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Abstract

One difficult question facing researchers is how to prioritize SNPs detected from genetic association studies for functional
studies. Often a list of the top M SNPs is determined based on solely the p-value from an association analysis, where M is
determined by financial/time constraints. For many studies of complex diseases, multiple analyses have been completed
and integrating these multiple sets of results may be difficult. One may also wish to incorporate biological knowledge, such
as whether the SNP is in the exon of a gene or a regulatory region, into the selection of markers to follow-up. In this
manuscript, we propose a Bayesian latent variable model (BLVM) for incorporating ‘‘features’’ about a SNP to estimate a
latent ‘‘quality score’’, with SNPs prioritized based on the posterior probability distribution of the rankings of these quality
scores. We illustrate the method using data from an ovarian cancer genome-wide association study (GWAS). In addition to
the application of the BLVM to the ovarian GWAS, we applied the BLVM to simulated data which mimics the setting
involving the prioritization of markers across multiple GWAS for related diseases/traits. The top ranked SNP by BLVM for the
ovarian GWAS, ranked 2nd and 7th based on p-values from analyses of all invasive and invasive serous cases. The top SNP
based on serous case analysis p-value (which ranked 197th for invasive case analysis), was ranked 8th based on the posterior
probability of being in the top 5 markers (0.13). In summary, the application of the BLVM allows for the systematic
integration of multiple SNP ‘‘features’’ for the prioritization of loci for fine-mapping or functional studies, taking into account
the uncertainty in ranking.
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Introduction

Many genome-wide association studies of complex diseases and

phenotypes have been completed in the last decade [1]. Since

these only identify the general locus for the risk allele, rigorous and

robust methods are needed to select which chromosomal regions

should be prioritized for follow-up fine-mapping and/or functional

studies. Often a list of the top M SNPs is determined based on the

p-value from the association analysis and carried forward into the

next stage of the study, where M is determined by financial

constraints. However, this approach is not optimal as rankings are

very variable (i.e., variance in the sampling distribution of rankings

can be large) and the ‘‘causative’’ variant may not be at the top of

ranked order of SNPs [2,3]. In addition, for many studies of

complex diseases, multiple analyses have been completed (e.g.,

multiple related diseases/phenotypes or subtypes of disease) and

integrating these multiple sets of results may be challenging. One

may also wish to incorporate biological knowledge, such as

whether the SNP is in the exon of a gene or a regulatory region,

into the selection of markers to follow-up.

Alternative approaches, that do not prioritize for follow-up

based only on ranked p-values, are based on statistical models in

which prior knowledge about the SNP can be incorporated into

the association analysis, using hierarchical, mixed, or multi-level

models [4,5,6,7,8,9]. Chen and Witte [9] describe a mixed model

framework for modeling M SNPs together where the SNP effects

are modeled with both the mean and variance of the multivariate

normal distribution depending on prior information. Bayesian

analysis of case-control studies using power priors to incorporate

historical knowledge was proposed by Cheng and Chen [10],

while Lewinger et al [11] proposed a hierarchical Bayes method of

weighting single SNP association results in a prior model that

incorporates previous knowledge.

In this manuscript, we present a Bayesian latent variable model

(BLVM) [12,13], similar to methods used to rank academic

institutions and hospitals [14], for the prioritization of markers for

follow-up in future replication or functional studies. The BLVM

allows for the incorporation of any type of observed information or

‘‘features’’ about a SNP (e.g., p-value, effect size, functional

variant, minor allele frequency, published association in the peer-

reviewed literature) into a model in which a latent ‘‘quality score’’

is estimated for each SNP. A drawback of other prioritization/

ranking approaches is that they do not incorporate the uncertainty

of the ranking into the prioritization [3]. Therefore, we propose

the prioritization of SNPs to follow-up based on the posterior

distribution of the rankings of the latent SNP quality scores [15].

We illustrate the BLVM for prioritization of SNPs for follow-up

using data from an ovarian cancer GWAS of 1815 invasive
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ovarian cases (1070 invasive serous subtype) and 1900 controls. In

addition to the application of the method to the ovarian GWAS,

where we do not know the ‘‘truth’’, we apply the BLVM to

simulated data, in which we know the truth. The simulated data

mimics the setting in which four independent studies have been

conducted for four related diseases/traits (e.g., inflammation-

related diseases, cancers involving solid tumors) with the

incorporation of where or not the marker is non-synonymous

(amino-acid changing) coding into the prioritization.

