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SUMMARY
To understand what determines the success of short- and long-term weight loss, we conduct a secondary
analysis of dietary, metabolic, and molecular data collected from 609 participants before, during, and after
a 1-year weight-loss intervention with either a healthy low-carbohydrate (HLC) or a healthy low-fat (HLF)
diet. Through systematic analysis of multidomain datasets, we find that dietary adherence and diet quality,
not just caloric restriction, are important for short-term weight loss in both diets. Interestingly, we observe
minimal dietary differences between those who succeeded in long-term weight loss and those who did
not. Instead, proteomic and gut microbiota signatures significantly differ between these two groups at base-
line. Moreover, the baseline respiratory quotient may suggest a specific diet for better weight-loss outcomes.
Overall, the identification of these dietary, molecular, and metabolic factors, common or unique to the HLC
and HLF diets, provides a roadmap for developing individualized weight-loss strategies.
INTRODUCTION

The increasing frequency of obesity has been well documented,

with recent numbers reporting 42.4% prevalence among Amer-

ican adults.1 The concomitant increased risk of chronic diseases

such as diabetes and cardiovascular disease, together with the

social stigma attached to obesity, continue tomotivate scientists

and health care providers to findways to curb and ideally reverse

this trend.

Many obese adults attempt to lose weight. From a study

following 4,034 obese adults, 63% reported trying to lose

weight in the previous year.2 Among those attempting weight

loss, 40% lost R5 and 20% lost R10% of their body weight.2

However, most people have difficulty maintaining weight loss,

with reports of 30%–50% weight regain within 1 year.3,4 The

lack of success in weight-loss maintenance is generally attrib-

uted to lack of adherence to the diet that enabled the initial

weight loss, and thus the focus has been on behavioral inter-

ventions,5 which have helped but have not yet fully resolved

this issue.
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During the past few decades, energy balance has been

considered the major determinant of weight status, where

caloric intake is associated with weight alterations. However,

more recently, the focus has begun to shift toward the source

of the calories, differentiating the hormonal effects of the types

of macronutrients consumed, which in turn cause different meta-

bolic effects, including the amount of fat deposition or oxidation.

Thus, the idea of ‘‘a calorie is a calorie’’ has been questioned.6

Chronic overnutrition and obesity often cause low-grade

chronic inflammation through the interplay between metabolic

and immunological pathways.7–10 This inflammation, in turn,

leads to metabolic dysfunction,11 which may influence an indi-

vidual’s ability to respond to weight-loss intervention. The gut

microbiota is another factor significantly related to obesity.12 An-

imal studies suggest that gut bacteria can influence the expres-

sion of genes related to lipid and carbohydrate metabolism and

affect energy harvest from the diet.13,14 Although likely oversim-

plified, many studies have reported that a shift in the proportion

of phyla composition, such as the Bacteroidetes-to-Firmicutes

ratio, is correlated with weight change.15–17 A study in mice
ts Medicine 3, 100870, December 20, 2022 ª 2022 The Authors. 1
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also showed that microbiota may contribute to post-dieting

weight regain.18

To test the impact of both dietary and non-dietary factors on

weight loss, we conducted a secondary analysis using data

from the Diet Intervention Examining the Factors Interacting

with Treatment Success (DIETFITS) study, which was a 1-year

dietary weight-loss intervention study in which 609 individuals

were randomized to either a healthy low-carbohydrate diet

(HLC) or a healthy low-fat diet (HLF).19 The results showed a

similar mean 12-month weight loss in both diet groups, but inter-

estingly, there was an approximately 40 kg weight-change range

within each diet group.20 DIETFITS participants were sampled at

baseline and 6 and 12months, and data, including dietary intake,

protein biomarkers, clinical markers, body composition, and

respiratory quotient (RQ), were collected at these time points.

Forty-nine participants provided stool samples for the analysis

of microbiota composition. This study then provided an opportu-

nity to better examine factors associated with weight-loss suc-

cess (see STAR Methods and Table S1 for details).

In this work, we present a comprehensive report on the

DIETFITS datasets, with a focus on investigating the contribu-

tions of host factors, gut microbiota, and dietary intake to the

success of weight loss and maintenance of that loss using the

HLC or the HLF diet. For both diets, dietary adherence and

diet quality, rather than caloric restriction, were the primary

drivers for short-term weight loss. Moreover, the personal

difference in fat oxidation is an additional factor determining

weight-loss success induced by different dietary strategies.

Interestingly, long-term weight loss is less influenced by dietary

intake, but more associated with individuals’ molecular features,

including host factors, such as Alpha-L-Iduronidase (IDUA), TNF

receptor superfamily member 13B (TNFRSF13b), interleukin 16

(IL-16), Dickkopf WNT signaling pathway inhibitor 1 (DKK1),

and lipoprotein lipase (LPL), and microbiome composition in

the gut. This study represents the first comprehensive analysis

of how various factors contribute to weight-loss success at

different stages of low-fat and low-carbohydrate intervention.

RESULTS

Overview of DIETFITS study
According to the analysis of the dietary intake data collected in

the DIETFITS study at baseline and 6 and 12 months, most par-

ticipants reported significantly reduced caloric intake in the first

6 months and, in general, maintained this lower level during

the second 6 months (median dietary calories at baseline,

2,115 kcal/day; M6, 1,519.8 kcal/day; M12, 1,650 kcal/day).

There were no significant between-group differences for dietary

calories at baseline (HLC, 2,132 kcal/day; HLF, 2,062 kcal/day;

p = 0.15), 6 months (HLC, 1,503 kcal/day; HLF, 1,556 kcal/day;

p = 0.77), or 12 months (HLC, 1,629 kcal/day; HLF, 1,684 kcal/

day; p = 0.63) (Figure 1A). As expected, the HLC group

consumed significantly less carbohydrate (calories from carbo-

hydrate at baseline, 44.3%; M6, 26.4%; M12, 29.0%) and the

HLF group consumed significantly less fat (calories from fat at

baseline, 34.7%; M6, 26.2%; M12, 28.5%) (Figures 1B and

1C). Partially due to the different energy density of different mac-

ronutrients, the HLC group generally had a slightly higher per-
2 Cell Reports Medicine 3, 100870, December 20, 2022
centage of calories from protein than the HLF group for both

the 6-month and the 12-month time points (calories from protein

at baseline, HLC 17.0% vs. HLF 17.2%; M6, HLC 23.8% vs. HLF

20.0%; M12, HLC 22.0% vs. HLF 20.0%) (Figure 1D).

Most participants lost weight in the first 6 months (compared

with the baseline, median weight loss in the HLC group was

7.7%, and median weight loss in the HLF group was 5.9%) (Fig-

ure 1E). As reported by Gardner et al.,20 no significant difference

in weight loss was observed at 12 month between the HLC and

the HLF group (Figure 1G, p = 0.170). However, in general, the

HLC group achieved more weight loss in the first 6 months (Fig-

ure 1E, p = 0.007), but also regainedmore in the second 6months

(Figure 1F, p = 0.021). By tracing the weight profile at an individ-

ual level, distinctive weight-loss trajectories were observed in

both diet groups (Figures 1H and 1I), including gained weight,

lost and regained, substantial loss, and delayed loss.

