
diagnostics

Article

Deep Learning Models for Poorly Differentiated Colorectal
Adenocarcinoma Classification in Whole Slide Images Using
Transfer Learning

Masayuki Tsuneki *,† and Fahdi Kanavati †

����������
�������

Citation: Tsuneki, M.; Kanavati, F.

Deep Learning Models for Poorly

Differentiated Colorectal

Adenocarcinoma Classification in

Whole Slide Images Using Transfer

Learning. Diagnostics 2021, 11, 2074.

https://doi.org/10.3390/

diagnostics11112074

Academic Editors: Eun-Sun Kim and

Kwang-Sig Lee

Received: 18 October 2021

Accepted: 8 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Medmain Research, Medmain Inc., Fukuoka 810-0042, Japan; fkanavati@medmain.com
* Correspondence: tsuneki@medmain.com; Tel.: +81-92-707-1977
† These authors contributed equally to this work.

Abstract: Colorectal poorly differentiated adenocarcinoma (ADC) is known to have a poor prognosis
as compared with well to moderately differentiated ADC. The frequency of poorly differentiated ADC
is relatively low (usually less than 5% among colorectal carcinomas). Histopathological diagnosis
based on endoscopic biopsy specimens is currently the most cost effective method to perform as part
of colonoscopic screening in average risk patients, and it is an area that could benefit from AI-based
tools to aid pathologists in their clinical workflows. In this study, we trained deep learning models to
classify poorly differentiated colorectal ADC from Whole Slide Images (WSIs) using a simple transfer
learning method. We evaluated the models on a combination of test sets obtained from five distinct
sources, achieving receiver operating characteristic curve (ROC) area under the curves (AUCs) up to
0.95 on 1799 test cases.

Keywords: deep learning; transfer learning; poorly differentiated adenocarcinoma; colon

1. Introduction

According to global cancer statistics in 2020 [1,2], colorectal cancer (CRC) is amongst
the most common leading causes of cancer deaths in the world and the second most com-
mon in the United States [1]. In 2020, approximately 147,950 individuals were diagnosed
with CRC, and 53,200 died from the disease. Screening and high-quality treatment can
help in improving survival prospects. This is evidenced by the decrease in CRC death
rates from 2008 to 2017 by 3% annually in individuals aged 65 years and older and by 0.6%
annually in individuals aged 50 to 64 years. However, as the incidence of CRC in young
and middle-aged adults (younger than 50 years) has been increasing (by 1.3% annually [1]),
the American Cancer Society lowered the recommended age for screening initiation for
individuals at average risk from 50 to 45 years in 2018 [2,3]. The development of endoscopy
provided a major impact on the diagnosis and treatment of CRC, especially colonoscopy
which allows observation of the colonic mucosal surface with biopsies of identified and/or
suspicious lesions [4].

Deep learning has been successfully applied in computational pathology in the past
few years for tasks such cancer classification, cell segmentation, and outcome prediction for
a variety of organs and diseases [5–18]. For the classification of tumour in colorectal WSI,
Iizuka et al. [18] trained a model on a large dataset of colorectal WSIs for the classification
of well differentiated ADC; however, it did not include poorly differentiated ADC.

Histopathologically, adenocarcinoma (ADC) account for more than 90% of CRCs.
Most colorectal ADCs are well to moderately differentiated types with gland-forming and
configuration of the glandular structures. If more than 50% of the tumor is formed by
non-gland forming carcinoma cells, the tumor is classified as poorly differentiated (or
high grade) ADC [19–21]. The frequency of poorly differentiated ADC is relatively low
(3.3% to 18% of all CRCs) [22–26]. The 5-year survival rate for patients with colorectal
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poorly differentiated ADC is 20% to 45.5%, which indicates that poorly differentiated ADC
has a less favorable prognosis compared with that of well or moderately differentiated
ADC [23,26–28].

