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Abstract

Working memory is a core component of critical cognitive functions such as planning and

decision-making. Persistent activity that lasts long after the stimulus offset has been consid-

ered a neural substrate for working memory. Attractor dynamics based on network interac-

tions can successfully reproduce such persistent activity. However, it requires a fine-tuning

of network connectivity, in particular, to form continuous attractors which were suggested

for encoding continuous signals in working memory. Here, we investigate whether a specific

form of synaptic plasticity rules can mitigate such tuning problems in two representative

working memory models, namely, rate-coded and location-coded persistent activity. We

consider two prominent types of plasticity rules, differential plasticity correcting the rapid

activity changes and homeostatic plasticity regularizing the long-term average of activity,

both of which have been proposed to fine-tune the weights in an unsupervised manner. Con-

sistent with the findings of previous works, differential plasticity alone was enough to recover

a graded-level persistent activity after perturbations in the connectivity. For the location-

coded memory, differential plasticity could also recover persistent activity. However, its pat-

tern can be irregular for different stimulus locations under slow learning speed or large per-

turbation in the connectivity. On the other hand, homeostatic plasticity shows a robust

recovery of smooth spatial patterns under particular types of synaptic perturbations, such as

perturbations in incoming synapses onto the entire or local populations. However, homeo-

static plasticity was not effective against perturbations in outgoing synapses from local pop-

ulations. Instead, combining it with differential plasticity recovers location-coded persistent

activity for a broader range of perturbations, suggesting compensation between two plastic-

ity rules.

Author summary

While external error and reward signals are essential for supervised and reinforcement

learning, they are not always available. For example, when an animal holds a piece of

information in mind for a short delay period in the absence of the original stimulus, it

cannot generate an error signal by comparing its memory representation with the stimu-

lus. Thus, it might be helpful to utilize an internal signal to guide learning that can make a
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system resilient. Here, we investigate the role of such unsupervised plasticity for working

memory maintenance, which acts during the delay period without external inputs. We

consider two prominent classes of learning rules: differential plasticity that corrects the

rapid changes of instant neural activity and homeostatic plasticity that regularizes the

long-term average of activity. The two learning rules have been proposed to fine-tune the

synaptic weights in continuous attractor models suggested for parametric and spatial

working memory. Here, we compare their performance under various network perturba-

tions and learning parameters. The systematic studies reveal the conditions under which

each rule can effectively stabilize persistent memory and suggest possible synergy between

the two learning rules.

Introduction

Continuous attractors have been hypothesized to support brains’ temporary storage and inte-

gration of analog information [1–4]. An attractor is an idealized stable firing pattern that per-

sists in the absence of stimuli. Integration is allowed if these attractors form a continuous

manifold. Theoretical models predict that neural activity should be restricted within but free

to move along this manifold, making stochastic fluctuation correlated among neurons, as is

validated in the brainstem oculomotor neural integrator [5], the entorhinal grid cell system

[6], and prefrontal visuospatial selective neurons [7].

Computationally, the performance of continuous attractors is known to be sensitive to net-

work parameters, which is termed as the “fine-tuning problem” [8,9]. A slight imperfection

like a synaptic weight asymmetry could make continuous attractors break down into a few dis-

crete attractors or cause an overall drift of activities. This raises the question of how continuous

attractors could exist in the brain. Noting that the model is just an idealization, earlier studies

have proposed that continuous attractors can be approximated by finely discretized attractors

with a hysteresis of coupled bi-stable units, which would make the system more robust [10,11].

Recent theoretical studies suggest other complementary mechanisms, including derivative

feedback and short-term facilitation, with the former slowing down activity decay [12,13] and

the latter transiently enhancing stability [14,15].

These workarounds could make continuous attractors more tolerant to perturbations in

connectivity strengths or heterogeneity of single neuronal properties. Not mutually exclusively,

long-term plasticity is believed to take part in settling a reasonable parameter range. For exam-

ple, the plasticity involved in the fish oculomotor integrator has been most studied. Previous

works have proposed either visually supervised plasticity [16–18] or self-monitoring plasticity

acting in the dark [19,20]. These plasticity rules utilize time-derivative signals to detect slips in

the eye position or changes in neural activity, so-called differential plasticity. Note that similar

mechanisms can be generalized to mediate the tuning conditions of the parametric working

memory encoding analog information [12,18,21]. More broadly, derivative-based rules have

been suggested to learn temporal relationships between input and output [22–24] and in rein-

forcement learning [25–27].

Another class of long-term synaptic plasticity for stabilizing continuous attractors is

homeostatic plasticity, which regularizes the excitability of neurons [28]. Many models focused

on the role of homeostatic plasticity to prevent instability. As homeostatic plasticity tends to

pull excitation down or boost inhibition when network activity is higher than a reference

value, a positive feedback between network activity and activity-dependent plasticity can be

counterbalanced [29]. On the other hand, Renart et al. [30] considered network storing spatial
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information in spatially localized “bump” activity and proposed an additional role of homeo-

static plasticity, that is to regularize the network patterns and recover tuning condition for spa-

tial working memory perturbed by the heterogeneity of local excitability. Similarly, Pool and

Mato [31] suggested that for developing orientation selectivity through Hebbian learning in

recurrent connections, homeostatic plasticity can enforce symmetry in synaptic connections

such that all orientations can be represented equally in the networks.

Both differential and homeostatic plasticity suggested for attractor networks are unsuper-

vised. External supervisory or reward signals are not required to achieve the tuning condition

to form continuous attractors. As shown previously, they can act after the offset of sensory sig-

nals and might be suitable for memory tasks that typically have a long memory period without

external input. However, previous works have investigated the effect of differential plasticity

and homeostatic plasticity partially for different types of continuous attractor or under particu-

lar types of perturbations in the network connectivity or inhomogeneity of neuronal properties.

Therefore, we investigated whether these two forms of learning can stabilize persistent

activity in continuous attractors, which require fine-tuning conditions of network parameters.

As a systematic study, we considered two different types of continuous attractors, namely,

rate-coded and location-coded persistent memory, under which memory neurons show

monotonic tuning of an encoded feature or bell-shaped tuning, respectively [2,4]. For both

types of memory, we considered a single framework, called the negative derivative feedback

mechanisms [12,13]. First, we formally described the fine-tuning problem in a rate-coded

attractor system with a simpler network architecture than a location-coded attractor. We

examined the effects of differential plasticity and homeostatic plasticity and how recovery

from perturbation in connectivity depends on the learning parameters. Then we extended the

scope of our investigation to a location-coded system that requires spatially structured net-

works and investigated the recovery of tuning conditions under various types of perturbations.

Finally, we demonstrated that two rules could partially compensate for each other when they

are combined.

Results

Rate-coded persistent activity in one homogenous population

Before we discuss the synaptic plasticity rule that stabilizes persistent spatial patterns of activ-

ity, we first consider the similar mechanism applied for a rate-coded persistent activity where

the persistent firing rate of memory neurons varies monotonically with the encoded signals

[2]. Compared to location-coded memory suggested for maintaining spatial information, the

rate-coded one has been suggested to maintain graded-level information such as somatosen-

sory vibration frequency [32,33]. Previous theoretical works proposed that recurrent circuits

can maintain both types of memory based on similar feedback mechanisms despite the differ-

ent network architecture [13]. Thus, we first gain insight into how the specific form of synaptic

plasticity can stabilize persistent memory in the rate coding scheme, which has a simpler net-

work structure.

As the rate-coded network can be built upon a spatially homogeneous structure, its

dynamic principle can be captured in the mean-field equations describing the network dynam-

ics with one variable (Methods). Two representative feedback mechanisms can be present

based on recurrent network interactions, positive feedback and negative derivative feedback,

both of which is described by the following equation,

dr
dt
¼ � r þ wnetr � wder

dr
dt
þ IðtÞ: ð1Þ
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In the above equation, r represents the mean firing rate of the network activity. We considered

that time t and other time constants are unitless (normalized with the intrinsic time constant

of r) for simplicity. The first and last terms on the right side represent the intrinsic leakage and

transient external input. The second and third terms represent the feedback arising from

recurrent inputs.

In the positive feedback models, the excessive excitatory inputs need to be tuned to cancel

the intrinsic leakage such that the net gain wnet in the second term is tuned to be one, whereas

wder is typically zero [12]. On the other hand, in the negative derivative feedback models, bal-

anced excitatory and inhibitory recurrent inputs with different kinetics generate the resistive

force against memory slippage, similar to time-derivative activity in the third term (Methods).

As its strength represented by wder increases with overall recurrent synaptic currents while the

second term remains relatively small for balanced excitation and inhibition, Eq 1 is approxi-

mated by wder
dr
dt ¼ I tð Þ. Thus, for large negative derivative feedback, the effective time constant

of decay of network activity increases proportionally, and the decay of activity slows down

[12]. Note that the feedforward input to be integrated is I(t)/wder. This ratio can remain con-

stant for large wder if the feedforward input strengths I(t) increase together with the recurrent

one as well as wder as considered in typical balanced network models [12,34].