Dietary restriction for short-term weight loss
Since the most substantial dietary changes for most partici-

pants occurred in the first 6 months (Figures 1A–1D), we first

evaluated the impact of dietary restriction during that period;

this is referred to as short-term weight loss. We began our

investigation by examining the two most commonly accepted

factors: caloric restriction and dietary adherence. By applying

receiver operating characteristic (ROC) analysis (see STAR

Methods for details), we found that dietary adherence played

a more significant role than caloric restriction in distinguishing

the two groups (HLC, calorie restriction AUROC = 0.58 vs. per-

centage calories from carbohydrates AUROC = 0.73; HLF, cal-

orie restriction AUROC = 0.51 vs. percentage calories from fat

AUROC = 0.67) (Figure 2A).

We then performed an unbiased association analysis to sys-

tematically evaluate the relationship between a particular nutrient

change and weight-loss success in the HLC and HLF diet inter-

ventions. Of 172 specific nutrients defined by Nutrition Data Sys-

tem for Research (NDSR) analysis, we identified 38, 24, and 18

nutrients significantly associated with weight loss in HLC, HLF,

and both HLC and HLF (Figure 2C; Table S2). There was no sig-

nificant relationship between short-termweight loss and physical

activity or demographic features, except age (Table S3). Most re-

lationships between nutrient changes and weight loss remained

after correcting for the age parameter (Table S2).

Consistent with Figures 2A and 2B, dietary adherence contrib-

uted significantly to the success of weight loss. HLC-induced

weight loss was significantly associated with a decrease in die-

tary carbohydrates and increase in dietary fat. In contrast,

HLF-induced weight loss was significantly associated with

decrease in dietary fat and increase in dietary carbohydrates

(Figure 2C; Table S2).

We also observed the impact of specific nutrients on weight

loss beyond dietary adherence (Figure 2C; Table S2). In the

HLC group, nutrients such as fat-soluble vitamins E and K and

the ratio of vitamin C/iron were observed to correlate with

more successful weight loss. Although the decrease in dietary

carbohydrates is the key to HLC-induced weight loss, dietary fi-

ber, a type of carbohydrate, was an exception, and it does not

impede weight loss in the HLC diet. As shown in Figure 2D,

most HLC participants cut dietary carbohydrates as suggested,
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Figure 1. Overview of the DIETFITS study

(A) Cumulative distribution function (CDF) plot summarizing the empirical cumulative distribution of dietary calories. M0, baseline; M6, 6months; M12, 12months.

(B–D) Same as (A), but for percentage calories from fat (B), percentage calories from carbohydrate (C), and percentage calories from protein (D).

(E–G) Distribution of weight change for individuals subjected to HLF or HLC diet in the first 6months (E), the second 6months (F), and the entire 12months (G). The

significance of the difference between the HLC and the HLF groups was assessed using Wilcoxon rank-sum test.

(H) Heatmap summarizing individuals’ weight change in the HLC group. Each row represents a participant, and the color codes represent the weight change of

this person in the first 6 months (weight change in the first 6 months normalized by baseline weight) and the second 6 months (weight change in the second

6 months normalized by baseline weight). Blue, more weight loss; red, weight gain.

(I) Same as (H), but for the HLF group.
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and therefore the percentage calories from fat increased for

most HLC participants. As seen in the correlation analysis, the

type of dietary fat had a differential effect on weight loss. The

higher percentage of monounsaturated fatty acids (MUFAs) rela-

tive to saturated fatty acids (SFAs) was significantly associated

with more weight loss (p = 0.034).

The different impacts on weight loss between the SFAs and

the MUFAs were not significant for HLF participants (p = 0.69,

Figure 2E), as they limited dietary fat from all sources. For this

diet, the type of carbohydrate was important in modulating the

impact on weight loss. Unrefined carbohydrates were signifi-

cantly correlated with weight loss, but not refined carbohy-

drates. Another interesting observation from this analysis was

the negative correlation between the ratio of sodium to potas-

sium (Na/K) and weight-loss success for participants in the

HLF diet (Figure 2C; Table S2).

RQ and individualized weight loss
RQ is the ratio of carbon dioxide produced to oxygen consumed

by the body. When more carbohydrates are used as fuel, the RQ

is closer to 1, and when more fat is used as fuel, the RQ is closer

to 0.7.21
With the significant difference in dietary macronutrients in the

two dietary intervention groups, the expectation was that HLC

and HLF groups would change to utilizing different metabolic

fuels during the diet intervention. Indeed, a significant reduction

in RQ measured at 6 months vs. baseline for the HLC group

was observed (Figure 3A, p = 3.92e�13), which is probably

due to the significant increase in dietary fat and decrease in

carbohydrates in this group (p = 6.76e�35). In the HLC group,

a significant association between the reduction in RQ and the

amount of weight loss was also observed (Figure 3B, r =

0.22, p = 0.001). Although the HLF group generally reduced di-

etary fat (p = 2.17e�25), neither a significant change in RQ in

this group (Figure 3A, p = 0.70) nor any significant relationship

between the change in RQ and the weight was observed (r =

0.02, p = 0.72).

At an individual level, very personalized patterns of measured

RQ and dietarymacronutrients were observed, with a wide range

of RQ present at baseline. Unexpectedly, RQ was not strongly

associated with the percentage of fat in the diet (Figure 3C, r =

�0.07, p = 0.11). Instead, the RQ tracked closely at the intraper-

sonal level during the intervention (Figure 3D, baseline vs.

12 months, r = 0.24, p = 7.5e�4). Furthermore, the relationship
Cell Reports Medicine 3, 100870, December 20, 2022 3
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Figure 2. Dietary modification is the major

determinant of short-term weight loss

(A) ROC curves depicting how well the reduction in

dietary calories or macronutrients can distinguish

individuals losing more weight from individuals

losing lessweight. The area under the ROC curve for

each classifier is shown in the legend box.

(B) The relationship betweenweight loss and dietary

adherence. Each dot represents a participant. The

symbol color summarizes the number of overlapped

points (blue, small number; yellow, large number).

(C) The relationship between weight loss and spe-

cific nutrients. Each dot represents a particular

nutrient. The x axis represents the direction and

significance of the relationship between weight loss

and nutrient change in the HLF group. The sign of

the score was obtained from the Spearman corre-

lation coefficient and the significance is shown as

FDR-corrected Spearman correlation p value in a

�log10 scale. The y axis is the same as the x axis,

but for the HLC group. Dashed lines represent FDR

<0.1. Example nutrients are shown.

(D and E) Scatterplots summarizing the impact of

MUFAs and SFAs on weight loss in the HLC group

(D) and HLF group (E). Each symbol represents a

participant, and the color of the symbol represents

the level of weight loss this individual achieved in the

first 6 months (black, more weight loss; white,

weight gain). See also Tables S2 and S3.
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between dietary change and RQ change was also very individu-

alized. Although the HLC participants were expected to consume

less dietary carbohydrate (i.e., increased percentage dietary fat)

and respond with a reduced RQ measurement, only 132 partici-

pants were observed in this category (Figure 3E, top left, Q1

group). The rest of the participants either had unanticipated RQ

changes (Q2 group, n = 48; Q3 groups, n = 14) or had reduced

dietary fat (Q3 and Q4 groups, n = 14 and n = 11). As a potential

factor contributing to the personalized RQ change, the partici-

pants with unanticipated metabolic responses (Q2 and Q3

groups) also had a significantly higher INS-30 level (blood con-

centration of insulin 30 min after a glucose challenge) compared

with others (p = 0.02), which is consistent with the previously re-

ported association between insulin resistance and RQ.22 Partici-

pants in theQ1 group, with the expected outcomes, achieved the

most weight loss for both the first 6 months (Figure 3F; p =

0.0013; median weight loss of the Q1 participants, 9.0%; median

weight loss of the rest of the HLC participants, 5.2%) and the

entire 12 months (Figure S1; p = 0.004; median weight loss of

the Q1 participants, 6.9%; median weight loss of the rest of the

HLC participants, 3.3%). Notably, no significant differences in

demographics or changes in physical activity were found be-

tween Q1 and the rest of the groups (Table S4).