Methods

General Formulation of the Bayesian Latent Variable
Model (BLVM)

For K SNPs in the association analysis, let hk, k = 1, …, K

represent the latent ‘‘quality score’’ for each SNP. We wish to

estimate the latent variables hk based on a set of observed features

for the SNP, with Xkj representing the jth observed feature for the

kth SNP. Some possible features may included: 2log10(p-value),

effect size, minor allele frequency (MAF), function of SNP,

previously reported SNP or in a pathway or interest. A model is

then specified to associate the features with the latent variables.

One possible (simple) model is as follows: Xkj~bjzljhkzukj,

j = 1, …J features, k = 1, …K SNPs where Xkj represents the value

for the jth continuous feature for the kth SNP, hk represents the

latent ‘‘quality score’’ for SNP k, lj represents the importance of

the feature (i.e., how well this feature distinguishes between SNPs),

and ukj are the random errors and ukj*N(0,t2
j ) [12,14]. A

graphical depiction of a simplified model is presented in Figure 1.

In the case that the feature is binary, there are a few options: a

latent probit model could be utilized [16], such that Xkj*Ber(pkj)
with pkj~P(Ykjw0) and Ykj*N(gkj,1); a logistic model

Xkj*Ber(pkj) with log pkj

.
1-pkj

� �
~bjzljhk [17,18].

To complete the model specification, prior distributions are

then placed on all parameters in the model. To ensure proper

posterior distributions, proper prior distributions, as opposed to

improper prior distributions, are placed on all parameters in the

model [19]. The prior distributions for the latent scores hi are

typically taken to be independent standard normal distributions,

N(0,1). To ensure unique labeling, one can impose strong or

constraint priors for a few of the lj [12]. For example, if it is

deemed essential to have a high value of feature to correspond to a

high quality score, one could restrict the prior distribution to be a

normal distribution censored at 0 (i.e., l*N(0,1)I½0,?)). In the

case of latent variable models for SNPs, one may also want to

model the dependency between the SNPs and their corresponding

quality scores by using a prior for h that is multivariate normal,

such as h~(h1,:::,hK)T*MVN(m,V) with m*MVN(0,S) and

V-1*Wishart(R,u), with the matrices S and R are fixed (e.g.,

R = diagonal matrix consisting of 1). Another choice for modeling

the dependency in the SNP quality scores would be to model the

dependency between the latent SNP quality scores as a function of

LD or spatial distance [8], such as h*MVN(0,S(a2,w)), where

Sij(s
2,w)~s2exp(-dij=w) is the covariance between quality scores

for SNPs i and j with dij representing the distance between the two

SNPs (e.g., Euclidean distance between the locations of the two

SNPs).

Genome-wide study of ovarian cancer
Ovarian cancer is the fourth leading cause of cancer death

among women in the United States. In 2009, it is estimated that

21,550 new cases will be diagnosed in the United States, and

14,600 women will die from the disease [20]. Ovarian cancer risk

sharply increases after the age of 40 years and peaks between 65

and 79 years [20]. In the United States, white non-Hispanic

women have approximately 40% higher rates of ovarian cancer

than Hispanic or African-American women [20]. Most patients

are diagnosed with advanced disease because of the lack of an

effective screening strategy and the non-specific nature of early

signs and symptoms associated with this disease. For the

approximate 25% of women who are diagnosed with disease

confined to the ovary or ovaries, five-year survival rates are high

(75%–90%). For the 75% of women diagnosed with stage III and

IV disease, however, the likelihood of long term disease-free

survival is low (15%–20%).

The ovarian cases from the US GWAS that will be used for

illustration of the latent variable model for ranking SNPs includes

four North American studies: (1) FOTS, a population-based study

from Ontario 1995–1999, (2) MAYO, a clinic-based study of cases

and matched controls in the American upper Midwest 1999–2007,

(3) NCOCS, a case-control study covering 48 counties in North

Carolina, and (4) TBOCS, a population-based study conducted in

Tampa, Florida. The study protocol was approved by the

institutional review board at each center (Duke University

Institutional Review Board, Mayo Clinic Institutional Review

Board, Moffitt Cancer Center Institutional Review Board,

Women’s College Research Institute Institutional Review Board),

and all study participants provided written informed consent.

Eligibility for cases is confirmed epithelial ovarian cancer (tubal,

primary peritoneal, germ cell, stromal, and unknown histology are

excluded) with invasive disease (cases with low malignant potential

are excluded). Eligible controls are matched within each study to

cases on age, race and residence. All cases and controls were

additionally required to have adequate DNA, no prior history

colorectal cancer at age less than 50, and no prior history of

ovarian, breast, endometrioid cancer; in addition, known non-

Caucasian, Jewish, Hispanic, and related participants were

excluded. After all samples were genotyped using the Illumina

Infinium Human610-Quad BeadChip and quality control had

been completed, a total of 1,815 ovarian cancer cases (1,070

invasive serous ovarian cancer) and 1,900 controls were available

for association analysis.