With a long effective time-constant of decay, both networks show integrator-like properties

such that during the stimulus presentation, it integrates the external input. After its offset, it

maintains persistent activity at different levels (Fig 1A). However, any memory circuits keep-

ing the information in continuum states face a fine-tuning problem [8,9,35]. Similarly, for

rate-coded persistent memory, despite the different tuning conditions in positive feedback

models and negative-derivative feedback models, the deviation from the perfect tuning leads

to a gross disruption of persistent activity. For instance, a reduction in the E-to-E connection

causes an imbalance between the recurrent excitation and inhibition in negative derivative

feedback models and leads to the rapid decay of the activity (Fig 1E). Such an E-to-E perturba-

tion has been suggested to underlie the disruption of persistent firing in memory cells observed

experimentally under the application of NMDA blockade [12,36].

Stabilization of persistence through differential plasticity

To mitigate this fine-tuning condition and to make the network resilient against perturbations,

several forms of synaptic plasticity have been proposed. Two prominent synaptic plasticity

rules suggested for persistent activities are homeostatic plasticity [28,30] and differential plas-

ticity [19,20]. Here, we examine how each plasticity can stabilize a rate-coded persistent

activity.

First, we consider differential synaptic plasticity where the synaptic update depends on the

firing rates of pre- and postsynaptic neurons and their time derivatives (Fig 1B; [19]). Previous

work showed that such a plasticity rule updates the synaptic connections to reduce the overall

derivative of network activities [19]. We considered the negative-derivative feedback model

composed of one homogenous population to understand further how the fine-tuning condi-

tion can be achieved through the differential plasticity rule. If initially balanced excitation and

inhibition is perturbed by the reduction in the excitatory connection and excitatory connec-

tion changes according to the differential plasticity rule, the dynamics of the system can be

captured by the firing rate r and excitatory connection strength Wexc as

dr
dt
¼ � r þ ðWexc � WinhÞr � wder

dr
dt
þ IðtÞ

dWexc

dt
¼ � a

dr
dt

r
ð2Þ
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Fig 1. Recovery of rate-coded persistent activity through differential plasticity. A: Maintenance of persistent

activity through negative-derivative feedback. With balanced excitation and inhibition as well as slower excitation, the

network can maintain persistent activity at different rates. The top panel illustrates the schematic of a pulse-like

stimulus. The dotted and dash-dotted curves in both top and bottom panels represent stimulus and activity with

double and half the input strengths compared to the solid one. B: Schematics of differential plasticity in the excitatory

feedback. C-D: Recovery of persistent activity (C) and E-I balance under differential plasticity (D) after perturbations

in connectivity strengths. E-F: Activities with 10% perturbation (E) and after the recovery (F). The time axis is in the

unit of intrinsic time constant τ, and one trial is composed of the stimulus presentation, delay period, and an inter-trial

interval. Shaded areas represent the delay period during which the plasticity occurs.

https://doi.org/10.1371/journal.pcbi.1009083.g001
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where wnet is replaced by Wexc−Winh in Eq 1, and wder is proportional to Winh multiplied by

the difference of the time constants for excitatory and inhibitory inputs feedback (Methods).

The steady states of the system are r = 0 or dr/dt = 0, where the latter can be achieved for

balanced excitation and inhibition, that is, Wexc/Winh ~ 1 for large Winh. We simulated the

dynamics in successive trials, where each trial is composed of stimulus presentation and delay

period followed by the inter-trial interval (Fig 1C). Note that we assume that the plasticity rule

modifies the synaptic strengths only during the delay period (shaded area in Fig 1E and 1F;

Discussion). That is, during the stimulus presentation, the external input I(t) is on and plastic-

ity is off, while it is opposite during the delay period such that I(t) is off and plasticity is on.

During the inter-trial interval, the activity is set to zero and plasticity is naturally off.

In these successive trials, the “r = 0” steady state cannot be maintained because r is reset to a

nonzero value during the stimulus presentation in each trial. In the phase plane of r and Wexc,

the evolution of the system during the delay period corresponds to a smooth trajectory follow-

ing the vector field defined by Eq 2 with I(t) = 0. On the other hand, during the stimulus pre-

sentation, external input increases r without changing Wexc, leading to a horizontal jump in

the trajectory (Fig 2A). In initial trials, Wexc is deficient compared to Winh, resulting in activity

drift (Fig 1C and 1E). The drift drives differential plasticity to potentiate Wexc. As a result, Wexc

recovers over the trials (Fig 1D and Fig 2A). Once the balanced tuning condition with Wexc�

Winh is achieved, the network can maintain the graded level of persistent activities (Fig 1F).

Fig 2. Recovery dynamics dependence on learning parameters under differential plasticity. A: Phase-plane of activity r and synaptic strength of

recurrent excitation Wexc. The small black arrows represent a vector field for the dynamics of r and Wexc, described in Eq 2. The red curve is a trajectory

starting from 10% perturbation in Wexc, that is, Wexc = 0.9Winh with Winh = 500. During the stimulus presentation, the trajectory jumps horizontally, and

input strengths vary randomly across trials. The big arrows indicate the effects of changing the learning speed α or Winh (blue vertical) and relative mean

input strengths c (magenta horizontal). B-E: Dependence of recovery speed on learning and network parameters. The minimum number of trials for Wexc
to reach up to 0.99Winh, that is, about 1% from perfect tuning was obtained by varying α (B), c (C), Winh (D), perturbation strength p (E). All parameters

change from 50% to 200% of those used in Fig 1.

https://doi.org/10.1371/journal.pcbi.1009083.g002
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We further investigated how the speed for recovery of the tuning condition depends on the

parameters of differential plasticity (Fig 2). Mathematical analysis revealed the relationship

between the effects of changing the learning speed α, Winh, and overall input strengths during

the stimulus presentation, denoted as c. Increasing c is equivalent to increasing α to the second

power, while increasing Winh is equivalent to decreasing α to the third power (Fig 2B, 2C, and

2D; Methods). Intuitively, increasing Winh is effectively the same as stretching the Wexc-axis,

resulting in a similar effect to decreasing α (blue vertical arrow in Fig 2A). Thus, stronger

derivative feedback with larger Winh requires a longer time to recover after the same percent-

age of perturbation (Fig 2D). On the other hand, c determines the increment of r during the

stimulus presentation such that larger stimulus strength pushes the system in a faster speed

regime and makes the system converge faster (magenta horizontal arrow in Fig 2A and 2C).

Another parameter is the perturbation strength p. Analytically, we found the relationship

between α and p in a special case–in a single trial with the same initial state of activity, increas-

ing p or decreasing α leads to the same final activity if the final state is a balanced one (Meth-

ods). While such an analytical derivation holds only for a single trial reaching the balanced

state, we found a qualitatively similar inverse relationship in multiple trials. Increasing p sets

the initial Wexc further away from the final balanced state and results in longer recovery to the

balanced state, similar to decreasing α (Fig 2B and 2E)

Homeostatic plasticity is effective but sensitive

While differential plasticity has been shown to stabilize the rate-coded persistent activity

[12,19,20], homeostatic plasticity has been suggested to stabilize different forms of memory,

such as spatial working memory [30] and discrete working memory [37,38]. Homeostatic plas-

ticity regulates the excitability of postsynaptic neurons. In its typical form, all incoming synap-

ses onto the postsynaptic neurons multiplicatively scale for the long-term average rate to

achieve their target firing rates r0 (Fig 3A). As for differential plasticity, we examined the effect

of homeostatic plasticity in one homogenous population for a rate-coded persistent activity,

whose dynamics is described as

dr
dt
¼ � r þ Wexc � Winhð Þr � wder

dr
dt
þ I tð Þ

dWexc

dt
¼ � aWexc r � r0ð Þ:

ð3Þ

Fig 3. Recovery of rate-coded persistent activity through homeostatic plasticity. A: Schematics of homeostatic plasticity scaling the

strengths of incoming synapses to achieve the target firing rate r0. B-C: Recovery of E-I balance after perturbations in connectivity

strengths (B) and maintenance of persistent activity at the different levels after the recovery (C).

https://doi.org/10.1371/journal.pcbi.1009083.g003
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The steady state of such a system is achieved when r = r0 and dr/dt = 0, that is, Wexc�Winh

for large Winh. Note that this is more stringent than those for differential plasticity that requires

the latter balance condition only.

Like differential plasticity, we found that the steady state can be achieved through homeo-

static plasticity (Fig 3B). However, it requires additional tuning of parameters such as the tar-

get rate r0, the mean input strength c, and inhibitory feedback strength Winh. For instance,

given c and Winh determining the value of r at the beginning of the delay, r0 should match the

mean of initial r over trials to achieve the balance condition and stabilize the rate-coded persis-

tent activity (Fig 3B and 3C). However, for inadequately tuned r0, the balanced state cannot be

achieved. With decreasing r0, the mean of initial r becomes larger than r0, and the dynamics of

r drifts downward to achieve r0 on average during the delay period (Fig 4A and 4C, bottom).