In this paper, we trained deep learning models for the classification of diffuse-type
ADC in endoscopic biopsy specimen whole slide images (WSIs). We have used the partial
transfer learning method [29] to fine-tune the models. We obtained models with ROC
AUCs up to 0.95 for on the combined test set with a total of 1799 WSIs, demonstrating the
potential of such methods for aiding pathologists in their workflows.

2. Methods
2.1. Clinical Cases and Pathological Records

For the present retrospective study, a total of 2547 endoscopic biopsy cases of human
colorectal epithelial lesions HE (hematoxylin & eosin) stained histopathological specimens
were collected from the surgical pathology files of five hospitals: International University
of Health and Welfare, Mita Hospital (Tokyo) and Kamachi Group Hospitals (consisting
of Wajiro, Shinmizumaki, Shinkomonji, and Shinyukuhashi hospitals) (Fukuoka) after
histopathological review of those specimens by surgical pathologists. The experimental
protocol was approved by the ethical board of the International University of Health and
Welfare (No. 19-Im-007) and Kamachi Group Hospitals. All research activities complied
with all relevant ethical regulations and were performed in accordance with relevant
guidelines and regulations in the all hospitals mentioned above. Informed consent to use
histopathological samples and pathological diagnostic reports for research purposes had
previously been obtained from all patients prior to the surgical procedures at all hospitals,
and the opportunity for refusal to participate in research had been guaranteed by an opt-
out manner. The test cases were selected randomly, so the obtained ratios reflected a real
clinical scenario as much as possible. All WSIs were scanned at a magnification of ×20,
and the average dimension was 30 K × 15 K pixels. This protocol is similar to [18,30–32].

2.2. Dataset and Annotations

Prior to this study, the diagnosis of each WSI was verified by at least two pathologists,
and they excluded cases that were inappropriate or of poor scanned quality. In particular,
about 20% of poorly differentiated ADC cases were excluded due to disagreement between
pathologists. Table 1 breaks down the distribution of the dataset into training, validation,
and test sets. Hospitals which provided histopathological cases were anonymised (e.g.,
Hospital 1–5). The training and test sets were solely composed of WSIs of endoscopic biopsy
specimens. The patients’ pathological records were used to extract the WSIs’ pathological
diagnoses. In total, 36 WSIs from the training and validation sets had a poorly differentiated
ADC diagnosis. They were manually annotated by a group of two surgical pathologists
who perform routine histopathological diagnoses. The pathologists carried out detailed
cellular-level annotations by free-hand drawing around poorly differentiated ADC cells.
The well to moderately differentiated ADC (n = 71), adenoma (n = 110) and non-neoplastic
subsets (n = 531) of the training and validation sets were not annotated and the entire
tissue areas within the WSIs were used. Each annotated WSI was observed by at least two
pathologists, with the final checking and verification performed by a senior pathologist.
This dataset preparation is similar to [18,30–32].

2.3. Deep Learning Models

We trained all the models using the partial fine-tuning approach [29]. This method
simply consists of using the weights of an existing pre-trained model and only fine-tuning
the affine parameters of the batch normalisation layers and the final classification layer. We
used the EfficientNetB1 [33] model starting with pre-trained weights on ImageNet. The
total number of trainable parameters was only 63,329.

The training method that we have used in this study is exactly the same as reported in
a previous study [30]. For completeness, we repeat the method here. To apply the CNN on
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the WSIs, we performed slide tiling by extracting square tiles from tissue regions. On a
given WSI, we detected the tissue regions and eliminated most of the white background
by performing a thresholding on a grayscale version of the WSI using Otsu’s method [34].
During prediction, we performed the tiling in a sliding window fashion, using a fixed-
size stride, to obtain predictions for all the tissue regions. During training, we initially
performed random balanced sampling of tiles from the tissue regions, where we tried to
maintain an equal balance of each label in the training batch. To do so, we placed the WSIs
in a shuffled queue such that we looped over the labels in succession (i.e., we alternated
between picking a WSI with a positive label and a negative label). Once a WSI was selected,
we randomly sampled batch size