Analysis for association of genetic markers with cancer status (all

invasive ovarian cancer cases versus controls), along with subtype

analysis of invasive serous ovarian cancer cases versus controls,

was completed using PLINK software [21]. Results from a

randomly selected chromosome (chromosome 20) were utilized to

illustrate the use of the latent variable model in prioritizing SNPs

for follow-up in functional studies (accounting for the uncertainty

in the ranking).
Figure 1. Diagram of Latent Variable Model.
doi:10.1371/journal.pone.0020764.g001

Ranking SNPs and Loci for Follow-Up Studies
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Five specific latent models applied to ovarian GWAS
Below, we outline five specific latent variable models for the

ranking of SNPs which were applied to the ovarian cancer GWAS.

The five BLVMs for prioritization of SNPs involve the following

SNP ‘‘features’’: Minor allele frequency (MAF), p-value and odds

ratio (OR) from analysis involving all cases and p-value and OR

from analysis involving a subset of the cases (i.e., histological

subtype). All features were first transformed such that ‘‘large’’

values of the factor would result in a ‘‘large’’ SNP quality score. In

addition, transformations for the various features were selected

such that they could be modeled using a normal distribution (for

speed in computation of the MCMC). It should be noted that

additional SNP features could be included in the model, such as,

whether or not the SNP is a non-synonymous coding variant or

associated with mRNA expression (eSNP) [22,23]. Likewise, a

variety of transformations of the features could also be employed.

For our presentation of the BLVM, we chose the following

transformations for the SNP features: f(p-value) = 2logit(p-value),

g(MAF) = logit(2*MAF), h(OR) = log(OR) if OR.1 and log(1/OR)

if OR,1. The transformation selected for the odds ratios resulted

in making the effects all in same direction (‘‘risk’’) with the log

transformation allowing h(OR) to be modelled with a normal

distribution censored at 0. Since MAF is between 0 and 0.5, we

double the MAF to get a value that ranged between 0 and 1 for the

logit transformation that allowed for modeling g(MAF) with a

normal distribution. Lastly, we chose to transform the p-values

using the minus logit with subsequent modeling of f(p-value) with a

normal distribution. These transformations also allow use of set

constraints on the latent variable model to allow for identifiability

of the model parameters, with large values for features (f(p-value),

g(MAF) and h(OR)) indicating larger SNP quality scores.

Model 1 involves J = 5 features including p-values and effect sizes

for two analysis along with the minor allele frequency for K SNPs,

assuming the J features and K SNP quality scores are independent.

First, we specify the likelihood model for the J = 5 features as

h(OR:1k)~b1zl1hkzu1k with u1k*N(0,t2
1)I(0,?), h(OR:2k)

~b2zl2hkzu2k with u2k*N(0,t2
2)I(0,?), f (p-value:1k)

~b3zl3hkzu3k with u3k*N(0,t2
3), f (p-value:2k)~b4zl4hk

zu4k with u4k*N(0,t2
4), and g(MAFk)~b5zl5hkzu5k with

u5k*N(0,t2
5), where N(m,t2)I(0,?) indicates left censored normal

distribution at 0 and hk represents the latent ‘‘quality score’’ for SNP

k. Next, we specify prior distributions for the parameters in the model.

For latent variable models, the direction for the latent variables is

arbitrary and without constraints on some of the parameters one can

encounter what is referred to as ‘‘labeling issues’’ or ‘‘sign changes’’

[24]. Thus, to ensure unique labeling, we have chosen to impose

strong priors on the parameters lj such that the higher the value of

the feature the higher the SNP quality score (e.g., SNPs with high

values for f(p-value) will have a higher quality score than those SNPs

with low values for f (p-value)). The prior model is specified as

hk*N(0,1) for k = 1,…,K, lj*N(0,10)I(0,?), bj*N(0,10) and

1=t2
j *Gamma(0:01,0:01) for j = 1,…,5. It should be noted that

when only one of the lj had a strong prior distribution specified to

help ensure labeling (i.e., l1*N(0,10)I(0,?)), with the remaining

parameters having prior distribution unrestricted (lj*N(0,10),
j=1), the MCMC failed to converge (as assessed by convergence

statistics and trace plots) due to ‘‘labeling’’ issues [25].