Importantly, examination of baseline data indicated that Q1

participants generally started with a relatively low dietary fat per-
4 Cell Reports Medicine 3, 100870, December 20, 2022
centage (Figure 3G) and a high RQ, as ex-

pected (Figure 3H), which likely makes

them ideal candidates for greater success

with weight loss using the HLC strategy.

Compared with the Q1 and Q2 groups,
participants in both the Q3 and the Q4 groups started with rela-

tively high dietary fat intake (i.e., low dietary carbohydrate) (Fig-

ure 3G, p = 3.46e�7), which might make it difficult to further cut

dietary carbohydrate as suggested by the HLCweight loss strat-

egy. Q2 participants started with a dietary fat percentage similar

to those in Q1 (p = 0.45) but had lower RQ at the baseline (Fig-

ure 3H, p = 5.64e�14), which also provides less room for these

participants to further reduce RQ. Thus, baseline RQ may pro-

vide additional information in selecting efficient dietary interven-

tions for weight loss. In DIETFITS, participants subjected to the

HLC diet generally lost more weight compared with HLF partic-

ipants in the first 6 months (Figure 3) and at the end of the entire

12months (p = 0.02); however, this difference was observed only

in the individuals with higher RQ at baseline (p > 0.32).

Factors associated with long-term weight-loss success
By exploring the weight profiling across all the individuals, we

found that most people lost weight during the first 6 months

(399 of 434 participants). Among them, a subset of individuals

continued to lose weight in the second 6-month period (weight

quadrant 3, long-term weight loss (Wq3): 118 participants), but

the rest did not (weight quadrant 1, long-term weight regain

(Wq1): 281 participants) (Figure 4A). Contrary to what is

commonly proposed and accepted, these two groups of partic-

ipants did not significantly differ either at the level of reported diet
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and 6 months was assessed using Wilcoxon

signed-rank test.

(B) Scatterplot of the RQ change and weight change

in the HLC group. Each dot represents a participant.

The symbol color summarizes the number of over-

lapped points (blue, small number; yellow, large

number). The relationship between RQ change and

weight change was assessed by Spearman corre-

lation test, and the correlation coefficient and p

value are shown at the top.

(C and D) Same as (B), but comparing RQ and di-

etary fat measured at baseline (C) and RQmeasured

at baseline and 12 months in the HLC group (D).

(E) Scatterplot of the relationship between dietary

change and RQ change in the HLC group. Each dot

represents an individual, and the color of the symbol

represents the level of weight loss this individual

achieved in the first 6 months (black, more weight

loss; white, weight gain). Dietary fat change, RQ

change, and weight change were all calculated as

the percentage change in the given parameter in the

first 6 months compared with the baseline.

(F) Boxplot of weight change achieved by the par-

ticipants in the Q1–Q4 groups.

(G) Boxplot of baseline dietary fat portion (percent-

age calories from fat) in the Q1–Q4 groups.

(H) Boxplot of the baseline RQ in the Q1 and Q2

groups.

(I) Boxplot of weight change achieved by the participants with high and low RQ at baseline (high and low RQ was defined based on the comparison between an

individual’s RQ and themedian RQ of this cohort). In (F)–(I), the significance of the group difference was assessed using theWilcoxon rank-sum test. NS indicates

statistical non-significance (p > 0.05). See also Figure S1 and Table S4.
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adherence or at the level of reported caloric restriction (Figures

4B–4D) (p > 0.30). A possible explanation could be that the par-

ticipants in Wq1 lose weight faster and those inWq3 lose slower,

but they achieve the same weight loss at the end of the interven-

tion. However, this was not the case; the participants in the Wq3

group lost significantly more weight than the participants in the

Wq1 group (Figure 4E, p = 5.3e�17). Interestingly, more partici-

pants in the HLF group than the HLC group achieved long-term

weight loss (Figure 4F, p = 0.03). Although we observed no sig-

nificant relationship between the change in specific nutrients in

the second 6 months and the classification of the Wq1 and

Wq3 groups, we did find a few nutrients whose changes in the

entire 12 months were related to long-term weight loss

(Table S5). Furthermore, a demographic comparison revealed

no significant difference between Wq1 and Wq3 groups in terms

of physical activity or socioeconomic status (p > 0.12, Table S6).

However, theWq3 group hadmore females than theWq1 group,

and the HLF-Wq3 group also had a relatively higher fat mass and

was slightly older at baseline (Table S6).

To explore the potential contributors to sustainable (long-term)

weight loss, further analyses of how personalized non-dietary

factors may distinguish Wq1 and Wq3 groups were performed.

A targeted proteomics assay was performed to identify proteins

differentially expressed in Wq1 and Wq3 groups. The focus was

on the samples collected at the baseline of the study to inve-
stigate the potential of identifying biomarkers that forecast the

success of long-term weight loss. We found several proteins

associated with long-term weight loss. Interestingly, some pro-

teins were significantly associated with only one diet strategy

(Figures 5A and 5B). For the HLC diet, participants who started

with significantly lower IDUA, IL-16, TNFRSF13B (also known

as transmembrane activator and calcium modulator or TACI),

and DKK1 were more likely to achieve more weight loss in

12 months (Figure 5A; Table S7). The HLC participants with rela-

tively low expression levels of all four proteins were significantly

enriched in the HLC-Wq3 group (FDR = 0.019; Figure 5D), while

those with relatively high expression levels of all four proteins

were significantly enriched in the HLC-Wq1 group (FDR =

0.001; Figure 5D). Unlike the HLC participants, TNFRSF13B

was significantly higher in the HLF-Wq3 group vs. the HLF-

Wq1 group, suggesting a different potential role for

TNFRSF13B in HLC- and HLF-induced weight loss. When

combining both diets, a significantly higher LPL expression

and lower IDUA expression in the Wq3 group compared with

the Wq1 group was found (Figure 5C; Table S7). As mentioned

before, age, gender, and fat mass are the three parameters

associated with long-term weight loss; therefore, we further

investigated their relationship with the identified proteinmarkers.