num labels tiles from each WSI to form a balanced batch. To maintain
the balance on the WSI, we oversampled from the WSIs to ensure the model trained on
tiles from all of the WSIs in each epoch. We then switched into hard mining of tiles once
there was no longer any improvement on the validation set after two epochs. To perform
the hard mining, we alternated between training and inference. During inference, the CNN
was applied in a sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive if the WSI was negative
and the k tiles with the lowest probability for being positive if the WSI was positive. This
step effectively selected the hard examples with which the model was struggling. The
selected tiles were placed in a training subset, and once that subset contained N tiles, the
training was run. We used k = 16, N = 256, and a batch size of 32.

From the WSIs with poorly-differentiated ADC, we sampled tiles based on the free-
hand annotations. If the WSI contained annotations for cancer cells, then we only sampled
tiles from the annotated regions as follows: if the annotation was smaller than the tile size,
then we sampled the tile at the centre of the annotation regions; otherwise, if the annotation
was larger than the tile size, then we subdivided the annotated regions into overlapping
grids and sampled tiles. Most of the annotations were smaller than the tile size. On the
other hand, if the WSI did not contain diffuse-type ADC, then we freely sampled from the
entire tissue regions.

The models were trained on WSIs at ×20 magnification. To obtain a prediction on a
WSI, the model was applied in a sliding window fashion using a tile size of 512 × 512 px
and a stride of 256 × 256 px, generating a prediction per tile. The WSI prediction was
then obtained by taking the maximum from all of the tiles. The prediction output for the
ensemble model was obtained as simply the average output of the three models used.

We trained the models with the Adam optimisation algorithm [35] with the following
parameters: beta1 = 0.9, beta2 = 0.999, and a batch size of 32. We used a learning rate of
0.001 when fine-tuning. We applied a learning rate decay of 0.95 every 2 epochs. We used
the binary cross entropy loss function. We used early stopping by tracking the performance
of the model on a validation set, and training was stopped automatically when there was
no further improvement on the validation loss for 10 epochs. The model with the lowest
validation loss was chosen as the final model.

2.4. Software and Statistical Analysis

We implemented the models using TensorFlow [36]. We calculated the AUCs in
python using the scikit-learn package[37] and performed the plotting using matplotlib [38].
We performed image processing, such as the thresholding with scikit-image [39]. We
computed the 95% CIs estimates using the bootstrap method [40] with 1000 iterations. We
used openslide [41] to perform realtime slide tiling.

3. Results

The aim of this study was to train a deep learning model based on convolutional
neural networks (CNNs) to classify poorly differentiated ADC in WSIs of colorectal biopsy
specimens. We had a total of 748 WSIs which were available for training of which only
36 WSIs had poorly differentiated ADC. Given the small number of WSIs, we opted for us-
ing a transfer learning method which was suitable for such a task. Transfer learning consists
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of fine-tuning the weights of a model that was pre-trained on another dataset for which a
larger number of images were available for training. To this end, we evaluated four models:
(1) a model that was fine-tuned starting with pre-trained weights on ImageNet [42], (2) a
model that was fine-tuned starting with pre-trained weights on a stomach WSIs dataset [30],
(3) a model that was pre-trained for the classification of gastric poorly differentiated ADC
which we did not fine-tune [30], and (4) a model which consisted of an ensemble [43] of
the previous three models. Figure 1 shows an overview of our training method.