The second model we investigated (Model 2) was similar to

Model 1. However, the odds ratio features were removed leaving

only the p-values and MAF features in the model. The rationale

for removing the effect sizes from the BLVM was that on

observations, it appeared that too much weight might be given to

SNPs with very low MAF, as these are the markers that often have

the larger effect sizes (but larger standard errors). The third model

(Model 3) explored was one that was the similar to Model 2 (only

p-values and MAF features included) but with the latent quality

scores assumed to be dependent and model with the conjugate

multivariate Normal – Wishart prior. That is, we model the latent

SNP quality scores as h~(h1,:::,hK)T*MVN(m,V) with

m*MVN(0,S) and V-1*Wishart(R,u), with the matrices

S~100|I, R~0:10|I and u= K where I is a K6K identity

matrix. In contrast to modeling the dependency in the latent SNP

quality scores, in Model 4 we model dependency between the

parameters bj. That is, Model 4 is identical to Model 2 but

with the bj’s modeled as (b1,:::,bJ)T*MVN(mb,Vb) with

mb*MVN(0,Sb) and V-1
b *Wishart(Rb,J), with the matrices

Sb~100|I, Rb~0:10|I and where I is a J6J identity matrix.

The final model investigated (Model 5) was again similar to

Model 2 but with fewer constraints for identifiability, with only

constraints placed on the parameters lj for the p-value features

and not the MAF feature.

The BLVM can be fit and parameters estimated within a

Markov chain Monte Carlo. For application of the BLVM to

prioritization of SNPs, we are mostly concerned with the latent

SNP ‘‘quality scores’’, hk and not the parameters lj and bj. In

addition to parameter estimation for hk, we are also concerned

with the relative ranking of the SNPs, along with the incorporation

of uncertainty in the rankings. For example, we can estimate the

probability that a given SNP will be in the top 5 based on the

posterior distribution of the rankings to aid in the prioritizing of

SNPs for follow-up functional or fine-mapping studies. A benefit of

completing the latent variable modeling within a Bayesian

formulation is the flexibly of model form and the ability to assess

model fit. Various models can be fit and to assess the robustness of

the findings. For example, instead of assuming normality of the

quality scores hk, we could assume the scores follow a heavier

tailed distribution (e.g., t-distribution).

Simulated data
To illustrate the use of the BLVM for the prioritization of SNPs

from multiple GWAS studies along with the incorporation of

functional information for the variants, we simulated 10 replicate

sets of results (e.g., p-values for single SNP association) for 100

markers and four disease phenotypes (e.g., ovarian cancer, breast

cancer, prostate cancer, pancreatic cancer) for four scenarios. The

objective of the application of the BLVM is to determine possible

genetic variants relevant with the four phenotypes that should be

prioritized for functional studies. In simulating the SNP association

p-values, we treated markers 10, 20 and 40 as non-synonymous

coding variants, with the remaining markers considered ‘‘non-

coding’’ variants. Scenario 1 represents the case in which none of

the markers was associated with the phenotypes (e.g., null). The

second and third scenarios involving markers being associated with

the first two disease phenotypes; marker 10 (coding SNP)

associated in scenario 2 and marker 60 (non-coding SNP)

associated in scenario 3. The last scenario involved the setting in

which marker 60 was associated with all four disease phenotypes.

The 100 p-values for the four association studies were simulated,

assuming independence, from a Uniform(0,1) distribution for the

case of a ‘‘null’’ SNP association and from a Uniform(0, 0.05)

distribution for the case of a ‘‘non-null’’ SNP association.

Specific latent models applied to simulated data
As outlined for the BLVM for the ovarian GWAS, we chose to

transform the four p-values for association for each SNP using f(p-

value) = 2logit(p-value). We coded the functional feature of the kth

SNP as Ck = 1 if coding SNP and Ck = 0 if non-coding SNP. The

model we applied to the simulated data (Model 6) involved J = 5

Ranking SNPs and Loci for Follow-Up Studies
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features for each SNP (p-values for the four traits and function),

modeling all SNP features and quality scores as independent. Let

f (p-value:Dk)~bDzlDhkzuDk with uDk*N(0,t2
D), D = 1, 2,

3, 4 and Ck*Ber(pk) with log(pk=1-pk)~b5zl5hk where hk

represents the latent ‘‘quality score’’ for SNP k. The prior model is

specified as hk*N(0,1) for k = 1,…,100, lj*N(0,10)I(0,?),
bj*N(0,10) and 1=t2

j *Gamma(0:01,0:01) for j = 1,…,5. The

amount of weight given to each feature is similar, with each feature

effect having a normal distribution with mean 0 and variance 10,

censored at 0. To give less to the coding feature, a smaller variance

could be used in specifying the coding feature prior

(lj*N(0,1)I(0,?)), which would results in shrinkage of this effect

(and importance) towards zero.

