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Innate immune responses are tightly regulated by various pathways to control infections
and maintain homeostasis. One of these pathways, the inflammasome pathway, activates
a family of cysteine proteases called inflammatory caspases. They orchestrate an immune
response by cleaving specific cellular substrates. Canonical inflammasomes activate
caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans
and caspase-11 in mice. Caspases are highly specific enzymes that select their sub-
strates through diverse mechanisms. During inflammation, caspase activity is responsible
for the secretion of inflammatory cytokines and the execution of a form of lytic and
inflammatory cell death called pyroptosis. This review aims to bring together our current
knowledge of the biochemical processes behind inflammatory caspase activation, sub-
strate specificity, and substrate signalling.

Introduction
Proteases are central enzymes that mediate numerous signalling roles to ensure cellular functions and
organismal homeostasis [1]. Discovered more than 20 years ago, caspases are key signalling proteases
that control various cell death processes and have been linked to inflammation and non-cell death-
related functions [2–5].
Inflammatory caspases are a caspase subset activated by cellular platforms called inflammasomes

[6–8]. Albeit mediating inflammasome signalling, our understanding of the biochemistry and the cel-
lular processes governed by inflammatory caspases is limited. This mini-review aims to bring together
our understanding of the mechanisms regulating inflammatory caspases activation, signalling and
regulation.

Caspases…what’s in the name?
The term caspase [2,9] is derived from the cysteine catalytic site used by the protease, and its rare spe-
cificity for cleavage at the carboxy-terminal side of Aspartic acid residues (D); cysteine-dependent
aspartate-specific proteases. Caspases use a catalytic dyad composed of an histidine (H237 in
caspase-1) and a cysteine (Cys285 in caspase-1) [2]. Initially discovered in Caenorhabditis elegans (C.
elegans) [3,5], the role of caspases in development and innate immunity have since been characterised
in a wide range of multicellular organisms. Recent work also clarifies important functions of caspases
outside these processes, including proliferation, migration, and differentiation [10–13].
Caspases have a conserved modular organisation: a N-terminal domain (of variable length and

function), a large catalytic subunit, and a small catalytic subunit [2] (Figure 1). These domains are
separated by flexible linkers sensitive to proteolysis, the interdomain linker (IDL) and the recruitment
domain linker (RDL). To date, twelve caspases have been identified in humans and ten in mice [2]. A
classification system for caspases was developed, dividing each caspase into two main groups in
accordance with their function, structure, and activation mechanism (Table 1).
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Figure 1. Structural organisation of an inflammatory caspase.

(A) Inflammatory caspases are composed of a CARD domain and a catalytic subunit, divided into a large and a small subunit.

Caspases use a catalytic cysteine (shown as a star) to support their catalytic activity. Scissors represent inhibitory (red) and

activating (green) self-processing sites. (B) Crystal structure of caspase-1 bound to the active-site inhibitor VX765 (PDB: 6PZP).

The large subunit (pink) and the small subunit (cyan) of a caspase-1 dimer interacting with the active site inhibitor VX-765

(orange).

Table 1 Human caspases functions and activation
mechanism overview

Caspase Function/activation mechanism

1 Inflammation/dimerisation

2 Apoptosis/dimerisation

3 Apoptosis (Executioner)/dimerisation

4 Inflammation/dimerisation

5 Inflammation/dimerisation

6 Apoptosis (Executioner)/cleavage

7 Apoptosis (Executioner)/cleavage

8 Apoptosis (Initiator)/dimerisation

9 Apoptosis (Initiator)/dimerisation

10 Apoptosis (Initiator)/dimerisation

12 Unclear, catalytically inactive

14 Keratinocyte differentiation/dimerisation
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The first caspase group, the apoptotic caspases, can be further subdivided into initiator and executioner cas-
pases based on their role within the apoptotic pathway. The initiator caspases (caspase-8, -9, and -10), are
monomeric and contain a long homotypic N-terminal domain required for recruitment to their respective acti-
vation platform. The initiator caspases can then be further divided into whether they participate in the extrinsic
or intrinsic apoptotic pathway. The extrinsic pathway involves caspase-8 and -10, which are activated by com-
plexes like the death-inducing signalling complex (DISC) following binding of death ligands to their cognate
receptors [14,15]. The intrinsic apoptotic pathway involves caspase-9, activated by the apoptosome following
sensing of various intracellular signal like DNA-damage [16,17]. Once activated, the initiator caspases activate
the executioner apoptotic caspases (caspase-3, -6 and -7) by cleaving their IDL [2,18].
Executioner caspases contain a short pro-domain (<30 residues) and are synthesised as inactive dimeric

zymogens. Cleavage of executioner caspases by the initiator caspases allows full activation and therefore the
cleavage of specific substrates to execute apoptotic cell death [19].
The second main caspase group is the inflammatory caspases [20]. The inflammatory caspases are encoded

