 1e−6 to select 18 EMT/Stroma_core genes
(corresponding to adjusted p < 2e−5 after correction for multiple testing).

Multiple testing: The BH method44 was used for correction of multiple testing
when appropriate.

Analysis of patient derived xenograft model. We generated a cohort of 5
patient-derived xenograft (PDX) models from circulating tumor cells derived
from the peripheral blood of patients with UC using an approach that we pre-
viously reported45. Briefly, 30 ml of peripheral blood was collected from patients
with metastatic UC prior to initiation of chemotherapy. Density gradient cen-
trifugation was performed followed by isolation of circulating tumor cells
through flow cytometry by depletion of CD45+ mononuclear cells and sub-
sequent subcutaneous injection of CD45- cells into immunocompromised
“NSG” mice. PDX that had undergone less than 5 passages were histologically
confirmed and molecularly characterized by performing genome-wide tran-
scriptome profiling using RNA-sequencing. Reads were first mapped to human
and mouse genome separately using TopHat46. The Bamcmp algorithm34 was
then used separate each read into human only, mouse only and both. The latter
category was further categorized into reads aligning better to human or reads
aligning better to mouse. As shown in supplementary Fig. 7, the fraction of reads
mapped to both genome (human_better and mouse_better) is very small (<2%),
suggesting very few reads with an ambiguous source. Reads from human_only
and human_better were subsequently combined to represent all reads from
human. Similarly, mouse_only and mouse_better categories were combined.
FeatureCounts47 was then used to calculate the read counts for each gene in
human and mouse separately. After genes with very low read counts were
removed (those with read counts less than five in both human and mouse for all
5 PDX models), a total of 14,018 genes were considered including 189 of the 200
hallmark_EMT genes and 128 of the 141 ESTIMATE_stromal genes. For each
gene and each sample, the proportion of reads coming from mouse is calculated
as read count from mouse for that gene divided by the total read count from
either mouse or human for that gene. To derive species-specific RPM value, the
raw count for each gene from human and mouse was scaled according to the
species-specific library size (total read counts from human or mouse). Expres-
sion change in mouse vs human for each gene was then calculated by mouse-
specific RPM value divided by human-specific RPM value for that gene.
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CheckMate 275 dataset and analysis. The CheckMate 275 (NCT NCT02387996)
dataset comprised 270 patients with platinum-resistant metastatic UC treated with
nivolumab on a phase II clinical trial and has been previously described in detail48.
Archival formalin-fixed paraffin embedded UC tumor specimens were submitted
for each patient prior to initiation of nivolumab. The response assessments and
survival follow-up of this cohort has previously been described; the objective
responses were determined based on a blinded independent review committee
assessment48.

Gene expression was measured using the HTG EdgeSeq system (HTG Molecular,
Tuczon, AZ) Oncology and Immuno-Oncology Biomarker Panels and has been
previously described48. Data were transformed into log2 Trimmed mean of M-values
(TMM) normalized counts per million (CPM) prior to analysis based on
manufacturer’s instructions. The EMT/Stroma_core score was calculated by the
arithmetic mean of the 8 EMT/Stroma_core gene expression levels.

CD8 expression (mouse clone C8/144B, Dako North America, Carpenteria, CA,
USA) was assessed by immunohistochemistry using an automated commercial

proprietary assay in a central laboratory (Mosaic laboratories, Lake Forest CA).
Regions of interest were circled loosely around areas of tumor and CD8 infiltrates
were expressed as % of total tumor area. Tumor cell PD-L1 membrane expression
was assessed at a central laboratory (Dako PD-L1 immunohistochemical 28-8
pharmDx kit, Dako North America, Carpenteria, CA, USA).

Cox Proportional Hazards (PH) regression models were used to assess the
dependence of PFS or OS on CD8 IHC score and stroma_core score. The models
included linear effects of each biomarker and the multiplicative interaction between
them. Proportional hazards assumptions were assessed by examination of scaled
Schoenfeld residuals. For all Cox PH models, the PH assumption appeared
reasonable. The magnitudes of associations were summarized by HRs, scaled as
described above for TCGA dataset. Linear logistic regression models were used to
assess the dependence of objective response on the biomarker scores. The
magnitudes of associations were summarized by odds ratios (ORs), scaled in
the same way as the reported HRs. Two-sided 95% confidence intervals for
ORs were based on Wald test statistics. Two-sided 95% confidence intervals
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Fig. 7 T-cells in UC specimens with higher EMT/Stroma-related gene expression are more frequently localized to the peritumoral stroma. Boxplots of the
density of a intratumoral or b peritumoral-stroma CD8 cells in specimens (n= 21), by EMT/Stroma_core gene expression category (≥ or < median level);
c Ratio of peritumoral stroma CD8 cells to intratumoral CD8 cells; d, e Representative tumor specimen with low intratumoral CD8 cells and high
peritumoral stromal CD8 infiltrates, and f, g with high total and intratumoral CD8 cells. Yellow-shaded zones in images d and f identify tumor areas,
whereas the rest represent adjacent stroma. Scale bars correspond to 200 μm. In boxplots, boxes extend from the first to third quartiles, middle line shows
median, whiskers extend up to 1.5 times the interquartile range from the top and bottom of the box to the furthest data within that distance. Data beyond
the end of the whiskers are “outlying” points. In a and b, filled circles show individual values. In c, the outlying point with extreme value is boxed with a
break in the Y axis to better display the entire distribution of the data. Two lines at the end of the whiskers correspond to the maximum and minimum of
the data points with the extreme outlier removed

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05992-x

10 NATURE COMMUNICATIONS |  (2018) 9:3503 | DOI: 10.1038/s41467-018-05992-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


for objective response rate were estimated by the Clopper-Pearson exact
method44.

Likelihood-ratio tests (two-sided) were used to test overall biomarker and
interaction effects. No formal correction for multiple hypothesis testing was done.
Kaplan–Meier plots based on categorization of the biomarker scores were used to
illustrate associations with PFS or OS. All data analyses were performed with R
3.4.1 for Linux.

To assess whether the CD8 lymphocytic infiltrate was located intratumorally
(mixed with the tumor cells) or in the peritumoral stroma, a subset of CD8
immunohistochemically stained slides from specimens with EMT/Stroma_core
gene expression at or above the median expression level and from 21 specimens
with EMT/Stroma_core gene expression below the median was selected. A
genitourinary pathologist (M.C-M.), blinded to gene expression data, manually
counted the number of CD8 expressing cells in five 200x microscopic fields for
each of the histological compartments (intratumoral vs. peritumoral stroma), and
then calculated the mean to determine the number of CD8 cells/mm2 for each
sample. The quantity of CD8 cells located in the different compartments in
specimens with higher vs. lower EMT/Stroma_core gene expression was compared
using the Wilcoxon rank sum test.

Data availability
Raw FASTQ data and processed data for PDX model are publically available in the NCBI
Gene Expression Omnibus (GSE116159). All other remaining data are available within
the Article and Supplementary Files, or available from the authors upon request.
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