Results

Genome-wide study of ovarian cancer
Comparison of five latent models. The five different latent

variable models outlined above were first assessed using the top 100

SNPs on chromosome 20 from the ovarian GWAS. All five models

were fit using the WinBUGS software package [26] by way of the R

package BRugs [27]. For each analysis, three independent chains

were run, each with 40,000 iterations, with the first 20,000 removed

for burn-in of the MCMC. Convergence was checked using trace

plots and the
ffiffiffiffi
R
p

measure discussed by Gelman et al [25].

Figure 2 shows the relationship between the estimated rank

(mean of the posterior distribution for the rank of the latent SNP

quality score) and the 2log10(p-values) for the case-control analysis

using all cases (Figure 2A) and the subset of cases with serous

histology (Figure 2B). Figure 3 displays the relationship between

the ranks (lower diagonal of the scatterplot matrix) and standard

deviation (upper diagonal of the scatterplot matrix) in the posterior

distributions for the five latent variable models. These figures

illustrate the following. First, inclusion of the odds ratios as a

feature in the BLVM (Model 1) resulted in SNPs with very low

MAF and large effects being ranked in the top SNPs along with

rankings from this model inconsistent with (1) rankings based on

the other four models and (2) rankings based on the p-values from

the case-control association analysis. Second, ranks based on

model 2, 3 and 4 are very consistent with similar SD in rankings.

In terms of variation in ranks, posterior distributions for rankings

of the SNP latent quality score for model 3 had slightly larger

variation as compared to models 2 and 4, with no real difference in

variation in posterior distribution between models 2 and 4. Lastly,

Figure 2. Plot of SNP ranks (mean of posterior distribution of rank) and the 2log10(p-values) from analyses using (A) all invasive
cases or (B) only invasive serous cases for each of the five BLVMs.
doi:10.1371/journal.pone.0020764.g002

Ranking SNPs and Loci for Follow-Up Studies
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model 5 had lower concordance with model 2, 3 and 4’s rankings

and p-values from the association analysis, but produce smaller

variation in rankings (SD) than models 2, 3 and 4. Based on these

results, we opted to use model 2, which is the simplest BLVM

model, to estimate the SNP latent quality scores for the top 500

markers from chromosome 20.

Ranking of the top 500 SNPs. Based on the results from the

ranking of the top 100 SNPs on chromosome 20 using the five

BLVM, we next used the simplest model (Model 2) to rank the top

500 markers using the features: p-value from case-control analysis

involving all cases, p-value from case-control analysis involving

only cases with serous histology, and the MAF for the marker.

Table 1 presents the top 40 ranked markers based on the BLVM

of 500 markers from chromosome 20, sorted by posterior

probability of being in top 5 markers. Results for all 500

markers are presented in Table S1. The markers were ranked

based on the mean of the posterior distribution for the latent SNP

‘‘quality score’’. The top ranked marker (marker 1) from the

BLVM had a median rank of 6 and was in the top 5 markers 47%

of the time. As the 95% credible interval indicates, there is a large

amount of variation in the rank with the interval ranging from 1 to

302. However, marker 1 was ranked 2nd and 7th based on the p-

value from the case-control analysis involving all cases and the

histological subtype analysis, respectively. Similarly, the second

Figure 3. Plots of the mean rank (lower diagonal of sub-plots) and standard deviation in rank (upper diagonal of sub-plots) in the
posterior distributions of the rankings from the five BLVMs. The two set of sub-plots are all plotted on the same scale.
doi:10.1371/journal.pone.0020764.g003

Table 1. Top 40 markers determined from BLVM. The markers are sorted by P(top 5).

Marker MAF Invasive Serous Rank based on P Posterior Dist of Ranks

P OR P OR Invasive Serous P(top 5) Median

1 0.139 2.0E-05 0.82 2.0E-05 0.79 2 7 0.47 6

2 0.14 2.0E-05 0.82 3.0E-05 0.79 1 9 0.46 7

3 0.116 3.0E-05 1.22 1.2E-04 1.26 3 24 0.33 15

4 0.13 4.0E-05 0.82 4.0E-05 0.79 4 13 0.27 12

5 0.134 4.0E-05 0.83 6.0E-05 0.8 7 20 0.19 16

6 0.18 4.0E-05 0.84 8.0E-05 0.82 6 23 0.19 17

7 0.18 4.0E-05 0.84 8.0E-05 0.82 5 21 0.19 17

8 0.11 2.0E-03 1.17 1.0E-05 1.32 197 1 0.13 151

9 0.252 4.0E-05 0.86 3.2E-02 0.91 8 286 0.12 52

10 0.126 7.0E-05 1.21 8.0E-05 1.25 9 22 0.09 21

11 0.015 1.4E-04 0.61 5.0E-05 0.51 41 16 0.06 38

12 0.174 1.0E-04 0.85 1.5E-04 0.82 20 26 0.05 29

13 0.015 1.5E-04 1.64 6.0E-05 1.94 43 19 0.05 40

Ranking SNPs and Loci for Follow-Up Studies
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ranked (marker 2) from the BLVM, with median rank of 7 and