None of these proteins were significantly associated with age in

our cohort. IL-16, LPL, and TNFRSF13B were significantly
Cell Reports Medicine 3, 100870, December 20, 2022 5



-0.3 -0.2 -0.1 0 0.1
Weight change, first 6M

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
W

ei
gh

t c
ha

ng
e,

 s
ec

on
d 

6M

Wq1 Wq2

Wq3 Wq4

Wq1 Wq3
Group

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

H
LC

: C
ha

ng
es

 o
f c

ar
b%

First 6M
Wq1:Wq3, P=0.4

Wq1 Wq3
Group

-0.5

0

0.5

H
LC

: C
ha

ng
es

 o
f c

ar
b%

Second 6M
Wq1:Wq3, P=0.37

Wq1 Wq3
Group

-0.8
-0.6
-0.4
-0.2

0
0.2

H
LC

: C
ha

ng
es

 o
f c

ar
b%

Entire 12M
Wq1:Wq3, P=0.37

Wq1 Wq3
Group

-0.5

0

0.5

H
LF

: C
ha

ng
es

 o
f F

at
% First 6M

Wq1:Wq3, P=0.91

Wq1 Wq3
Group

-0.5

0

0.5

H
LF

: C
ha

ng
es

 o
f F

at
% Second 6M

Wq1:Wq3, P=0.76

Wq1 Wq3
Group

-0.6

-0.4

-0.2

0

0.2

0.4

H
LF

: C
ha

ng
es

 o
f F

at
% Entire 12M

Wq1:Wq3, P=0.36

Wq1 Wq3
Group

-0.5

0

0.5

1

Bo
th

: C
ha

ng
es

 o
f c

al
or

ie
s

First 6M
Wq1:Wq3, P=0.54

Wq1 Wq3
Group

-1

-0.5

0

0.5

1

Bo
th

:C
ha

ng
es

 o
f c

al
or

ie
s Second 6M

Wq1:Wq3, P=1

Wq1 Wq3
Group

-0.5

0

0.5

Bo
th

:C
ha

ng
es

 o
f c

al
or

ie
s Entire 12M

Wq1:Wq3, P=0.54

-0.4 -0.2 0
Change of weight in 12M

0

0.2

0.4

0.6

0.8

1

F(
x)

P= 5.3e-17

Wq1
Wq3

P= 0.03

HLC HLF
0

50

100

150

200

250

# 
of

 p
ar

tic
ip

an
ts

The rest
Wq3

Long-term weight loss

Long-term weight regain

A

E F

B

C

D

Figure 4. Dietary factors and long-term weight loss

(A) Scatterplot of theweight change in the first 6months and the second 6months. Each dot represents an individual. The symbol color summarizes the number of

overlapped points (blue, small number; yellow, large number). Four weight-change groups (Wq1–Wq4) were identified, where Wq1 represents long-term weight

regain and Wq3 represents long-term weight loss.

(B) Boxplots of dietary carbohydrate change achieved by the HLC participants in theWq1 andWq3 groups (left, the first 6 months; middle, the second 6 months;

right, the entire 12 months). The significance of the difference was assessed by Wilcoxon rank-sum test.

(C and D) Same as (B), but boxplots of the changes in dietary fat in the HLF-Wq1 and HLF-Wq3 groups (C) and boxplots of changes in dietary calories in the Wq1

and Wq3 groups (D).

(E) Distribution of the weight change achieved by the participants in theWq1 group (blue) and theWq3 group (red) for the entire 12months. The significance of the

difference was assessed by the two-sample Kolmogorov-Smirnov test.

(F) Stacked bar plot of the portions of HLC and HLF participants in the Wq3 group. The significance of the enrichment was assessed using the hypergeometric

test. See also Tables S5 and S6.
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associated with gender, while LPL and TNFRSF13B were signif-

icantly associated with the baseline percentage fat mass of the

individuals (Table S7).

To investigate the potential relationship between the micro-

biota and weight loss, longitudinal stool samples were collected

(up to five time points) from 49 participants.23 Among these indi-

viduals, 12 participants continued losing weight during the sec-

ond 6-month period (from the Wq3 group) and 34 participants

lost weight only in the first 6 months (from the Wq1 group).

Consistent with that observed in the entire DIETFITS cohort

(Figure 4), dietary adherence and caloric intake of the Wq3 par-

ticipants were not significantly different from those of the Wq1

participants in this subcohort. Also, the Wq3 participants in

this subcohort generally lost more weight at the end of the

12-month intervention (p < 5e�4), and more participants in the

HLF group maintained long-term weight loss in this subcohort
6 Cell Reports Medicine 3, 100870, December 20, 2022
(8 of 24 HLF participants were in Wq3, and 4 of 25 HLC partici-

pants were in Wq3). As shown by the principal-component anal-

ysis (Figure 6A), microbiota composition better distinguished

long-term weight loss success (i.e., in the Wq3 or Wq1 group;

shapes) than the dietary intervention (i.e., HLC or HLF interven-

tion; colors). Interestingly, this microbial difference between

theWq3 and theWq1 participants was also observed at baseline

(Figures 6B and 6C). The participants in the Wq3 group had

significantly different scores from the Wq1 group in the first prin-

cipal component (Figure 6C), which were most related to

sequence variants mapping to Bacteroidaceae Bacteroides cac-

cae (Figure 6A, s4; Table S8), Lachnospiraceae Roseburia NA

(Figure 6A, s2; Table S8), and two sequence variants that map

to Prevotellaceae Prevotella copri (Figure 6A, s12 and s36;

Table S8). Notably, this difference between Wq3 and Wq1 in

PC1 score groups at baseline was observed regardless of diet
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Figure 5. Difference in the protein biomarkers in the Wq3 and Wq1 groups

(A) Volcano plot summarizing the baseline difference in protein biomarkers (Olink CVII panel) in theWq3 andWq1 groupswhowere subjected to the HLC diet. The

x axis represents the median difference in a protein in the HLC-Wq3 group vs. the HLC-Wq1 group, and the y axis represents the significance of the difference

assessed using the Wilcoxon rank-sum test (�log10(p)). The black horizontal line indicates p = 0.05. Proteins with red circles are those with FDR < 0.1. Top five

proteins are labeled with protein names.

(B and C) Same as (A), but for individuals subjected to the HLF diet (B) and all the patients in Wq1 and Wq3 regardless of the diet (C).

(D) Heatmap summarizing the baseline protein expression levels of IDUA, TNFRSF13B, IL-16, and DKK1 in HLC-Wq1 participants (yellow lines in the yellow-blue

panel) and HLC-Wq3 participants (blue lines in the yellow-blue panel). The clustered heatmap represents the protein expression level (green, low expression; red,

high expression). For visualization purposes, the expression level was standardized along the columns of data (i.e., normalized within the participants who belong

to either the Wq1-HLC or the Wq3-HLC group). Green, orange, blue, and red boxes represent groups of participants with similar expression patterns. The

significance of the association of each group and Wq3 participants was assessed using Fisher’s exact test, followed by FDR correction. See also Table S7.
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Figure 6. Prediet baseline microbiome composition distinguishes long-term weight loss

(A) A biplot summarizing the principal-component analysis (PCA) of 16S microbiome data obtained from all samples. The direction and length of the blue lines

indicate how each 16S sequencing feature contributes to the two principal components in the plot.

(B) Same as (A) but restricted to the samples collected at the baseline. Notably, multiple samples were collected at baseline for most participants. To ensure the

fairness of the statistical analysis, randomly selected unique samples for each individual were included in the analysis. To eliminate the selection bias, we

repeated this procedure 100 times.

(C) (A) and (B) show example results from one analysis, and (C) summarizes the results from all 100 analyses. Specifically, shown are boxplots summarizing the

relationship between the PC1 score and the classification of Wq3 andWq1 (as assessed byWilcoxon rank-sum test), gender (as assessed byWilcoxon rank-sum

test), age (as assessed by Spearman correlation test), and percentage fat mass of the individual (as assessed by Spearman correlation test). In addition to the

unique samples as shown here, we also projected the remaining samples to the defined PCA space and repeated the same analysis. See also Figure S2 and

Table S8.
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(i.e., was seen within HLF and HLC diet participants) (Figure 6C),

and no significant relationship was detected between PC1 score

and age, gender, or fat mass of the individuals (Figure 6C).

DISCUSSION

We need to better understand the variables associated with

weight loss to increase the success of interventions. This

study deciphers the personal difference in responding to die-

tary weight-loss intervention by systematically studying

various datasets collected in a 1-year diet intervention study,

DIETFITs.