Fig 4. Sensitivity of homeostatic learning rule on learning parameters. A-B: Dependence of final balance ratio Wexc/Winh on r0 (A) and α (B). After

reaching the steady state, Wexc/Winh was averaged over the trials whose mean and standard deviation were shown as red curve and graded area. C-D:

Evolution of Wexc/Winh over trials (top) and the activity after reaching the steady state (bottom) for lower r0 (C) and higher r0 (D) compared to that in

Fig 3B and 3C. E: Sensitivity to learning speed α. For a faster learning rate, the homeostatic plasticity leads to the oscillation even for properly tuned r0,
leading to a larger standard deviation (square in B) compared to a slower learning rate (circle in B corresponding to Fig 3B and 3C).

https://doi.org/10.1371/journal.pcbi.1009083.g004
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Consequently, Wexc is stabilized to be deficient compared to Winh (Fig 4C, top), whereas

increasing r0 leads to the upward drift of activity and excessive Wexc (Fig 4D). We found that

changing c or Winh affects the final Wexc/Winh similarly to changing r0 (S1 Fig and Methods).

We also examined the effect of other parameters, learning speed α and perturbation

strength p. Unlike r0, c or Winh, changing α or p does not affect the final balance state but

affects the recovery speed (Figs 4B and S1). Increasing α or decreasing p reduces the number

of trials to reach the balanced Wexc/Winh as in differential plasticity. However, a local stability

analysis that utilizes the eigenvalues of the Jacobian matrix at the steady state further reveals

that near the steady state, the system shows oscillations whose frequency depends on α such

that larger α leads to faster oscillation (Methods). In successive trials with reset in r, larger α
leads to the ongoing oscillation near the balanced Wexc/Winh even for properly tuned learning

parameters (square in Fig 4B and 4E). Overall, the analysis of one homogenous population

shows that although homeostatic rule can stabilize persistent activity for rate-coded memory,

the balance condition and stability are sensitive to learning parameters.

Location-coded persistent memory in spatially structured network

So far, we have shown how two prominent plasticity rules can stabilize rate-coded persistent

memory in one homogenous population. However, whether the same mechanism can be gen-

eralized to stabilize location-coded persistent memory is in question. While rate-coded persis-

tent memory can be encoded in the amplitude of the homogeneous population, it was

suggested that location-coded persistent memory is encoded in the spatial pattern of multiple

populations connected through distance-dependent weights [2,4]. However, both differential

and homeostatic plasticity rules are local, depending on pre- and postsynaptic activities but

have no regularization on a spatial pattern of activities. Here, we consider the negative deriva-

tive feedback model suggested for spatial working memory [13] and explore under which con-

dition each plasticity can stabilize location-coded persistent memory.

Previous work showed that the principle for negative derivative feedback found for one

homogenous population could be extended to a network with columnar structure. Such a

structure is required to maintain a spatial pattern of persistent activity. Consistent with experi-

mental observations [39–41], both excitatory and inhibitory neurons in each column have sim-

ilar spatial selectivity. The connectivity strengths decrease as the preferred features over the

columns get dissimilar (Fig 5A and 5B). Assuming translation invariance of connectivity

strength such that it depends only on the distance between neurons’ preferred features, the

network activity is symmetric under the translation of stimulus location. Note that as in [13],

we consider a network encoding circular variables such as direction with periodic boundary

conditions, so translation-invariance is equivalent to rotation-invariance on a ring.

Under translation-invariant connectivity and activity patterns, dynamics can be analyzed

through Fourier analysis, where the spatial pattern of the population activity is decomposed

into a sum of cosine modes (Fig 5C; [13]). Assuming linear dynamics of neurons, recurrent

synaptic inputs can be broken into the product of synaptic strengths and activity in each

cosine mode. Then the dynamics of each mode are analogous to the dynamics of one homo-

geneous population (Methods). Although not considered here, even in the presence of non-

linear input-output transfer function, the dynamics under strongly balanced excitation and

inhibition are similar to linear dynamics [12,13,34]. Thus, the condition for negative deriva-

tive feedback in each Fourier mode is similar to the rate-coded network—slower recurrent

excitation with the same condition on the synaptic time constants as in the homogeneous

case, and balanced recurrent excitation and inhibition of that mode represented in terms of

the Fourier coefficients of the synaptic strengths. With excitation and inhibition balanced in
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each Fourier mode, the spatial pattern of that Fourier mode can be stabilized during the

delay period [13].

With similar balanced tuning conditions for the location-coded persistent memory, the

perturbation to the synaptic connections leads to a similar disruption in the activity as in the

rate-coded network (Fig 5D and 5E). We first considered the multiplicative scaling down of all

Fig 5. Location-coded persistent activity and its disruption under perturbation of tuning. A: Schematics of the

spatial structure of network for location-coded memory. We considered that both excitatory and inhibitory neurons

are organized in a columnar structure where each column consists of neurons with a similar preferred feature of the

stimulus. Blue and red represent excitatory and inhibitory connections, respectively. B: Example connectivity matrix

showing symmetry under translation. We considered the memory neurons encode the spatial information during the

delay period, which lies on a circle, represented by θ ranging between -π and π. We assumed that before perturbation,

the synaptic strengths depend only on the difference between feature preference of post and presynaptic neurons. C:

Decomposition of spatially patterned activity into Fourier modes under translation-invariance. Figure adapted from

[13]. D-E: Location-coded persistent activity under E-I balance (D) and its disruption under 10% global perturbation

in the E-to-E connection (E). The upper panels show the activity of all neurons during five consecutive trials with each

neuron labeled by its preferred feature. The middle panels show the activity of the neuron at the stimulus center and

the lower panels show the activity of 3 Fourier modes with the constant mode shrunk by a factor of 1/4 for better

visualization.

https://doi.org/10.1371/journal.pcbi.1009083.g005
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E-to-E connections, called a global perturbation (Fig 5E). This leads to imbalanced excitation

and inhibition and decay of activity in all Fourier modes. Note that the translation-invariant

property is maintained under the global perturbation of the connectivity. Thus, the activity

pattern is still symmetric for different stimulus locations despite its rapid decay to the baseline

compared to the unperturbed case (Fig 5E).

Effects of differential plasticity under global perturbation

Next, we examined whether differential plasticity can recover the balance tuning condition for

a spatially structured network. We assumed that the stimulus location is uniformly distributed

and changes randomly across different trials. As in the homogeneous population, plasticity

rules were applied during the delay period in each trial.

For a small global perturbation, the differential rule was shown to recover persistent activity

in forms of spatial patterns like the ones before perturbation (Fig 6). Unimodal activity peaked

at the stimulus location can be maintained at any location after the differential plasticity rule

recovers the balance of excitation and inhibition (Fig 6A and 6B). We quantified the ability to

maintain location-coded persistent memory using the decoding error of spatial information at

the end of the delay period (Methods). Initially, after global perturbation, the decoding error

became around one, indicating loss of spatial information. Over the course of learning with

differential plasticity, it becomes close to the decoding error before the perturbation (Fig 6C).

In line with this, the time constant of decay of different Fourier modes was shown to prolong

(S2 Fig). In the eigenvector decomposition of the connectivity matrix, eigenvectors corre-

sponding to the leading eigenvalues were found to be similar to Fourier modes towards the

end of the simulation, which is a signature of preservation of translation-invariance (S2 Fig;

[42]). The ratios of associated eigenvalues increase to one, albeit with different speeds, suggest-

ing the recovery of the balance tuning condition in each mode (Fig 6D).

However, if the perturbation is large, then translation invariance breaks down, and Fourier

analysis cannot be applied. For larger perturbation, the persistence of activity is recovered

under differential plasticity, but the spatial pattern is fragmented by silent neurons (Fig 7A and

7B). In these silent neurons, inhibition from neighboring neurons exceeds total excitatory

inputs during the stimulus period, and due to threshold nonlinearity, translation-invariance

breaks down. With no activity during the delay period, the activity-dependent differential plas-

ticity cannot potentiate incoming recurrent excitation, and the recovery of persistent activity is

not uniform across different neurons.

To quantify this heterogeneity, we calculated the first Fourier component of the tuning

curve of each neuron at the end of the delay period, representing its spatial selectivity, and

obtained its mean and standard deviation across neurons (Fig 6E; Methods). Its mean

increases with learning, indicating the increase of spatial selectivity with learning (Fig 6E). The

ratio between the mean and standard deviation was used to quantify the translation-invari-

ance, because with a translation-invariance state, spatial selectivity is uniform across neurons,

and its standard deviation is relatively small compared to the mean, leading to their ratio close

to zero. On the other hand, this quantity is of order one if the translation-invariance breaks

down [31].

For a small perturbation, the variance of the first Fourier component of the tuning curve

can transiently increase, reflecting an overall increase of activity level. However, the normal-

ized variance decreases over successive trials with the translation-invariance maintained (Fig

6E and 6F). For larger perturbation, a fraction of neurons becomes silent and the normalized

variance of spatial selectivity is not reduced to zero even after decoding error reaches its

asymptote, indicating the breakdown of translation-invariance (Fig 7D). Note that even with a
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loss of translation-invariance, the decoding error can still be low (Fig 7C) in the case that only

a few neurons are silent and the neighboring neurons partially compensate for them with

enhanced rates. However, as more neurons get silent under larger perturbation, the network

eventually loses the ability to encode and maintain spatial information (Figs 7E, 7F and S3).