probability in the top 5 of 0.46, was ranked 1st and 9th based on

the analysis of all cases, regardless of histological type, and the

cases with serous histological subtype invasive ovarian cancer. In

contrast, the top ranked marker (marker 8) based on the subtype

analysis p-value (197th based on the all case analysis) ranked in the

top 5 markers with probability 0.13 based on the BLVM. The

probability of being in the top 5, as opposed to the rank based on

the mean of the posterior distribution of the quality score, takes

into account the variation in rankings. This can also be seen in the

95% credible intervals for the rankings of the markers.

Figure 4 displays the relationship between the various SNP

features and rankings for the 500 markers. As the figure illustrates,

the ranking of markers based on the BLVM is related mostly to the

p-value from the invasive cases analysis and less so from the results

of the invasive serous case analysis and MAF. We also observed

that the probability of being in the top 5 markers is highest for

markers with small p-values for both invasive and invasive serous

analysis is as well as having MAF around 0.10–0.20.

Simulated Data
The BLVM (Model 6) was applied to each of the 10 simulated

datasets, in which the four disease association p-values and the

function (coding or non-coding variant) for the 100 SNP markers

were included in the latent model. The models were fit using the

WinBUGS software package [26] by way of the R package BRugs

[27]. For each analysis, three independent chains were run, each

with 40,000 iterations, with the first 20,000 removed for burn-in of

the MCMC. The mean SNP ‘‘quality score’’ and median rank for

Scenarios 2–4 (non-null scenarios) are presented in Table 2, with

the mean computed for null and non-null markers along with

coding and non-coding markers. Table 3 presents the results for

the null scenario (Scenario 1). As the tables illustrate, for Scenario

2 the median ranking for the non-null marker (a functional

marker) is in the top 4% of markers in 6 out of 10 simulations,

while the average median rank for the null markers was around

50, as expected. When compared to Scenario 3, in which the

associated marker is not a coding marker, the median rank for the

associated markers is much lower than the ranking from Scenario

2, due to the fact that the non-null marker was not a coding

variant. The final scenario in which all four diseases are associated

with a non-coding marker, we observe that the ranking for the

associated marker improve due to the added information from

association with phenotypes 3 and 4. In terms of the null scenario

(Scenario 1), the coding markers are ranked slightly higher than

the non-coding markers due to BLVM putting some importance

on coding variants over non-coding variants (Table 3).