Calories vs. dietary adherence
Many individuals struggle with elevated weight and are willing to

make lifestyle changes to achieve sustained weight loss, but the

success rate of their efforts is frustratingly low. The range of suc-

cess in the DIETFITS study was very large, with some individuals

losing 30 kg and some gaining 10 kg. We first looked at adher-

ence: did the participants follow the diet they were assigned

to? The answer is yes. Participants in the HLC diet lowered their

carbohydrate intake, and those in the HLF diet lowered their fat

intake. This observation made from a well-controlled study is

important, since it clearly suggests that different types of diet in-

terventions may elicit different metabolic pathways to achieve

weight loss. Therefore, the personal differences in responding

to these pathways may be the key to explaining why the same

diet intervention can result in the success of weight loss for

some individuals and failure for others. Our results suggest the

importance of further investigating the underlying weight-loss

mechanisms andmetabolic pathways induced by different types

of diets. This information may eventually lead us to personalized

weight-loss strategies.
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The majority of participants lost weight in the first 6 months,

which we treat as short term, with a slightly better success rate

on the HLCdiet. During the second 6months (long term), the par-

ticipants in the HLF group regained less weight, and by the end

of the 12-month study, there was no difference in weight loss be-

tween the two groups.

The majority of weight-loss diet plans focus on caloric restric-

tion,which should lead to a caloric deficit andweight loss. Surpris-

ingly,ouranalysisclearly shows that the reportedcaloric restriction

achieved by individuals was not well correlated with their weight

loss. Instead, the degree to which they adhered to their assigned

diet was directly correlated with their weight loss during the first

6months. Just restricting calorieswithout adhering to the low-car-

bohydrate or low-fat instructionswas not enough. Hall andGuo, in

their review of the components of human energy balance,24 dis-

cussed how some people might experience substantial changes

in their energy intake and see the corresponding changes in their

weight, and others will maintain a stable weight despite large

caloric intake changes. There seem to be a variety of counterbal-

ancing physiological processes to prevent weight loss. Some of

the physiological adaptations to maintain weight in the face of

caloric deficit have been elucidated; these include perturbations

in the levels of circulating appetite-related hormones, alteration

innutrientmetabolism, effects of sleepdebt, and iatrogeniceffects

of medications.25 A better understanding of how caloric deficit af-

fects different individuals will enhance treatment decisions for a

more successful individualized approach to weight loss.

Diet quality
Since adhering to the diet is important, we looked at specific nu-

trients and ratios of nutrients in each diet thatmight be driving the

weight loss. We found that in the HLC diet, which results in a

higher intake of fat, the type of fat appears important. Those
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individuals choosing a higher proportion of unsaturated fats,

specifically monounsaturated fats, achieved more weight loss

than those with higher intake of saturated fats. This was not

true in the HLF group, as the percentage of calories from fat in

that group is low. For both groups, the quality of the diet seemed

to correlate with weight-loss success. On the HLC diet, a higher

intake of vitamins K, C, and E, was associated with more weight

loss. This would translate to a diet high in vegetables and nuts,

avocados, olives, and olive oil as the main sources of fat. In

the HLF diet, higher intake of whole grains and fiber was associ-

ated with more weight loss, and higher intake of added sugars

and a higher Na/K ratio was associated with less weight loss.

The latter ratio is a good marker for consumption of processed

foods (higher in sodium) and a lower intake of plant foods (higher

in potassium). Thus, when following a low-fat diet, eating whole

grains, legumes, and fruits and limiting refined starches and

sugars and processed foods might lead to more weight loss.

These findings add to the growing evidence that diet quality

(defined as a diet composed mostly of minimally processed

foods) is an important component of a weight-loss diet. There

is evidence for that from longitudinal studies that found diets

high in healthy eating scores were associated with less weight

gain26 andwere better at predicting obesity outcomes.27 In addi-

tion, a secondary analysis of the Diabetes Prevention Trial (DPP)

showed that overall diet quality was associated with significantly

greater weight loss among participants in the first year.28 A

recent inpatient randomized controlled trial was designed to

specifically answer the question of the role of ultraprocessed

foods on weight.29 They investigated 20 adults who were offered

ultraprocessed vs. unprocessed diets for 14 days each, in

random order. The ultraprocessed diet caused increased ad libi-

tum energy intake and weight gain despite being matched to the

unprocessed diet for presented calories and macronutrients.

Our observation was derived from an unbiased analysis of data-

sets collected from a large cohort of free-living individuals, thus

providing further evidence of the significant associations be-

tween diet quality and weight loss. The explanation for how

this could be the case is multifactorial. First, there seems to be

a heightened neural response to highly processed foods, which

have been developed in the industry to be hyperpalatable. These

foods might not be as effective in reducing appetite after

eating.30,31 Second, highly processed foods tend to be high in

added sugars and saturated and trans fats and depleted in

most micronutrients and other bioactive compounds and fi-

ber.32,33 This differential dietary composition might have an

impact on the overall metabolism of the food, directing it into

different metabolic pathways, with different efficiency.34 Third,

the calories provided in highly processed foods are easier to ac-

cess than those in less processed foods,35 so even if the diet

provides similar calories, these are not equally available. Last,

a diet that provides different dietary fibers has a differential effect

on the metabolism of the gut microbes, which might produce

different metabolites circulating back into the bloodstream,

affecting the host’s physiology.36

Baseline RQ can point to a preferred diet for weight loss
Fat oxidation can be assessed by measuring RQ, and we ex-

pected to see a linear relationship between the changes in fuel
(carbohydrate vs. fat) and the resulting RQ.37,38 Indeed, we

found that the HLC group had a decrease in RQ values, but we

did not see the expected shift of increasing RQ in the HLF group.

This effect was also seen in a study done in a metabolic ward to

determine the effects of isocaloric diets reduced in carbohydrate

and reduced in fat on fuel utilization and body composition.39

They found that the reduced carbohydrate diet resulted in RQ

changes indicating a shift toward increased fat oxidation, but

there was no significant change in RQ in the reduced fat diet,39

implying that changes in dietary fat have little effect on carbohy-

drate or fat oxidation. One explanation for this in our study could

be that the increased RQ was offset by the increase in oxidation

of endogenous fats as a result of the caloric deficit these partic-

ipants were experiencing. The shift toward a lower RQ in the HLC

group was probably enhanced by this fact.

The very personalized pattern of RQ, which is not linearly

correlated with dietary fuels, is likely a reflection of the factors di-

recting what is being oxidized for energy at the individual level,

such as glycogen stores, genetic factors, and insulin sensitivity,

and indeed the results show a stronger interindividual stability

even during changes in weight and dietary fuels. To better under-

stand the relationship between the change in RQ and weight loss

in the HLC group, we examined the four quartiles of participants

partitioned by their change in dietary fuel and RQ. Participants

who increased their %kcals from fat and had the expected

decrease in RQ (Q1) were the most successful in losing weight.

Those participants who had a similar change in diet but did not

achieve the same weight loss (Q2) started the intervention with

a lower RQ, even though their baseline diet was similar to those

in Q1. Thus, metabolic differences in these two groups pointing

to their ability to access and oxidize fats for fuel likely affected

their weight loss success. Individuals whose diet is low in fat

andwho have a high RQ are good candidates to follow a low car-

bohydrate diet to achieve weight loss.