Fig 6. The effect of differential plasticity under small global perturbation. A: Recovery of location-coded memory

under differential plasticity with learning rate αd = 10−3 and 10% global perturbation in the E-to-E connections. B:

Activity pattern at the end of the delay period after the recovery. With the connectivity frozen at trial 2000 (arrow in

C), the spatial pattern of activity at the end of the delay period was shown for different stimulus locations. C: Decrease

of decoding error with learning. An individual trial refers to one memory task with a specific stimulus location. For

each trial, we took the snapshot of activity at the end of the delay period as in B and quantified the mean of the

decoding error using the population vector decoder (black curve; Methods) and the standard error of the mean (grey

shaded area). Dashed line indicates decoding error before perturbation. D: Recovery of E-I balance for different

Fourier modes. The eigenvector decomposition reveals the effective time constant of decay and recovery of E-I balance

in different Fourier modes (S2 Fig; Methods). E: Mean (black) and standard deviation (red) of spatial selectivity across

neurons quantified by the first Fourier component of each neuron’s tuning curve at the end of the delay period. F:

Normalized standard deviation of spatial selectivity in (E), where its decrease with learning indicates recovery of

translation-invariance.

https://doi.org/10.1371/journal.pcbi.1009083.g006
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We also explored how the decoding error and translation-invariance improve under differ-

ential plasticity as varying the learning speed αd (Fig 7E and 7F). Numerically, it was found

that decreasing αd provides a similar effect to increasing perturbation strength p. Either larger

perturbation or slower learning rule tends to create more silent neurons and degrade both

decoding performance and translation-invariance (S3 Fig). Note that such an inverse relation-

ship between αd and p is consistent with one observed in a homogeneous population (Fig 2B

Fig 7. The effect of differential plasticity under various levels of global perturbation and learning rates. A-B:

Activity pattern during three successive trials (A) and at the end of delay period for various stimulus locations (B) after

reaching the steady state with αd = 10−3 and 30% global perturbation (yellow box in E,F). C-D: Evolution of decoding

error (C) and normalized deviation of spatial selectivity (D). E-F: Heatmap showing decoding error (E) and

normalized deviation of spatial selectivity (F) after reaching steady state under different learning rates αd and

perturbation strengths p. The green box and yellow box correspond to the case showing recovery of translation-

invariance (Fig 6) and the case with breaking-down of translation-invariance (Fig 7A–7D).

https://doi.org/10.1371/journal.pcbi.1009083.g007
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and 2E). Also, the effect of changing other network parameters, overall feedback strength Winh

or input strengths c, can be inferred from the effect of αd based on the relationship found in

the homogeneous case.

Effects of homeostatic plasticity under global perturbation

While the above results show that the maintenance of translation-invariance is not guaranteed

under differential plasticity, homeostatic plasticity has been suggested to restore translation-

invariance after it has been perturbed under heterogeneity of cellular excitability or synaptic

inputs, or by other types of synaptic plasticity such as Hebbian learning [30,31]. Indeed, the

application of a homeostatic learning rule to the negative derivative feedback network recovers

persistent unimodal activity at different locations as well as translation-invariance (Fig 8A, 8B,

and 8C). Unlike differential plasticity, such a recovery was less affected by changes of perturba-

tion strengths (Fig 8D and 8G).

However, as in the homogeneous population, the steady state of homeostatic learning is

sensitive to target activity r0 (Fig 8E and 8H). If r0 is too high (low) compared to the input

Fig 8. The effect of homeostatic plasticity under global perturbation. A: Recovery of location-coded memory under homeostatic plasticity

with target rate r0 = 20, learning rate αh = 10−8 and perturbation strength p = 30% in the E-to-E connections (arrow in D-F). B: Activity pattern

at the end of the delay period after the recovery (arrow in C). C: Decrease of decoding error (black) and preservation of translation-invariance

(red) with learning. D-F: Dependence of postsynaptic E-I ratio on target firing perturbation strength p (D), rate r0 (E), and learning rate αh (F).

Note that, unlike Fig 6D, the E-I ratio is not defined by eigenvalue or in the Fourier domain. As homeostatic plasticity modifies all incoming

synapses of a neuron with a common factor, we quantified the E-I ratio compared to that before perturbation for each neuron. The mean is

shown in black, and the standard deviation across neurons is shown in grey shaded area. G-I: Decoding error and normalized deviation of

spatial selectivity for various p (G), r0, (H), αh (I).

https://doi.org/10.1371/journal.pcbi.1009083.g008
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strengths, the excitatory synapses are more potentiated (depressed) than the balance tuning

condition (Fig 8E). Note that although such imperfect balance between excitation and inhibi-

tion results in an increase (decrease) of activity amplitude, the spatial information encoded in

the peak of spatial pattern can be maintained unless r0 is too low (Fig 8H). For higher r0, the

decoding error even gets reduced because of the enhanced firing rate.

Another learning parameter that affects the steady state of homeostatic learning is learning

speed αh. Numerical simulation showed that the balanced tuning condition, decoding perfor-

mance, and translation-invariance recover for a wide range of αh (Fig 8F and 8I; Note the log-

scale of x-axis). However, as in the homogeneous population, too fast αh can lead to larger vari-

ability near the balanced state (Fig 8F). As a result, the E-I ratio oscillates and varies across the

cells, causing drift of the activity bump and estimated location along the ring within a single trial

(S4 Fig). This drift increases decoding error and breaks down translation-invariance (Fig 8I).

Effects of plasticity under local perturbation

We further investigated the effect of differential and homeostatic plasticity, where the balance

of excitation and inhibition is locally perturbed. We considered two different types of local

perturbations–first, postsynaptic perturbations, where synaptic strengths projected onto a par-

ticular group of neurons were perturbed (Fig 9). For instance, this can be incurred by pertur-

bation in NMDA receptors, which is considered to be prominent in the E-to-E connections

[43]. Mathematically, it is analogous to a row-wise perturbation in the E-E connectivity matrix

(Fig 9A). Another type of perturbation is the presynaptic one, where outgoing synaptic

strengths are perturbed (Fig 10). This perturbation can be caused by reducing transmitter

release and is analogous to column-wise perturbation in the connectivity matrix (Fig 10A).

Note that we considered only network-wise perturbations because in the rate model consid-

ered in this study, an individual unit corresponds to a population of neurons with shared selec-

tivity and the effect of perturbations on individual neuronal levels cannot be explored. For

instance, random fluctuation of individual synapses has been observed on a daily basis [44]. If

such fluctuation is uncorrelated across neurons, persistent memory may not be affected

because the tuning condition in the rate model only constrains the population-averaged synap-

tic strengths while allowing heterogeneity in individual neurons [12]. Thus, we focused on net-

work-wise perturbations, particularly a smooth bell-shaped perturbation of pre- or post-

synaptic strengths, assuming that the neurons with similar preferred spatial selectivity are clus-

tered, and the effect of local perturbation dissipates across the clusters [45].

We first examined the effect of plasticity in postsynaptic perturbations. In negative deriva-

tive feedback models, the postsynaptic perturbation disrupts local E-I balance, leading to quick

decay of activity in the vicinity of the perturbed site (Fig 9B). Under a small perturbation, both

differential and homeostatic plasticity can recover E-I balance and the ability to maintain per-

sistent activity at the perturbed site (Fig 9E and 9F). However, when the perturbation becomes

larger, differential and homeostatic plasticity show different recovery patterns as for the global

perturbation (Fig 9C and 9D). For larger perturbation, differential plasticity persistently

silences more neurons, which breaks down translation-invariance (Fig 9C and 9E). Note that

as under global perturbations, slow learning speed or larger postsynaptic perturbation can also

disrupt the decoding performance, while faster differential plasticity can mitigate the disrup-

tion caused by larger postsynaptic perturbation (S5 Fig). In contrast, homeostatic plasticity

efficiently recovers translation-invariance for a wide range of perturbation strengths (Fig 9D

and 9F). This is because homeostatic plasticity multiplicatively scales up the overall incoming

synaptic strengths onto particular neurons when their activity is lower than r0 even if they

decay to silence. This multiplicative scaling up exactly counteracts post-synaptic perturbation.
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Next, we considered the effect of plasticity under presynaptic perturbations, which showed

better performance of differential plasticity than homeostatic plasticity (Fig 10). As in the post-

synaptic perturbations, presynaptic perturbation causes activity at the perturbed site to decay

because perturbation in outgoing synapses mostly affects the incoming synapses of neurons

with similar spatial selectivity (Fig 10B). Differential plasticity can recover persistent activity

and translation-invariance for a broad range of presynaptic perturbation (Figs 10C, 10E and

S6). On the other hand, homeostatic plasticity cannot stabilize persistent activity for relatively

large presynaptic perturbation, and the activity pattern is distorted near the perturbed site

Fig 9. The effect of differential and homeostatic plasticity under postsynaptic perturbations. A: Schematics of postsynaptic

perturbations where the rows of the connectivity matrix are multiplied by different scaling factors. Perturbation is centered at θ = 0

and bell-shaped. B: Activity pattern under 30% postsynaptic perturbations before any plasticity. C-D: Activity pattern shaped by the

differential (C) and homeostatic (D) plasticity. The learning parameters used here are αd = 10−3, αh = 10−8, and r0 = 20. E-F:

Decoding errors (black) and normalized deviation of spatial selectivity (red) for different perturbation strengths after applying

differential (E) and homeostatic (F) plasticity. Perturbation strength marked by arrow is shown in C-D.

https://doi.org/10.1371/journal.pcbi.1009083.g009
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(Fig 10D). This is because presynaptic perturbation introduces an asymmetry in the synaptic

strengths projecting onto neurons near the perturbed sites, which cannot be recovered

through homeostatic plasticity that regulates the overall scaling of incoming synapses. Thus,

although the average postsynaptic activity is recovered through increased excitability, the

bump activity drifts towards instead of away from the perturbed site after learning, leading to a

high decoding error and breakdown of translation-invariance both (Fig 10F).