Figure 1. Method overview. (a) An example of poorly differentiated ADC annotation that was carried out on the WSIs
by pathologists using in an in-house web-based application. (b) The initial training consisted in fully-random balanced
sampling of positive (poorly differentiated ADC) and negative tiles to fine-tune the models. (c) After a few epochs of
random sampling, the training switched into iterative hard mining of tiles that alternates between training and inference.
During the inference step, we applied the model in a sliding window fashion on all of the WSI and selected the k tiles with
the highest probabilities if the WSI was negative, and k tiles with the lowest probabilities if the WSI was positive. The tiles
were collected in a subset that was batched and used for training. This process allows training to reduce false positives.
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Evaluation on Five Independent Test Sets from Different Sources

We evaluated our models on five distinct test sets consisting of biopsy specimens, three
of which were from hospitals not in the training set. Table 1 breaks down the distribution of
the WSIs in each test set. For each test set for for their combination, we computed the ROC
AUC and log loss for the WSI classification of poorly differentiated ADC as well as the log
loss, and we have summarised the results in Table 2 and Figure 2. Figures 3 and 4 show
true positive and false positive example heatmap outputs, respectively. Table 3 shows a
confusion matrix for the combined test set using the ensemble model and a probability
threshold of 0.5. When operating with a high sensitivity threshold (sensitivity 100%), the
specificity for the best model on the combined test set was 75%.

(a) (b)

(c) (d)
Figure 2. ROC curves for the four models as evaluated on the combined test sets and each test set separately. (a) Evaluation
of the four models on the combined test set (n = 1741), (b) TL stomach model on the test sets that had poorly differentiated
ADC, (c) TL ImageNet model on the test sets that had poorly ADC, (d) Stomach model on the test sets that had poorly
differentiated ADC.
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Table 1. Distribution of WSIs in the training, validation, and test sets.

Poorly Diff. ADC Well-to-Moderately-Diff. ADC Adenoma Non-Neoplastic Total

Test

Hospital 1 12 125 61 251 449
Hospital 2 9 41 78 44 172
Hospital 3 18 20 210 39 287
Hospital 4 18 74 239 158 489
Hospital 5 17 144 55 186 402

Training Hospital 1 & 5 30 60 90 500 680
Validation Hospital 1 & 5 6 11 20 31 68

Table 2. ROC and log loss results on the different test sets using the different transfer learning
methods.

Method Source ROC AUC Log Loss

Ensemble combined 0.950 [0.925, 0.971] 0.135 [0.122, 0.148]
TL stomach combined 0.953 [0.937, 0.966] 0.466 [0.426, 0.506]
TL ImageNet combined 0.947 [0.923, 0.968] 0.555 [0.511, 0.594]
Stomach model combined 0.896 [0.862, 0.923] 0.863 [0.814, 0.911]
TL stomach Hospital 1 0.976 [0.936, 0.997] 0.236 [0.196, 0.271]
TL stomach Hospital 2 0.964 [0.927, 0.991] 0.459 [0.347, 0.576]
TL stomach Hospital 3 0.982 [0.966, 0.995] 0.195 [0.143, 0.244]
TL stomach Hospital 4 0.964 [0.94, 0.983] 0.44 [0.36, 0.515]
TL stomach Hospital 5 0.932 [0.886, 0.97] 0.949 [0.855, 1.081]
TL ImageNet Hospital 1 0.903 [0.774, 0.993] 0.325 [0.284, 0.367]
TL ImageNet Hospital 2 0.973 [0.939, 0.999] 0.613 [0.468, 0.72]
TL ImageNet Hospital 3 0.983 [0.965, 0.997] 0.268 [0.209, 0.326]
TL ImageNet Hospital 4 0.97 [0.948, 0.987] 0.48 [0.398, 0.549]
TL ImageNet Hospital 5 0.923 [0.868, 0.969] 1.085 [0.972, 1.219]
Stomach model Hospital 1 0.851 [0.739, 0.928] 1.055 [0.953, 1.167]
Stomach model Hospital 2 0.865 [0.768, 0.951] 0.882 [0.722, 1.032]
Stomach model Hospital 3 0.924 [0.864, 0.96] 0.607 [0.506, 0.716]
Stomach model Hospital 4 0.923 [0.843, 0.981] 0.554 [0.475, 0.62]
Stomach model Hospital 5 0.933 [0.881, 0.972] 1.2 [1.102, 1.326]

Table 3. Confusion matrix for the ensemble model with a threshold of 0.5.