Marker MAF Invasive Serous Rank based on P Posterior Dist of Ranks

P OR P OR Invasive Serous P(top 5) Median

14 0.049 8.0E-05 0.75 1.5E-03 0.76 10 57 0.04 45

15 0.049 8.0E-05 1.32 1.5E-03 1.31 11 58 0.04 45

16 0.049 8.0E-05 0.75 1.5E-03 0.76 13 59 0.04 45

17 0.049 8.0E-05 1.32 1.5E-03 1.32 12 60 0.04 46

18 0.258 9.0E-05 0.87 3.9E-02 0.91 15 301 0.02 74

19 0.258 9.0E-05 1.15 3.8E-02 1.1 16 297 0.02 75

20 0.258 9.0E-05 0.87 3.8E-02 0.91 17 298 0.02 75

21 0.258 9.0E-05 0.87 3.8E-02 0.91 18 300 0.02 75

22 0.259 9.0E-05 0.87 4.3E-02 0.91 14 311 0.02 73

23 0.258 1.0E-04 1.15 4.1E-02 1.09 19 307 0.02 76

24 0.257 1.1E-04 1.15 3.8E-02 1.1 24 296 0.02 79

25 0.258 1.1E-04 1.15 4.4E-02 1.09 21 321 0.02 80

26 0.258 1.1E-04 1.15 4.4E-02 1.09 22 319 0.02 80

27 0.258 1.1E-04 0.87 4.3E-02 0.91 25 318 0.02 81

28 0.258 1.1E-04 1.15 4.4E-02 1.09 23 320 0.02 81

29 0.258 1.1E-04 0.87 4.3E-02 0.91 26 317 0.02 81

30 0.258 1.1E-04 0.87 4.5E-02 0.91 28 329 0.02 81

31 0.258 1.1E-04 1.15 4.4E-02 1.09 30 322 0.02 81

32 0.258 1.1E-04 0.87 4.5E-02 0.91 27 327 0.02 82

33 0.258 1.1E-04 1.15 4.4E-02 1.09 31 323 0.02 82

34 0.147 4.6E-04 1.17 8.2E-04 1.2 67 37 0.01 77

35 0.125 5.9E-04 0.84 8.4E-04 0.81 81 40 0.01 89

36 0.176 1.4E-04 0.85 1.2E-02 0.88 40 218 0.01 78

37 0.002 2.2E-04 0.24 4.0E-03 0.24 53 119 0.01 85

38 0.038 7.6E-04 1.35 5.0E-04 1.44 90 34 0.01 102

39 0.434 3.4E-04 0.89 6.8E-03 0.9 57 186 0.01 96

40 0.434 3.5E-04 0.89 6.8E-03 0.9 59 185 0.01 96

doi:10.1371/journal.pone.0020764.t001
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Discussion

Over the past few years, numerous GWAS for various complex

disease and drug-related phenotypes have been completed,

resulting in more than 350 publications and over 1500 SNPs

implicated for association with multiple (.80) disease phenotypes

or traits [1]. However, the SNPs identified are not necessarily the

functional variant, requiring additional research to fine map these

putative regions or loci [28] for further biological characterization.

Given the extensive efforts involved, it is important to prioritize

SNPs for functional studies detected from GWAS. We propose a

Bayesian latent variable model (BLVM) to assist in this process.

The BLVM allows researchers to incorporate various ‘‘features’’

about the SNP into the ranking, including results from analysis of

multiple phenotypes and prior knowledge, such as whether or not

the SNP is a non-synonymous variant or associated with mRNA

expression (eSNP) [22,23]. In addition, the BLVM allows one to

quantify the uncertainty in the ranking by estimating the

probability that the SNP will be in the top K SNPs. The proposed

Bayesian latent variable model (BLVM) incorporates these SNP

‘‘features’’ to estimate a latent ‘‘quality score’’, with SNPs

prioritized based on the posterior probability distribution of the

quality score rankings. We illustrate the method using data from

an ovarian cancer GWAS of 1815 cases (1070 serous subtype) and

1900 controls, and compare the results from the BLVM to the

standard ranking of SNPs based on the association p-value. In

addition to the application of the BLVM to the ovarian GWAS,

we outlined five BLVM models and compared the rankings from

these five models. In the end, we opted for the BLVM simplest

model for the ranking of SNPs for prioritization for functional

studies. Results from the BLVM applied to the ovarian GWAS

results for chromosome 20 indicate that if there is only resources to

functionally validate a few markers, one should select the two

markers with posterior probability of being in the top 5 markers of

0.46. However, for this study, the same two SNPs are selected for

follow-up based on the p-value rankings from the analysis of

invasive ovarian cancer and controls. In addition, depending on

whether the follow-up involves replication of the association, as

opposed to completion of functional studies, selection of only one

of these two markers is necessary, as they are in high LD.

Figure 4. Relationship between SNP association p-values, rankings based on p-values and BLVM and Probability in the top 5
markers. I.P and S.P represent the p-values from the analyses involving all invasive cases or invasive serous cases, respectively; I.P.Rank and S.P.Rank
represent the rank of the marker based on the p-values from the analysis involving all invasive cases or invasive serous cases, respectively; BLVM.Rank
and P.Top5 represent the median rank and the probability of being in the top 5 markers based on the BLVM.
doi:10.1371/journal.pone.0020764.g004
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In addition to the ability of the BLVM to systematically

integrate multiple features about the SNPs, the model is flexible in

terms of model choice, choice of features to incorporate into the

prioritization and weight/importance given to the different

features. For example, in the simulated data, we illustrate the

use of the BLVM for synthesizing results from multiple genetic

association studies conducted on related diseases/traits, as a means

for detecting pleiotropic effects (e.g., genetic variants associated

with multiple traits). In the application of the BLVM to the

simulated data, we also incorporated information regarding

whether or not the marker was a coding SNP. The results showed

how the inclusion of knowledge about the ‘‘functional’’ aspect of

the SNP impacted the results, along with the effect of having all

four traits associated with the marker, as compared to only two

traits. The application of the BLVM to both the ovarian GWAS

and the simulated data, further illustrates the flexibly in model

choice and which features to include in the model. For instance,

imputation of untyped markers for association analysis in GWAS

is becoming a commonly used analysis technique [29,30,31].