Effect of combining differential and homeostatic plasticity

As differential plasticity and homeostatic plasticity are effective in recovering persistent activ-

ity and translation-invariance under the different types of perturbations, we examined whether

Fig 10. The effect of differential and homeostatic plasticity under presynaptic perturbations. A: Schematics of presynaptic

perturbations where the columns of the connectivity matrix are multiplied by different scaling factors. B-F: Same as in Fig 9B–9F but

under 30% presynaptic perturbation (B-D) and the same learning parameters.

https://doi.org/10.1371/journal.pcbi.1009083.g010
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the combination of these two plasticity rules can utilize the advantage of each plasticity. Fol-

lowing the previous models considering the combination of Hebbian and homeostatic plastic-

ity [31], we considered a multiplicative combination of two rules where differential plasticity

replaces Hebbian learning. The synaptic connection from neuron j to neuron i is expressed as

a product of two variables, Wij = giUij with the dynamics of gi and Uij are given as

dgi
dt
¼ � ahðri � r0Þgi

dUij

dt
¼ � ad

dri
dt

rj:
ð4Þ

In the above equations, gi reflects the homeostatic scaling, and Uij evolves according to differ-

ential plasticity, with the learning rates given as αh and αd, respectively. Note that a multiplica-

tive combination can be approximated by an additive combination and thus, can have similar

effects (Methods).

We first examined the effect of combined plasticity under global and postsynaptic perturba-

tions. We considered large perturbations under which differential plasticity alone leads to the

silence of activity (Figs 7A–7D and 9C). On the other hand, homeostatic plasticity prevents

silent neurons by boosting lower-than-target activity. Thus combined plasticity could recover

the network from larger global and postsynaptic perturbation (Fig 11A and 11B; left-most col-

umn vs. next three columns in Fig 11D and 11E).

Note that such a recovery is sensitive to αh such that combined plasticity with large αh per-

forms worse than differential plasticity or homeostatic plasticity alone (right-most two col-

umns in Fig 11D and 11E). This is because fast homeostatic plasticity leads to oscillation of

synaptic weights near the steady state and the activity drift during the delay period (Fig 8F and

8I). Such activity drift can conflict with differential plasticity and lead to more disruption in

spatial pattern of activity compared to differential plasticity or homeostatic plasticity alone (S7

and S8 Figs). Thus, slow homeostatic plasticity is required to enhance the decoding perfor-

mance for a broad range of the learning speed of differential plasticity αd.

The superiority of the combined plasticity is similar for presynaptic perturbations (Fig 11C

and 11F). Under large presynaptic perturbations, homeostatic plasticity alone could not

restore memory performance, while differential plasticity was effective (Fig 10C and 10D). The

combined one shows better memory performance compared to homeostatic plasticity alone

(bottom row vs. the rest of rows in Fig 11F). Again, such improvement can be achieved unless

homeostatic plasticity is too fast (right-most column in Figs 11F and S9).

Discussion

In this work, we investigated the effects of local and unsupervised learning on the stabilization

of persistent activity in two representative working memory models encoding analog values,

namely, rate-coded and location-coded persistent memory. We examined the effects of differ-

ential plasticity and homeostatic plasticity by systematically varying the learning parameters

and the magnitude and form of perturbations in synaptic connections. Consistent with the

findings of previous works, differential plasticity alone was enough to stabilize a graded-level

persistent activity in a homogeneous population [12,19]. On the other hand, homeostatic plas-

ticity requires the tuning of learning parameters. For the maintenance of spatially structured

persistent activity, differential plasticity could stabilize persistent activity, but its pattern can be

irregular for different stimulus locations. Homeostatic plasticity shows a robust recovery of

translation-invariance against particular types of synaptic perturbations, such as perturbations

in incoming synapses onto the entire or local populations. However, homeostatic plasticity
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was not effective against perturbations in outgoing synapses from local populations. Instead,

combining it with differential plasticity recovers the location-coded persistent activity for a

broader range of perturbations.

Different parameter dependence of the two learning rules can also be used to distinguish

them experimentally. First, varying perturbation strength provides a different prediction on

recovery of persistent activity under the two learning rules. Experimentally, the magnitude of

perturbation can depend on the proportion of perturbed neurons because neuronal activities

and synaptic weights in the rate model are population-averaged. For instance, NMDA pertur-

bation in a larger subpopulation results in larger perturbation p in the E-to-E connection.

Note that although typical Hebbian-type synaptic plasticity depends on NMDA receptors [46],

plasticity is intact in the unperturbed subpopulation with shared stimulus selectivity, and thus,

can compensate for the perturbation as predicted from the rate model. Our study suggested

that the emergence of silent neurons during recovery from large p indicates that differential

Fig 11. The effect of the combination of differential and homeostatic plasticity. A-C: Recovery of location-coded persistent activity

under combined plasticity after 30% global (A), postsynaptic (B), and presynaptic perturbation (C) with the same learning parameters in

Figs 9 and 10. The combined plasticity shows better performance compared to the recovery with differential plasticity alone under global

perturbation (Fig 7A–7D), under local postsynaptic perturbation (Fig 9C) and the recovery with homeostatic plasticity alone under local

presynaptic perturbation (Fig 10D). D-F: Heatmap of the final decoding error under various learning speeds. See S7–S9 Figs for normalized

deviation of spatial selectivity and the activity pattern from which decoding errors and spatial selectivity variability were derived.

https://doi.org/10.1371/journal.pcbi.1009083.g011
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plasticity may be dominant because the form of recovered persistent activity is less affected by

p under homeostatic plasticity.

Another important parameter we explored is learning speed α. While direct manipulation

of α might not be feasible, we showed that changing input strength c and overall inhibitory

feedback strengths Winh have a similar effect of changing α (Figs 2 and S1; Methods). Experi-

mentally, c or Winh can be varied through changes in gain/excitability of neurons or overall

synaptic connections [47]. For instance, increasing the gain of excitatory neurons results in an

increase of the effective strengths of incoming synapses onto excitatory neurons, leading to an

increase of Wexc, Winh and c. We showed that the learning speed α, as well as the target rate of

homeostatic plasticity, is expressed as the ratio of c and Winh, which remains constant (Eq 12).

Thus, the recovery under homeostatic plasticity will not be affected. On the other hand, the dif-

ferent functional dependence of α on c and Winh under differential plasticity leads to an effec-

tive decrease of α and slower recovery (Eq 10). Thus, the gain control of the excitatory

population affects differential plasticity, but not homeostatic plasticity. Note that such parame-

ter dependence of each plasticity was derived in negative derivative feedback models where the

tuning condition is represented as the ratio of the feedback strengths, Wexc and Winh. With a

proportional change of Wexc and Winh, perturbation strength p remains the same, and initial

memory performance right after the perturbation would not be affected by the gain control of

neurons. On the other hand, in positive feedback models where the tuning condition is repre-

sented as the difference of Wexc and Winh, changing the gain may lead to larger perturbation

from the perfect tuning and more gross disruption of persistent activity right after the

perturbation.

Stable memory formation under the mixture of different forms of synaptic plasticity has

been proposed previously, mainly for discrete attractor networks [37,38,48,49]. In these stud-

ies, Hebbian synaptic plasticity has been suggested to form auto-associative memory guided

by external inputs. To prevent instability caused by Hebbian learning, compensatory mecha-

nisms, such as homeostasis or short-term plasticity, were required, which must act on a time-

scale similar to that of Hebbian learning ([50]; but see [49]). Our work also suggests

synergistic interplay between different types of plasticity, differential and homeostatic plas-

ticity, in particular for stabilizing location-coded persistent memory. However, we note that

differential plasticity alone is stable. The role of homeostatic plasticity is to support transla-

tion-invariance in a ring-like architecture of recurrent connections [30,31]. Thus, the fast

dynamics of homeostatic plasticity are not required, and excessively fast dynamics can be

detrimental due to oscillatory instability. The interplay between anti-Hebbian learning and

activity-dependent synaptic scaling has been proposed for rate-coded persistent memory

[51], where the anti-Hebbian rule itself stabilizes the network activity and no fast homeosta-

sis is required, as in our work.

In this work, we assumed the existence of synaptic plasticity only during the delay period.