Predicted Label
Other Poorly ADC

True label
Other 1572 153
Poorly ADC 11 63
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Figure 3. A representative true positive poorly differentiated colorectal ADC case from the endoscopic
biopsy test set. Heatmap images show true positive predictions of poorly differentiated ADC cells
and they correspond, respectively, to H&E histopathology (a, c, d) using stomach model (upper
panel), transfer learning from stomach model (middle panel), and transfer learning from ImageNet
model (lower panel). According to the pathological diagnosis provided by surgical pathologists,
histopathological evaluation for each tissue fragment is as follows: #1, #2, #4, #5, and #7 were positive
for poorly differentiated ADC; #3 and #6 were negative for poorly differentiated ADC. The high
magnification image (b) shows representative H&E histology (#3 fragment), which is negative for
poorly differentiated ADC.
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Figure 4. A representative example of poorly differentiated colorectal adenocarcinoma (ADC) false positive prediction
output on a case the from endoscopic biopsy test set. Histopathologically, this case is a non-neoplastic lesion (colitis).
Heatmap images exhibited false positive prediction of poorly differentiated ADC using transfer learning from stomach
model (upper panel) and transfer learning from ImageNet model (lower panel). The inflammatory tissue with plasma cell
infiltration (a and b) is the primary cause of false positive due to its analogous nuclear and cellular morphology to poorly
differentiated ADC cells.

4. Discussion

In this study, we trained deep learning models for the classification of poorly differentiated
ADC from colorectal biopsy WSIs. We used transfer learning with a hard mining of false
positives to train the models on a training set obtained from two hospitals. We evaluated four
models—one of which was an ensemble of the other three—on five different test sets originating
from different hospitals, and on the combination of all five, given the small number of cases
with poorly differentiated ADC. Overall, we obtained high ROC AUC of about 0.95.



Diagnostics 2021, 11, 2074 9 of 11

Given the histopathological similarity between gastric and colonic ADC, the stomach
model—which was previously trained on poorly differentiated cases of gastric ADC—was
still able to perform well on the colonic cases. There was improvement in further fine-
tuning the model, where the ROC AUC increased from 0.89 to 0.95. However, the result is
similar to having fine-tuned a model that was previously only trained on ImageNet. The
ensemble model had similar AUC, albeit with the lowest log loss of all the models.

The primary limitation of this study was the small number of poorly differentiated
ADC cases; overall, there were only 36 in the training set and 74 in the test set. The small
number of poorly differentiated ADC is to be expected given that well to moderately
differentiated ADC is typically more common. The combined test set contained a large
number of well to moderately differentiated ADC and non-neoplastic, which increases the
chances of false positives. Nonetheless, the models performed well and did not have a high
false positive rate across a wide range of thresholds, based on the ROC curves in Figure 2.

Most ADCs in colon are moderately to well differentiated types. On the other hand,
because poorly differentiated ADC exhibits the worst prognoses among the various types
of colorectal cancer, it is important to classify on endoscopic biopsy specimens [26]. In
this study, we have shown that deep learning models could potentially be used for the
classification of poorly differentiated ADC. Using a simple transfer learning method, it was
possible to train a high performing model relatively quickly compared to having to train a
model from scratch. Deep learning models show high potential for aiding pathologists and
improving the efficiency of their workflow systems.

Poorly differentiated ADC tends to grow and spread more quickly than well and
moderately differentiated ADC, and this makes early screening critical for improving
patient prognosis. The promising results of this study add to the growing evidence that
deep learning models could be used as a tool to aid pathologists in their routine diagnostic
workflows, potentially acting as a second screener. One advantage of using an automated
tool is that it can systematically handle large amounts of WSIs without potential bias due to
fatigue commonly experienced by surgical pathologists. It could also drastically alleviate
the heavy clinical burden of daily pathology diagnosis. AI is considered a valuable tool
that could transform the future of healthcare and precision oncology.
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