Individuals who started the intervention already consuming a

diet high in fat did not increase the percentage of fat further,

but they rather decreased their total caloric intake. From this

group, some had an increase in RQ (Q4), which would be ex-

pected, and others had a decrease in their RQ (Q3) even though

they reported a decrease in fat intake. This unexpected decrease

in RQmight be associated with a degree of underlying metabolic

dysfunction, as evidenced by their higher INS-30 level.

Short-term weight loss vs. long-term weight loss
In DIETFITS, most participants achieved some weight loss dur-

ing the first 6 months, and the HLC group in general achieved

more weight loss than the HLF group during this period. During

the second part of the study, some individuals continued to

lose weight, but more participants either maintained or regained

weight during the second 6 months, even when they continued

to adhere to the diet and reported maintaining a lower caloric

intake. Interestingly, we found more participants in the HLF

group than the HLC group achieved sustained weight loss. We

examined the factors that differentiated these participants’ suc-

cess in long-term weight loss (in both HLF and HLC diets) to

determine if there are any commonalities among them. The ana-

lyses suggest that dietary modifications, including decreasing

caloric intake and limiting a macronutrient (fat or carbohydrate),
Cell Reports Medicine 3, 100870, December 20, 2022 9
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contribute the most to weight loss in the first 6 months, but not

for the second 6 months, suggesting an impact of non-dietary

factors on long-term weight loss, including those processes

associated with protein biomarkers and the composition of the

microbiota.

Protein biomarkers associated with long-term weight
loss
Our analysis of the proteome identified several molecular bio-

markers at baseline that are significantly associated with the

success of long-term weight loss, including IDUA, TNFRSF13B

(TACI), IL-16, DKK1, and LPL. These proteins have been previ-

ously reported to be associated with obesity and metabolic

dysfunction.40–44 Specifically, IDUA is an enzyme essential for

the degradation of glycosaminoglycans (GAGs), and GAGs’ ac-

tivity in preventing diet-induced obesity and promoting weight

and fat loss were previously shown in mice.44 Plasma level of

IL-16, a proinflammatory cytokine, was shown to be significantly

increased in overweight adolescents compared with normal

weight controls41 and associated with obesity-related inflamma-

tion.45 TNFRSF13B (TACI), a transmembrane protein of the TNF

receptor superfamily, is also involved in the immune system.

TACI-deficient mice were previously shown to be protected

from high-fat-induced weight gain and meta-inflammation.42

DKK1 was previously reported as a negative regulator of the

WNT pathway,46 which plays an important role in modulating

adipogenesis and obesity.47,48 LPL is a key enzyme required in

dietary lipid metabolism. It cleaves triacylglycerol in chylomi-

crons, to enable fat storage in adipose tissue.49,50 In this study,

we indeed observed a significant association between LPL level

and the percentage of body fat. Also, we found that individuals

with higher LPL levels at baseline tend to fail long-term weight

loss. Interestingly, we observed a more dominant relationship

between LPL levels with long-term weight loss in the HLF vs.

the HLC group. We suspect that individuals with higher LPL

levels may benefit more from an HLF diet, since it introduces

less dietary fat for LPL-dependent fat storage. Certainly, obesity

and weight loss are complex processes determined by the inter-

play of multiple pathways. Indeed, we observed that individuals

with favored expression levels of all the identified biomarkers

were more likely to achieve long-term weight loss compared

with those with the favored expression of some of these bio-

markers. We suspect that these biomarkers might be involved

in independent pathways with accumulated impact on weight

loss or function in interacting pathways that may rescue one

another.

Microbiota associated with long-term weight loss
There is a vast body of evidence on the association between

body weight and the microbial composition of the host. Different

mechanisms have been proposed to explain this effect,

including the efficacy of energy harvest from different foods,51,52

acquiring additional energy from the fermentation of dietary fi-

ber,53 and changes in appetite driven by the secretion of gastro-

intestinal hormones stimulated by the microbial composition in

the intestine.54

Bacterial composition has been analyzed in individuals with

and without obesity to try to find the families or species that
10 Cell Reports Medicine 3, 100870, December 20, 2022
may affect or reflect bodyweight. Epidemiologic studies suggest

that there is a shift in phyla, with higher Firmicutes and lower

Bacteroidetes proportions in obesity.55–58 Reduced levels of

Bacteroidetes and microbial diversity have also been demon-

strated in monozygotic and dizygotic obese twins compared

with their lean twin,16 but this trend of lower Bacteroidetes has

not been consistently shown in other studies.17,59 It is likely

that the influence of gut microbiota on obesity is more complex

than simply an imbalance in the proportion of these phyla of

bacteria.

A recent intervention study questioned the predisposition to

weight loss based on the ratio of two families within the Bacter-

oidetes phyla. Sixty-two participants were randomized to either

a high-fiber New Nordic diet or an average Danish diet for

26 weeks, and those individuals with a high Prevotella spp. to

Bacteroides spp. ratio achieved greater weight loss.60

Our analysis of microbial composition between those individ-

uals who were more successful at long-term weight loss and

those who lost weight only during the first 6 months of the

intervention showed that sequence variants mapping to Bacter-

oidaceae B. caccae and Lachnospiraceae Roseburia NA were

more prevalent in those individuals who lost weight in the long

term (i.e., they continued to lose weight during the second

6 months of the intervention period). There is evidence in animal

studies that these are fiber-degrading species whose metabolic

products might help protect from weight gain and insulin

resistance.61,62

Our analyses suggest that the participants with a higher prev-

alence of variantsmapping to Prevotellaceae P. copriwere asso-

ciated with unsuccessful long-termweight loss, which is partially

contradictory to the Nordic diet study. However, it is important to

note that our analyses mapped associations between a specific

species to weight loss, while the Nordic diet study focused on

the Prevotella spp. to Bacteroides spp. ratio. Another difference

between these two studies is the length of the weight-loss pro-

gram. The Nordic diet study was 26 weeks (�6 months), and

we examined 12-month weight loss. As shown through this

study, the factors affecting short- and long-term weight loss

are different, including the microbiome factors (Figure S2). The

next step is to investigate themechanisms regulating the interac-

tions between the gut microbiota and host metabolism in

different disease models.

Individualized weight-loss approaches
The success of diet-induced weight loss can be influenced by

many variables ranging from genotype to lifestyle, which differ

from one individual to another. Precision nutrition, which as-

sumes individuals may have different responses to a specific

diet or nutrient,63 may provide a promising strategy for safe

and effective weight loss. As an emerging area, the concept of

precision nutrition has been investigated for its application in dis-

ease management, such as nutritional cancer therapies64,65 and

controlling type 2 diabetes.66–68 With the accumulated evidence

and experience, precision nutrition can also have a large poten-

tial for weight loss and maintenance. The current study began to

unravel the variables that enhance weight-loss success, and by

showing that RQ can suggest a specific intervention, we are

taking the first step. In addition, the significant relationships
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between baseline molecular features and weight loss in a diet-

specific manner further suggest the possibility of developing

individualized weight-loss strategies. The further development

of approaches to individualized weight loss requiresmechanistic

investigation of underlyingmetabolic pathways for individualized

responses to diet-induced weight loss. Individualized weight

loss will also benefit greatly from algorithm development to

combine and convert the many factors learned on how indi-

viduals respond to diet into a personalized nutrition regimen,

performing large-scale and definitive trials to evaluate its clinical

efficacy, and education of precision nutrition to both health pro-

fessionals and communities.

Limitations of the study
The study had several limitations.