Continuous learning with homeostatic plasticity may require the adjustment of learning

parameters because the long-term average firing rates of neurons must reflect activity during

the entire session. On the other hand, differential plasticity might make the network “unlearn”

if it operates the same way during the stimulus period as in the delay period because the activ-

ity rise during that time would be interpreted as positive drift by the plasticity. Thus, we con-

strained derivative-driven learning only during the delay period when the activity should be

stabilized, as in [19]. One way to realize this is gating plasticity with the external input. For

instance, Nygren et al. [20] proposed a network model for an oculomotor integrator that

receives feedback from the “teacher” circuit. During the inter-saccadic interval, the teacher cir-

cuit provides low-pass filtered feedback so that its deviation from the instantaneous feedback

provides a derivative-like signal that can guide self-supervisory learning as differential
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plasticity. On the other hand, the saccadic velocity input to the teacher circuit is tuned to make

the self-supervisory signal zero, thus gate the plasticity during saccades. Alternatively, suppres-

sion of plasticity during the stimulus presentation could occur by filtering fast-changing activ-

ity [18]. We considered a similar possibility that there exists an upper bound of derivatives that

can be sensed by the learning mechanism. With shortened duration and adjusted input

strength so that the neural activity changes disproportionally faster in the stimulus period than

in the delay period, the persistent activity could be stabilized even when the plasticity is always

on ([12]; S10 and S11 Figs). How the derivative is sensed and filtered/saturated is beyond the

scope of this paper and needs to be further investigated.

Constraining activity drifts of individual neurons might require stricter conditions than

what is required to achieve stable coding of information during the memory period. While tra-

ditional experimental work identified memory neurons that showed persistence elevated firing

with stimulus selectivity [45], the recent population-level analysis revealed the stable readout

of information across various time points despite the diverse temporal dynamics of individual

neurons [52,53]. Such dynamic activity in individual neurons may reflect activity in a down-

stream population that combines stimulus-encoding persistent activity and time-varying activ-

ity, possibly reflecting time information [54,55]. On the other hand, memory networks

themselves can allow time-varying activity. For this attractor dynamics, the particular activity

pattern or mode encodes persistent memory, while other modes allow temporal fluctuation

[53,56]. For the latter, synaptic plasticity based on the global error signal has been suggested,

which can be a self-supervised signal, such as a drift in the readout activity [21] or a difference

from the target signal [57]. Note that the resulting form of synaptic plasticity is similar to dif-

ferential plasticity, where the activity drift of individual neurons in differential plasticity is

replaced with the global error signal. Homeostatic processes, such as intrinsic plasticity, inhibi-

tory plasticity, and synaptic scaling, have also been proposed to elongate memory traces in the

presence of dynamic activity [51,58]. In these works, the memory is maintained by a network

with minimally structured connectivity, and the sensitivity to learning parameters has not

been analyzed.

Overall, our work demonstrates how unsupervised learning can mediate fine-tuning con-

ditions for working memory implemented by continuous attractors. It aligns with previous

works emphasizing the role of unsupervised learning to generate a basis of activity patterns

and dynamics underlying cognitive functions [59–61]. While we focused on unsupervised

learning rules regularizing temporal patterns in the absence of input, they can be combined

with other learning rules that can act under the guidance of external inputs and may make

memory networks robust for a broader range of perturbations. Also, we considered pertur-

bation and synaptic plasticity only in a specific connection, recurrent E-to-E connections,

but the plasticity of other connections, such as inhibitory plasticity [62–64], has been sug-

gested to tune network homeostasis and EI balance. Given the importance of balance and

homeostasis in memory circuits, further investigation is needed to examine the effect of

unsupervised plasticity on various synapses. Also, to understand how the learning parame-

ters of these plasticity rules match with neural activity, a detailed investigation of the under-

lying biophysical mechanisms needs to be done, possibly in models involving multiple

subcellular compartments.

Methods

Here, we describe models of network and plasticity rules considered in our study, mathemati-

cal analysis, and parameters for the simulation. We first discuss a homogeneous population

suggested for rate-coded persistent memory and then spatially structured networks for
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location-coded memory. For a homogeneous population, the models and simulation protocol

were described in detail in the first three sections of the Result. Here we show mathematical

analysis deriving a one-dimensional equation, parameter dependence, and parameters used in

the simulation. For location-coded memory, we first describe network models and perturba-

tion and plasticity models. Next, Fourier analysis for spatially structured networks, quantifica-

tion of memory performance, and parameters are given. For numerical simulation, all codes

are available at https://github.com/jtg374/NDF_ringNet_plasticity

Simple rate model for a homogeneous population

In this section, we show the derivation of a one-dimensional differential equation in Eq 1 (see

more biological structure and conditions in [12]). For this, we considered one homogeneous

population receiving recurrent excitation and inhibition with different kinetics, described by

three-dimensional differential equations

t
dr
dt
¼ � r þWexcsexc � Winhsinh þ IðtÞ

texc
dsexc
dt
¼ � sexc þ r

tinh
dsinh
dt
¼ � sinh þ r;

ð5Þ

where three dynamic variables are firing rate r, recurrent excitatory currents sexc, and recurrent

inhibitory currents sinh. We assumed that sexc and sinh are low-pass filtered r with time con-

stants τexc and τinh, respectively.

Note that the feedback of the same strength but with time constants, sexc−sinh, can approxi-

mate the time-derivative of a signal, dr/dt, for low-frequency responses characteristic of persis-

tent activity. To show this, we use the Laplace transform such that

Lðsexc � sinhÞ ¼
RðuÞ

texcuþ 1
�

RðuÞ
tinhuþ 1

¼ �
ðtexc � tinhÞu

ðtexcuþ 1Þðtinhuþ 1Þ
RðuÞ; ð6Þ

where R(u) is the Laplace transform of r(t), and u is the complex-valued frequency. For low

frequencies u, L (sexc—sinh)� - (τexc—τexc) uR(u), that is, sexc−sinh� -(τexc—τinh)dr/dt as L(dr/
dt) = uR(u).

With the difference between sexc and sinh approximating the time derivative of the activity

and sexc� r when r hardly changes, Eq 5 can be replaced with a one-dimensional differential

equation, given as

t
dr
dt
¼ � r þ ðWexc � WinhÞsexc þWinhðsexc � sinhÞ þ IðtÞ

� � r þ Wexc � Winhð Þr � Winh texc � tinhð Þ
dr
dt
þ IðtÞ:

ð7Þ

With Wexc—Winh and Winh(τexc—τinh) denoted by wnet and wder, Eq 7 is the same as Eq 1. Such

a one-dimensional approximation allows analytic investigation on the effects of differential

plasticity and homeostatic plasticity in Eq 2 and Eq 3.

Parameter dependence in a homogeneous population

Next, we examine the parameter dependence of recovery under differential plasticity and

homeostatic plasticity after perturbations in connectivity strengths. For analytical tractability,

we assumed Winh is large such that 1/Winh ~ 0, and we extracted the scale factor c from the
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input to investigate the effect of overall input strengths. Then Eq 7 becomes

ðtexc � tinhÞ
dr
dt
¼
ðWexc � WinhÞ

Winh
r þ

c
Winh

ÎðtÞ: ð8Þ

In Eq 8, when Wexc and r are normalized with Winh and c/Winh, denoted as w =Wexc/Winh and

rn = r/(c/Winh), the dynamics with the differential plasticity in Eq 2 becomes

ðtexc � tinhÞ
drn
dt
¼ ðw � 1Þrn þ ÎðtÞ

dw
dt
¼ �

ac2

W3
inh

drn
dt

rn:
ð9Þ

Thus, increasing Winh has the same effect as decreasing α to the third power, and increasing c
has the same effect as increasing α to the second power (Fig 2C and 2D).

Furthermore, the relationship between α and p can be revealed by integrating the second

line in Eq 9 until the system reaches the steady state in a single trial as

R1
0

dw
dt

dt ¼ �
ac2

W3
inh

R1
0

1

2

dr2
n

dt
dt

! wð1Þ � wð0Þ ¼ �
ac2

2W3
inh

r2

nð1Þ � r2

nð0Þ
� �

:

ð10Þ

If we assume that the final state of w is one corresponding to the balanced state and the initial

perturbation is p, that is, w(0) = 1-p, then the left-hand side becomes p. Thus, the final state of

rn can be represented as

r2

nð1Þ ¼ r2

nð0Þ �
2W3

inhp
ac2

: ð11Þ

As the second term on the right-hand side only contains the ratio of α and p, increasing p
results in the same final rn as decreasing α with the same initial rn.

With the normalization of Wexc and r with Winh and c/Winh, the dynamics with homeostatic

plasticity in Eq 3 can be simplified as

ðtexc � tinhÞ
drn
dt
¼ ðw � 1Þrn þ ÎðtÞ

dw
dt
¼ �

ac
Winh

w rn �
Winh

c
r0

� �

:

ð12Þ

The recovery to the balanced state is affected by r0 but not by the learning speed α (Fig 4A and

4B). Note that in Eq 12, increasing c or decreasing Winh is equivalent to increasing α while

decreasing r0 together (S1A, S1B and S1F Fig).