However, researchers may wish to prioritize observed SNPs over

imputed SNPs. This information, or feature, can be included in

the model such that SNPs genotyped will be given more weight

than SNPs imputed based on a reference panel (e.g., HapMap).

Lastly, sensitivity analysis is possible (and recommended) to

assess the impact of modeling choice on the results, as illustrated

with the comparison of the five BLVM and the ovarian cancer

GWAS. Currently, there is a limitation on the number of markers

one can model with BLVM, due to the computational nature of

the Bayesian model (i.e., only a few thousand SNPs). Thus,

following the genome-wide analysis, a couple thousand markers

Table 2. Summary of simulated p-values and results from analysis using BLVM for Scenarios 2, 3 and 4.

Simulation* Mean Quality Score Median Rank Mean Quality Score Median Rank

Scenario 2 Null Non-Null Null Non-Null Non-Coding Coding Non-Coding Coding

1 20.029 2.46 50.69 1 20.052 1.57 51.5 7.3

2 20.018 1.64 50.95 4 20.033 1.01 51.5 17.7

3 20.021 1.81 50.77 3 20.038 1.12 51.4 13.7

4 20.023 2.1 51.36 1 20.037 1.12 51.8 21

5 20.02 1.73 50.83 4 20.041 1.24 51.6 11

6 20.02 2.08 51.11 2 20.043 1.41 51.8 14

7 20.016 1.33 50.77 7 20.027 0.8 51.1 25

8 20.029 2.81 50.9 1 20.064 2.05 51.8 4.7

9 20.022 2.21 51.06 2 20.04 1.32 51.6 16.3

10 20.023 2.36 50.82 2 20.053 1.73 51.6 10.3

Scenario 3

1 20.011 0.84 50.82 20 20.022 0.64 51.3 26.3

2 20.005 0.19 50.91 51 20.039 1.15 52.1 11.3

3 20.009 0.6 50.65 25 20.033 0.97 51.4 16.7

4 20.006 0.48 50.28 38 20.037 1.16 51.3 13

5 20.025 2.1 51.13 3 20.004 20.01 50.7 48.7

6 20.012 0.74 50.78 26 20.034 0.95 51.4 21

7 20.003 0.26 50.77 42 20.044 1.39 52 7

8 0.002 20.19 50.2 63 20.046 1.47 51.6 7.7

9 20.008 0.66 50.71 23 20.031 0.96 51.4 19

10 20.004 0.72 50.92 24 20.011 0.47 51.1 36.7

Scenario 4

1 20.018 1.86 50.76 3 20.009 0.33 50.8 35

2 20.017 1.53 50.88 5 20.026 0.79 51.2 24.7

3 20.021 1.85 51.25 2 20.024 0.7 51.4 29

4 20.018 1.91 50.78 3 20.021 0.72 51.2 21.3

5 20.02 1.91 51.19 3 20.014 0.43 51.1 39.7

6 20.017 1.54 50.65 6 20.008 0.19 50.4 42.3

7 20.023 2.07 51.01 3 20.005 0.08 50.7 45

8 20.02 1.75 50.97 4 20.026 0.77 51.4 22.3

9 20.038 3.54 51.06 1 20.004 0.07 50.8 44.3

10 20.013 1.27 50.48 9 20.032 1.04 51.1 16.7

*Scenario 2: SNP 10 (coding SNP) simulated to be associated with phenotypes 1 & 2.
Scenario 3: SNP 60 (non-coding SNP) simulated to be associated with phenotypes 1 & 2.
Scenario 4: SNP 60 (non-coding SNP) simulated to be associated with all phenotypes.
doi:10.1371/journal.pone.0020764.t002
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can be selected (possibly based on univariate or multi-locus p-

values or q-values) for which BLVM can be applied using SNP

‘‘features’’ the investigator feels are important in the prioritization,

to determine which markers to carry forward into follow-up

studies. Another possible approach to reduce the model space

would be to remove SNPs in high LD prior to analysis using the

BLVM. However, as this approach might be acceptable for follow-

up studies involving replication, it might not be an appropriate

approach for selecting SNPs for functional studies as one could be

removing functional variants in high LD with non-functional

variants. Future work is needed to determine the optimal

approach to deal with markers in high LD and algorithms to

speed up the computation time of the BLVM. In summary, the

BLVM is a flexible model that allows for the systematic integration

of multiple SNP features, along with the ability to assess the

uncertainty in the ranking, for the prioritization of markers for

future functional studies.
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