Cohort limitations

Enrolled participants tended to have high educational levels,

with good access to many food options. Also, some ethnic and

racial groups were represented at lower levels. The resulting

cohort size was large, which helped attenuate these limitations.

As with all human clinical studies, there are missing data in

DIETFITS because of participant drops and methodological is-

sues, but a large amount of data for most of the parameters

was collected from the majority of the participants. Microbiota

analyses were performed using the data collected from only a

subset of the participants. Still, rigorous analysis was conducted

from data collected from a sizable cohort with similar phenotyp-

ical outcomes but which might not be fully representative of the

full cohort.

Methodology limitations

Self-reported diet assessments are all known to have limited ac-

curacy. The DIETFITS authors chose to use NDSR, which is

recognized as a top method. It has been validated69 and used

in hundreds of studies.70 The Stanford 7-Day Physical Activity

Recall tool (which was used to determine total energy expendi-

ture) provides only a relatively crude assessment of total energy

expenditure. Using the doubly labeled water method would have

provided greater accuracy; however, the overall cost and added

participant burden were determined to be beyond the scope of

the study. The proteomics assay used was a targeted assay

that might not have covered all the relevant factors contributing

to weight loss, but this approach provides higher sensitivity, ac-

curacy, and reproducibility of the biomarkers found.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cohorts and data collection
Detailed methods of the DIETFITS study have been previously published.19 Briefly, 609 generally healthy, nondiabetic, overweight

and obese participants, aged 18–50 y were randomly assigned in equal proportions in a parallel-design weight-loss diet study to

1 of 2 diets: healthy low-carb or healthy low-fat. Exclusion criteria included uncontrolled metabolic disease or hypertension; preg-

nancy or lactation; diabetes; cancer; cardiovascular, renal, or liver disease; or use of medications that affect weight. Enrollment

was spread out across five cohorts between the spring of 2013 and the spring of 2015. Both dietary weight loss interventions

spanned 12 mo and included 22 group educational sessions with registered dietitian nutritionists and clinical health educators.

Data were collected at baseline and months 3, 6, and 12. The participants were enrolled in this study under the IRB protocol

22305 at Stanford University. All participants consented in writing. Registered at clinical trials.gov NCT 01826591.

In the DIETFITS study, 1057 individuals were screened for eligibility. Among them, 254 individuals were excluded (69 individuals did

not meet eligibility criteria, 137 individuals were no longer interested, 29 individuals discontinued communication, and 19 individuals

for other reasons). There were 803 individuals who attended study orientation and were informed of study details. Among them, 171

individuals were excluded from the study (142 individuals were no longer interested, and 29 individuals were excluded for other rea-

sons). The remaining 632 individuals were randomized to either follow the HLF diet (314 individuals) or the HLC diet (318 individuals).

In theHLF group, 9 individuals withdrew prior to receiving the diet assignment (5 individuals had scheduling conflicts and 4 individuals

had other reasons), and the remaining 305 individuals were informed of the diet assignment, and their data were included in the anal-

ysis. Among the 305 HLF participants, 24 individuals lost to follow-up, 40 discontinued the intervention due to personal reasons (21

individuals), scheduling conflicts (8 individuals), health issues unrelated to study (6 individuals), and unhappiness with diet (5 individ-

uals). The remaining 238 HLF participants completed the study. In the HLC group, 14 individuals withdrew prior to receiving the diet

assignment (9 individuals had scheduling conflicts and 5 individuals had other reasons), and the remaining 304 individuals were

informed of the diet assignment, and their data were included in the analysis. Among the 304 HLC participants, 29 individuals lost

to follow-up, 37 discontinued the intervention due to personal reasons (13 individuals), scheduling conflicts (12 individuals), health

issues unrelated to study (11 individuals), and unhappiness with diet (1 individual). The remaining 238 HLC participants completed

the study.

METHOD DETAILS

Study visits and clinical measurements
Participants were assessed at the Stanford Clinical Translational Research Unit (CTRU). All clinic visits started between 7:00 and 9:30

am, with participants in a fasted state for at least 10–12 h. Participants were asked to avoid caffeine, alcohol consumption or exercise

on the morning of the evaluation. Basic clinical evaluation included measures of height, weight and vital signs. Blood samples were

taken at baseline, 3, 6 and 12 months via venipuncture at the Stanford CTRU by trained nurses or phlebotomists. Aliquots of plasma

and serum were obtained at all time points; buffy coats were collected at baseline, 6 and 12 months.

OGTT
Blood was collected to assess post-fasting plasma glucose and insulin via phlebotomy at the Stanford CTRU. Insulin levels were

assessed by radioimmunoassay by the Core Laboratory for Clinical Studies Washington University School of Medicine, St. Louis,

Missouri.72 Glucose levels were analyzed using a Beckman Glucose Analyzer II (BGA II) by electrochemical technique.73 For the

OGTT, serial blood sampling was collected under fasting conditions and then at 30, 60 and 120 min after consuming 75 g of glucose

solution.74

RQ
RQ measurements were done using the PravoMedics TrueOne 2400 metabolic cart.75 The RQ was performed in cohorts 2 to 5 as

resources were not available at the onset of the study.19,20 Flow and gas calibration were performed every morning the metabolic

carts were to be used. Resting measurements were taken for a minimum of 20 min for each participant, and the first 5 min were dis-

carded from analysis. Data were collected every 60 s. Our analyses focused on the average values for those variables fromminute 6

to minute 20. We excluded physiological outliers likely due to either sub-optimal testing conditions or errors in measurement76 which

represented 3.6% of the study visits.

Dietary intake
Dietary intake was assessed using 3 unannounced, 24-h dietary recalls within a 2-wk window at each data-collection time point. Di-

etary recalls were collected using a standardized multiple-pass interview approach,77 and then processed using the Nutrition Data
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System for Research (NSDR) database. NDSR is a computer-based software application developed at the University of Minnesota

Nutrition Coordinating Center (NCC), which is recognized as the gold standard for Nutrition Databases. The NDSR database includes

over 18,000 foods, including 7500 brand name products; ingredient choices and preparation methods provide 160,000+ food var-

iants. Additionally, NDSR can generate values for 178 nutrients, nutrient ratios and other food components, (the ratios vitamin C/iron,

Na/K, were calculated from the NDS-R output).

To depict how well the reduction of dietary calories or macronutrients can distinguish individuals losing more weight from individ-

uals losing less weight, we separated participants in each diet into two groups of comparable size: (1) the positive group for

participants who lost more than 8% of their body weight in the first six months (HLC: N = 117, HLF: N = 79), (2) the negative group

for participants who lost less than 5% of their body weight in the first six months (HLC: N = 83, HLF: N = 97), and then applied receiver

operating characteristic (ROC) analysis to assess the ability of each factor in distinguishing the positive group from the negative

group.

Dietary intervention (‘‘Limbo-Titrate’’)
In the first 8 week, participants were instructed to work toward limiting either fat or carbohydrates (specific to diet group assignment)

to 20 g/d (‘‘Limbo’’ phase) and then try tomaintain that for at least a fewweeks. At that point, they were allowed to add small amounts

of fat or carbohydrate back to their diet, specifically with the goal of seeking the lowest level they could achieve and felt realistically

could bemaintained as a lifelong eating pattern, should the diet enable weight loss (‘‘Titrate’’ phase). The ‘‘lowest they could go’’ was

determined individually between each participant and their assigned health educator, with the stated objective of identifying a level

that could be maintained even after the study ended (i.e., in contrast to simply following a diet they would go off of once the study

ended). Throughout the study both diet groups were told to maximize vegetable and whole-food intake and minimize or eliminate

added sugars and refined grains; this was intended to help both groups focus on high ‘‘Quality’’ diets.