Next, we explore how the stability near the steady state is affected by changing the learning

speed α. In Eq 12, we consider τexc—τexc = 1 for simplicity and denote αc/Winh and Winhr0/c as

α’ and r0’, where α’ increases as α increases. Then the steady state of the dynamics given in Eq

12 is achieved when rn = r0’ and w = 1 during the delay period with ÎðtÞ ¼ 0. Then the eigen-

values of the Jacobian matrix at the steady state are�i
ffiffiffiffiffiffiffi
a0r0

0

p
. The imaginary part of eigenvalues

reflects the frequency of oscillations. Thus, as α’ gets larger, the frequency increases, and the

oscillation becomes prominent within each trial.
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Parameters for a homogeneous population

In Eqs 1–3, we set τ and τexc—τinh to be unit time constant 1, and the durations of stimulus

presentation, delay and inter-trial interval are 50-, 300-, and 50-time units, such that the total

duration of one trial is 400-time units. Initial Wexc, Winh and wder are set to be 500. I(t) is a step

function with its strength randomly distributed as 0 and 1000 so that the mean input strength

is 500 (Figs 1C–1F, 3 and 4), and I(t) for three representative traces of r(t) was 250, 500 and

1000 (Fig 1A). For the differential plasticity, the learning speed α is 0.01. For homeostatic plas-

ticity, α is 4×10−8 in Figs 3, 4B and 4B and 4C, and 2×10−6 in Fig 4D. r0 is 50 in Figs 3 and 4D,

25 in Fig 4B, and 75 in Fig 4C.

Spatially structured network model for location-coded persistent activity

Following [13], we considered a network organized in a columnar architecture for spatial

working memory with the equations describing the dynamics given as

tE
d
dt

rEðyÞ ¼ � rEðyÞ þ q
R p
� p
WEEðy; y

0
ÞsEEðy

0
Þdy0 �

R p
� p
WEIðy; y

0
ÞsEIðy

0
Þdy0 þ Ispðy; y0ÞItempðtÞ

� �

tI
d
dt

rIðyÞ ¼ � rIðyÞ þ q
Z p

� p

WIEðy; y
0
ÞsIEðy

0
Þdy0 �

Z p

� p

WIIðy; y
0
ÞsIIðy

0
Þdy0

� �

;

ð13Þ

where subscripts E and I represent excitatory and inhibitory populations, respectively. The

activity and the connectivity were indexed by their preferred spatial feature, θ, ranging

between [-π,π). τE and τI are the time constants and q(�) is the input-output transfer function,

which is the rectified linear function given as q(x) = x for x> 0 and otherwise, 0. For

numerical simulation, we considered N neurons for memory circuits with discretization of the

spatial feature θ and approximation of integral in Eq 13 with summation over the number of

neurons.

As in the homogeneous case, sij (i, j = E or I) represents the synaptic variables whose

dynamics is given as

tijsijðyÞ ¼ � sijðyÞ þ rjðyÞ: ð14Þ

Importantly, the excitatory-to-excitatory (E-to-E) time constant needs to be much larger than

those of other synapses to make derivative feedback happen [12]. Detailed parameters used in

the simulation will be given in Table 1.

Wij (i, j = E or I) is the synaptic weight kernel, and before perturbation, it was taken to be

translation-invariant and Gaussian-shaped as

Wijðy; y
0
Þ ¼ Jijexpð� ðdðy � y

0
ÞÞ

2
=s2

ijÞ; ð15Þ

where d(θ-θ’) = mod(|θ-θ’|,π) is the wrapped distance between θ and θ’. In practice we gener-

ate the center row of the weight matrices $Wij (with θ’ = 0 and θ ranging from -π to π-Δθ) and

circularly shift it in other rows (see Fig 5).

Isp (θ,θ0) and Itemp(t) represent the spatial and temporal profiles of external stimulus where

θ0 is the center of the stimulus location. Isp (θ,θ0) is also a translation-invariant function that

only depend on d(θ-θ0)

Ispðy; y0Þ ¼ Joexp �
dðy � y0Þ

so

� �2
 !

þ h0: ð16Þ
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Itemp(t) is a pulse function smoothed by a low-pass filter with time constant τo as in [12]:

ItempðtÞ ¼
1 � expð� t=toÞ; if t < tstim

ItempðtstimÞexpð� ðt � tstimÞ=toÞ; if tstim � t < ttotal

(

ð17Þ

where time within [0, tstim) refers to the stimulation period.

Perturbation and plasticity model

We considered three types of perturbations in the E-to-E connections. For the global perturba-

tion, $Wij was set to be

$
WEE;perturbedðy; y

0
Þ ¼ puniform

$
WEE;0ðy; y

0
Þ: ð18Þ

Postsynaptic perturbation corresponds to a row-wise change as

$
WEE;perturbedðy; y

0
Þ ¼ ppost� synðyÞ

$
WEE;0ðy; y

0
Þ; ð19Þ

and presynaptic perturbation corresponds to a column-wise change as

$
WEE;perturbedðy; y

0
Þ ¼ ppre� synðy

0
Þ $WEE;0ðy; y

0
Þ; ð20Þ

where p(θ) is a smooth function of θ, given as a Gaussian function

pðyÞ ¼ 1 � pexpð� ðy=spÞ
2
Þ: ð21Þ

Table 1. Parameters for spatially structured network.

Parameter Description Value

N Number of populations in each E or I group 64

τE Time constant of excitatory neurons 20

τI Time constant of inhibitory neurons 10

τEE Time constant of E-to-E synapses 100

τEI Time constant of I-to-E synapses 10

τIE Time constant of E-to-I synapses 25

τII Time constant of I-to-I synapses 10

τo Time constant of external stimulus 100

JEE Amplitude of E-to-E synaptic weight 100

JEI Amplitude of I-to-E synaptic weight 100

JIE Amplitude of E-to-I synaptic weight 200

JII Amplitude of I-to-I synaptic weight 200

Jo Amplitude of external stimulus 270

σEE, σIE Width of excitatory synaptic connections 0.2π
σEI, σII Width of inhibitory synaptic connections 0.1π
σo Width of stimulus 0.25π
h0 Baseline of stimulus 200

p 1—perturbation strength 10%-40%

αd Learning rate of differential rule 1e-5-0.1

αh Learning rate of homeostatic rule 1e-9-1e-6

r0 Target firing rate of homeostatic rule 10–30

tstim Stimulation duration 500

ttotal Stimulation plus delay period 3500

https://doi.org/10.1371/journal.pcbi.1009083.t001
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To recover the persistent activity, we considered two types of plasticity: differential plastic-

ity,

dWij

dt
¼ � ad

dri
dt

rj; ð22Þ

and homeostatic plasticity,

dWij

dt
¼ � ahWijðri � r0Þ; ð23Þ

where αd and αh represent the learning rate of differential and homeostatic plasticity; i and j
represent post- and presynaptic neuron index. Throughout the paper, except for S10 and S11

Figs, the plasticity is only applied in the delay period, and to minimize the effect of the residual

stimulus, we also gated the plasticity with a factor 1-Itemp(t), though it does not make much dif-

ference if we don’t add it.

In the combined one in Eq 4, Wij in Eqs 22 and 23 are replaced by Uij and gi, respectively. Note

that the multiplicative combination can be approximated by additive combination because

dWij

dt
¼ Uij

dgi
dt
þ gi

dUij

dt

¼ � ah ri � r0ð ÞgiUij � adgi
dri
dt

rj

¼ � ahðri � r0ÞWij � adgi
dri
dt

rj; ð24Þ

where in the last equation, the first term is homeostatic plasticity, and the second term is differen-

tial plasticity with its speed αdgi. As gi stays of order 1, the second term can be approximated by

differential plasticity with constant speed.

Fourier analysis and quantifying E-I balance through eigenvalue decomposition

When the connectivity is translation-invariant, i.e., Wij(θ,θ’) = wij(d(θ-θ’)), the recurrent syn-

aptic inputs in Eq 13 becomes the convolution between wij(θ) and sij(θ). In linear algebra, con-

volution can be represented by a product by a circulant matrix, whose normalized

eigenvectors and eigenvalues are Fourier modes and corresponding Fourier coefficients [42].

Note that strongly balanced recurrent inputs make the network approximately linear [12,34].

Thus, in negative derivative feedback networks with strongly balanced excitation and inhibi-

tion, the dynamics can be analyzed through Fourier analysis.

Using the convolution theorem, the convolution in recurrent input can be expressed as a

product of Fourier coefficients in the Fourier domain. In particular, if the dynamics are linear

as q(x) = x, then Eq 13 becomes

ti
dr̂ iðnÞ
dt
¼ � r̂ iðnÞ þ ŵ iEðnÞŝ iEðnÞ � ŵ iIðnÞŝ iIðnÞ; ð25Þ

where r̂ iðnÞ; ŵ ijðnÞ and ŝ ijðnÞ are the n-th Fourier coefficient of ri(θ), wij(θ) and sij(θ), respec-

tively (i,j = E or I). Note the similarity between this equation and Eq 5.

In Figs 5D, 5E and S2A, we defined the n-th Fourier mode (n = 0 for constant mode) as

r̂ðnÞ ¼
1

2p

R p
� p
rðyÞcosðnðy � y0ÞÞdy; ð26Þ
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where θ0 is the stimulation center, and showed the example time course and estimated its

timescale.

In Figs 6D and 8E, we quantify the recovery of EI balance by taking the eigenvalues of the

weight matrices. When translation-invariance is preserved, the values of both E-to-E matrix

and other weight matrices will approximately be the Fourier components of the matrices, and

the tuning condition for the n-th Fourier modes becomes

lEEðnÞlIIðnÞ ¼ lEIðnÞlIEðnÞ; ð27Þ

where λij(n) is the n-th eigenvalue of $Wij. In Fig 6D, we did the eigenvector decomposition of

the weight matrix $WEE and found the eigenvectors resemble Fourier modes and calculated the

E-I balance ratio in each mode from the corresponding eigenvalues.