Stanford 7-day Physical Activity Recall tool
The Stanford Seven-Day Physical Activity Recall (PAR) was administered by trained study staff at the same time as one of the dietary

recalls at each major data collection time point to assess participants’ self-reported level of physical activity.78 Physical activity is

measured as total energy expenditure and time spent in moderate, hard, and very hard physical activity. Hours per day spent in

the various categories of physical activity intensity are then converted to a daily average of metabolic equivalents (METS) and

then used to estimate total energy expenditure per day in units of Kcal/kg/day.

Dual energy X-ray absorptiometry scans
DXA scans were performed to examine whole body adiposity, lean body mass, and bone density at baseline, 6 and 12 months. Each

individual underwent DXA scans using a Hologic QDR-4500W fan-beam scanner (Bedford, MA) based on the manufacturer’s guide-

lines. Quality control procedures were carried out regularly based on the manufacturer’s recommendations and the instrument was

calibrated weekly using appropriate phantoms supplied by the manufacturer. DXA data were collected for Cohorts 2 through 5 (i.e.,

resources were not available at the onset of the study for cohort 1). One technician completed all scans for all participants at all time

points to minimize potential variability.

Targeted protein assay and data analysis
Protein levels were measured using Olink cardiovascular II panel, cardiovascular III panel and inflammation panels (OLINK Proseek�
Multiplex kits). Themethod is based on a proximity extension assay (PEA), when binding to their correct targets, they give rise to new

DNA amplicons, each ID-barcoding their respective antigens. The amplicons are subsequently quantified using a Fluidigm

BioMarkTM HD real-time PCR platform. Using the standard Olink protocols, protein levels were expressed as normalized protein

expression (NPX), which is an arbitrary unit on a log2 scale. If a sample failed the Olink quality control, all the proteins were excluded

from the analysis. If more than five proteins out of one specific panel failed, that sample was excluded for that panel. As described in

Figarska et al.,71 seven proteins (NT-proBNP, IL-2 and IL-22RA1, BNP, CA5A, SLAMF7, IgG Fc receptor II-b) were excluded from the

analysis due to the large portion of misdetection in our samples. Differential expression analysis was performed separately in each

panel. Wilcoxon rank sum test was used to assess the significance of the expression difference. Multiple test correction was per-

formed using false discovery rate as introduced by Benjamini and Hochberg in 1995.79

All these identified biomarkers were previously validated with high specificity, repeatability, and reproducibility. Because of that,

we feel confident with the relatively small difference we observed, which was also backed up by significant statistical results.

Microbiome and data analysis
As described in Fragiadakis et al.,23 stool sample collection in DIETFITS Cohort 3 involved five time points: baseline, 3, 6, 9 and

12 months. The microbiome analysis was done from a subset of participants (n = 49) from whom stool samples were collected

from cohort 3 in DIETFITS. Analyses for this study were done using data generated by those volunteers who provided R3 of the

5 possible stool samples; of the 49 participants, 27 submitted samples and complete sequencing data from all five time points,

21 were complete for 4 out of 5 time points, and 1 was complete for 3 out of 5 time points. Baseline demographics and dietary

changes across 12-mo were comparable between the subset of the microbiome analyses and the larger parent study population
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as described in Fagiadakis et al.23 The analyses performed in this study focused on the samples collected at baseline, 6, and

12 months.

Participants were providedwith stool collection kits. All stool samples were kept in participants’ home freezers (�20�C) wrapped in

ice packs, until they were transferred on ice to the research laboratory and stored at �80�C. There was no intentional freeze–thaw

cycle and all samples were sequenced together. DNA was extracted using the MoBio PowerSoil kit according to the Earth Micro-

biome Project’s protocol80 and amplified at the V4 region of the 16S ribosomal RNA (rRNA) subunit gene and 250 nucleotides (nt)

paired-end Illumina sequencing reads were generated. Forward reads were trimmed at 250 bp and reverse reads were trimmed

at 175 bp. An average of 16,121 reads were used as input, with an average of 9374 reads recovered after filtering, denoising, merging

forward and reverse reads, and removing chimeras.

As described in Fagiadakis et al.,23 16S rRNA sequencing data were demultiplexed using QIIME pipeline (version 1.8) and the Am-

plicon sequence variants (ASVs) were identified with a learned sequencing error correction model (DADA2 method),81 using the

dada2 package in R. ASVs were assigned taxonomy using the GreenGenes database (version 13.8). The counts for each RSV

were normalized to the total reads per sample. The relative abundance of RSV of all samples were then dimensionality-reduced using

principal component analysis. Notably, multiple samples were collected at baseline for most participants. To test the potential impact

of the variable nature of the fecal microbiome samples on the analysis, we randomly split the samples into two groups (1) the unique

sample group (one sample for each individual at a given time point) and (2) the test group (the remaining samples). We first defined the

PCA space using the unique sample pool and then projected the test samples to the defined PCA space. To eliminate the potential

bias derived from the sample selection, we repeated this process 100 times.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and data visualization
Statistical analyses and data visualization were performed using MATLAB from MathWorks (MATLAB version R2017b). Specifically,

functions cdfplot, PCA, kstest2, ranksum, signrank, fishertest, mafdr, corr, and partialcorr in MATLAB were

applied with the default setting (excepting ‘BHFDR’ was used for mafdr) for performing cumulative distribution function plot, prin-

cipal component analysis, the Kolmogorov-Smirnov test,Wilcoxon rank sum test,Wilcoxon signed rank test, Fisher’s exact test, FDR

correction, Spearman correlation analysis, and rank partial correlation respectively. Specifically, the CDF plot shows the empirical

cumulative distribution function of the data. For a value t in x, the empirical CDF F(t) is the proportion of the values in x less than

or equal to t. Wilcoxon rank sum test is a nonparametric test for two populations when samples are independent. Wilcoxon rank

sum test tests the null hypothesis that data in two groups are samples from continuous distributions with equal medians, against

the alternative that they are not. Wilcoxon signed rank test is a nonparametric test for two populations when the observations are

paired. The one-sampleWilcoxon signed rank test is used to determine whether themedian of the sample is equal to the known stan-

dard value (zero was used in this study). Principal component analysis is a dimensionality-reduction method that transforms a large

set of variables into a smaller one with most of the information remaining. Kolmogorov-Smirnov test is a statistical test for the null

hypothesis that the data in two datasets are from the same continuous distribution, against the alternative hypothesis that these data-

sets are from different continuous distributions. Fisher’s exact test is a statistical test of the null hypothesis that there are no

nonrandom associations between the two categorical variables, against the alternative that there is a nonrandom association.

FDR correction is a statistical procedure designed to control the FDR, which is the expected proportion of "discoveries" (rejected

null hypotheses) that are false (incorrect rejections of the null). Spearman correlation analysis is a nonparametric measure of rank

correlation between the ranking of two variables. Partial correlation measures the degree of association between two random vari-

ables, with the effect of a set of controlling random variables removed.

Boxplot analysis was performed using matlab function boxplot. On each box, the central mark indicates the median, and the bot-

tom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data

points not considered outliers, and the outliers are plotted individually using the ’+’ marker symbol.

ADDITIONAL RESOURCES

The clinical trial registry number for the DIETFITS study is NCT01826591 (https://clinicaltrials.gov/ct2/show/NCT01826591).
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