Decoding error

We quantified the network’s memory performance by decoding the stimulus at the end of the

delay. Because we used a deterministic simulation, we modeled the noise post-hoc using Pois-

son random number generator. We assume that the spike generation is random and indepen-

dent across neurons. For each excitatory neuron indexed by θ, we multiplied its firing rate

rθ(θ0) (in Hz), where θ0 denotes the true stimulus location, by 0.2 and used the product as the

mean of the Poisson random number to model its spike count in 200ms. We denote this sto-

chastic spike count as nθ(θ0). We then decoded the stimulated location ~y0 from nθ(θ0) with a

simple population-vector decoder [65]:

~y0 ¼ angleð
R p
� p
eiynyðy0ÞdyÞ ¼ atan2ð

R p
� p
sinðyÞnyðy0Þdy;

R p
� p
cosðyÞnyðy0ÞdyÞ: ð28Þ

The error is quantified by the cosine distance between the decoded location and true stimulus:

errorðy0Þ ¼ h1 � cosðy0 �
~y0Þi: ð29Þ

At each trial, we freeze the network connectivity and simulate the response rθ(θ0) for each

stimulus θ0. The random generation of spike counts was repeated 20 times and averaged for

each θ0. We quantified the average error across all stimulus locations θ0. In directional statis-

tics, averaging the cosine distance is a dispersion measure analogous to the total variation

about a given angle [66]. After perturbation, when there is no spatial information at the end of

the delay, ~y0 would be uniformly distributed, and the average error would be one, while if the

spatially patterned activity is persistent with no drift, the decoding error would be close to

zero.

For convenience, at each trial we stimulated the network at all the preferred locations of the

neurons, that is, at discrete locations. However, the network composed of finite neurons is able

to encode continuous values in principle, and the decoded location can be between the pre-

ferred locations. When the network was stimulated at locations between the preferred loca-

tions and this continuous decoded location was used to quantify the error, the decoding error

was not qualitatively different from those obtained using discrete locations (not shown).

Spatial selectivity and translation-invariance

The spatial selectivity of each neuron was quantified by calculating the first Fourier component

of its tuning curve given as

F1y ¼
1

2p

R p
� p
eiy0ry y0ð Þdy0

�
�
�
�

�
�
�
�; ð30Þ
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where rθ(θ0) is the neuronal activity at the end of the delay period of a trial stimulated at θ0,

where θ indicates the neuronal index as in Eq 26.

We calculated the mean and standard deviation across neurons.

mean F1ð Þ ¼
1

2p

Z p

� p

F1ydy

tdðF1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

R p
� p
ðF1y � meanðF1ÞÞ

2dy
r

ð31Þ

The normalized std (std/mean) was used to quantify translation-invariance, as in [31].

Supporting information

S1 Fig. Related to Fig 4, Recovery dynamics dependence on learning parameters under

homeostatic plasticity. A-F: Final WExc/Winh (top) and minimum number of trials for WExc to

reach up to about 1% from perfect tuning (bottom) obtained by varying target rate r0 (A),

learning speed α (B), perturbation strength p (C), Winh (D), mean input strengths c (E), and by

varying α and r0 together while αr0 is fixed (F). Final WExc/Winh was obtained by taking the

mean (red curve) and standard deviation (shaded area) over 500 trials after reaching to the

steady state. The final WExc/Winh is affected by r0, Winh, and c (A,D,E). Note that the effect of

Winh or c (D,E) can be reproduced by varying α and r0 together as derived analytically (F;

Methods). On the other hand, varying α alone (B) or p (C) only affect the recovery speed in

the opposite direction. r0 = 50, α = 4×10−8, Winh = c = 500 unless otherwise specified and αr0 =

2×10−6 in F. Note different scales in Figs 4B and S1B where the horizontal axis in Fig 4B is in

log scale to show a larger parameter range and that in S1B Fig here is in linear scale to be con-

sistent with other panels.

(PDF)

S2 Fig. Related to Fig 6, Elongation of time constant associated with each eigenvector simi-

lar to Fourier modes under differential plasticity. A: Time scale of each Fourier mode. For

each Fourier mode, a time constant was estimated by projecting population activity onto a

sinusoid of different frequencies (Methods) and fitting the time course with exponential decay.

The negative reciprocals of these time constants have good correspondence with the eigenval-

ues shown in Fig 6D except for around the first 250 trials when the network transiently devi-

ates from translation-invariance. B: Eigenvectors related to eigenvalues in Fig 6D during the

evolution of learning dynamics. The real part of the eigenvectors corresponding to the first,

third, and fifth leading eigenvalues is plotted (even ones omitted because of redundancy).

After around 250 trials, the shape of the eigenvectors is close to sinusoids, suggesting restora-

tion and maintenance of translation-invariance.

(PDF)

S3 Fig. Related to Fig 7. Effects of changing learning speed and global perturbation strengths

on recovered activity pattern under differential plasticity. Each panel is a snapshot of activity at

the end of the delay period as in Fig 6B. The decoding error and spatial selectivity variability in

Fig 7E and 7F were derived from these patterns. Note the color range twice as large as those in

the main figures.

(PDF)

S4 Fig. Related to Fig 8. Sensitivity of homeostatic plasticity on learning parameters in a spa-

tially structured network. A-C: Effect of lower (A), higher target rates (B), and fast speed (C)

under homeostatic plasticity. Top, middle and bottom rows show postsynaptic E-I ratio,
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activity pattern in three successive trials and the amplitude of peak activity, respectively, except

for the bottom row of the third column. The postsynaptic E-I ratio of different neurons were

shown in different colors (top). For lower target rate, activity decays and spatial information is

lost (A). In contrast, for a higher target rate, the spatial pattern is maintained as well as the spa-

tial information although the activity drift upwards (B). For fast homeostatic plasticity, the spa-

tial locations were decoded using a population vector analysis as in Fig 6C, but for the entire

delay period (C, bottom). Dashed lines are the stimulated locations. The parameters are r0 = 10

(A), r0 = 30 (B), r0 = 20 (C) and αh = 10−8 (A,B), αh = 10−6 (C).

(PDF)

S5 Fig. Related to Fig 9. Effects of changing learning speed and postsynaptic perturbation

strengths under differential plasticity. A-C: Decoding error (A), spatial selectivity variability

(B) and activity pattern (C) recovered by differential plasticity with various learning rates after

various level of postsynaptic perturbation. Note the color range of activity pattern (C) twice as

large as those in the main figures.

(PDF)

S6 Fig. Related to Fig 10. Effects of changing learning speed and presynaptic perturbation

strengths under differential plasticity. A-C: Decoding error(A), spatial selectivity variability

(B) and activity pattern (C) recovered by differential plasticity with various learning rates after

various level of presynaptic perturbation. Note the color range of activity pattern (C) twice as

large as those in the main figures.

(PDF)

S7 Fig. Related to Fig 11. Effects of changing learning speed of combined plasticity under

global perturbations. A-B: Spatial selectivity variability (A) and activity pattern (B) recovered

by combined plasticity with various learning rates after global perturbation. Note the color

range of activity pattern (B) twice as large as those in the main figures.

(PDF)

S8 Fig. Related to Fig 11. Effects of changing learning speed of combined plasticity under

postsynaptic perturbations. A-B: Spatial selectivity variability (A) and activity pattern (B)

recovered by combined plasticity with various learning rates after postsynaptic perturbation.

Note the color range of activity pattern (B) twice as large as those in the main figures.

(PDF)

S9 Fig. Related to Fig 11. Effects of changing learning speed of combined plasticity under pre-

synaptic perturbations. A-B: Spatial selectivity variability (A) and activity pattern (B) recovered

by combined plasticity with various learning rates after presynaptic perturbation. Note the

color range of activity pattern (B) twice as large as those in the main figures.

(PDF)

S10 Fig. Recovery of rate-coded persistent activity through differential plasticity that is

always on but saturates for large derivatives. A-B: Time course of activity in a homogeneous

population in successive trials (A) and phase-plane of activity and synaptic strength of recur-

rent excitation (B). Here we modified the plasticity rule such that
dwij
dt ¼ � adKsign

dri
dt

� �
rj for

j
dri
dt j > K where sign(x) returns the sign of x and K gives the maximum amplitude of derivative

that can be sensed by the learning mechanism. Unlike the horizontal jump in the phase plane

where the plasticity is off during the stimulus presentation (Fig 2A), the red trajectory goes

slightly downwards, showing “unlearning.” C-D: Activities with 10% perturbation (C) and

after the recovery (D). K is set to be 1 activity unit/time unit. The stimulus period and mean
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input strengths are 10-time units and 10000, which are 5 times shorter and 10 times larger

than those used Fig 1C–1F with the same rest of the parameters, such that the activity changes

much faster in the stimulus period than in the delay period.

(PDF)

S11 Fig. Recovery of location-coded persistent activity through differential plasticity that

is always on but saturates for large derivatives. A-B: Recovery of persistent activity in the

spatially structured networks under the modified differential plasticity that is always on as in

S10 Fig. C: Decrease of decoding error (black) and preservation of translation-invariance (red)

with learning. D: Decoding error and normalized deviation of spatial selectivity for three dif-
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