by three genes in humans (CASP1, CASP4, CASP5), and two in mice (casp1, casp11), clustered on a single
locus, chromosome 11 in humans, and on chromosome 9 in mice. In mice, caspase-12 is also considered an
inflammatory caspase [21] but roles of caspase-12 in inflammasome signalling have been debated [22].
Humans express a truncated and inactive version of caspase-12 [23,24], therefore this caspase will not be dis-
cussed further. The best characterised inflammatory caspase is caspase-1. This caspase, originally named IL-1β
converting enzyme (ICE), was identified whilst studying the protease involved in the processing of the proIL-1β
cytokine [4,25–27]. Shortly after, caspase-4, -5 and -11 [28] were linked to cell death and endotoxin responses.
Caspase-1 is activated by a signalling complex called the canonical inflammasome, whereas caspase-4 and -11
(and potentially -5) are activated by the non-canonical inflammasome. Caspase-1 and caspase-4 are constitu-
tively expressed in most cell types whereas caspase-5 expression is interferon inducible [29]. A recent study
identified a gain-of-function mutation in CCAAT enhancer–binding protein epsilon (CEBPE) causes an autoin-
flammatory inflammasomopathy that leads to constitutive caspase-5 expression [30].
A few caspases fall out of the traditional classification due to their unique functions. An example of this is

caspase-14, a caspase involved in keratinocyte differentiation [31]. Caspase-2 is another caspase member that
has been linked with apoptotic processes and with innate immune functions, however does not comfortably fit
into the current classification system [32].
The remainder of this review will focus on the mechanisms that govern inflammatory caspase activity.

Inflammatory caspase activation
Caspase-1
Inflammatory caspases exist as monomers under the cellular resting state and require dimerisation to become
active. This dimerisation step is tightly regulated and is mediated by large, multi-protein signalling platforms
called inflammasomes [6]. Inflammasomes are composed of a pattern recognition receptor (PRR) which senses
danger-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs), an
adaptor protein (Apoptosis-associated speck-like protein (ASC)) and an inflammatory caspase [7,8].
PRR-activating inflammasomes are diverse in nature and recognise or respond to a multitude of chemically

different ligands (summarised in Table 2).
Inflammasome-activating PRRs contain either a Pyrin domain (PYD) or Caspase activation and recruitment

domain (CARD), both of which belong to the death-fold domain family [33]. The presence of these homotypic
domains is a unifying feature of inflammasome-activating PRRs, which can therefore be divided into
PYD-containing (NLRP3, NLRP6, NLRP7, AIM2, Pyrin) or CARD-containing (NLRP1, NLRC4, CARD8)
PRR. Following PRR activation and oligomerisation, these domains undergo homotypic domain–domain inter-
actions (PYD–PYD or CARD–CARD) that allow the recruitment of the adaptor protein ASC. ASC is a 22 kD
adaptor protein, containing both a PYD and CARD domain. ASC–PYD oligomerisation leads to the formation
of ASC filaments, and interactions between these filaments through ASC–CARD leads to the formation of the
ASC speck, with a single cellular focus of ∼1 mm [34,35]. The ASC speck recruits caspase-1 monomers
through CARD–CARD homotypic interactions, increasing local caspase-1 concentration therefore promoting
caspase-1 dimerisation and allowing its activation [36]. Caspase dimerisation occurs through an interface
located in the small catalytic subunit [2]. Dimerisation of caspase-1 induces basal activity and allows for the
processing of the interdomain linker (IDL), which leads to structural reorganisation and stabilises the active site
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to generate a fully active caspase-1 species called p33/p10 (Figure 1) [36]. This activation mechanism, shared
with initiator caspases, is known as proximity-induced dimerisation [19]. The caspase-1 p33/p10 species has
the ability to process its established substrates (IL-1β, IL-18 and GSDMD) to mediate cell death and cytokine
secretion (Figure 3). Caspase-1 subsequently cleaves its RDL to generate the p20/p10 species and dissociate
from the inflammasome and become inactive [36]. Dimeric full-length caspase-1 is also partially active and can
mediate cell death, but not cytokines processing [37].
The ASC speck can also recruit and activate caspase-8 to trigger apoptosis [38].

Caspase-4 and -5
Inflammatory caspase-4 and -5 in humans, and caspase-11 in mice, are activated by the non-canonical inflam-
masome. Caspase-5 is conserved only in a few species (humans and great apes) and is believed to be the conse-
quence of a genetic duplication. Until recently, these caspases were believed to directly binding
lipopolysaccharide to trigger direct caspase dimerisation and activation [57]. However, recent studies identified
cellular factors that facilitate the presentation of hydrophobic bacterial LPS to these caspases.
Interferon-inducible guanylate binding proteins (GBPs) [58] recognise the outer section of LPS on cytosolic
bacteria and allow for the assembly of an inflammasome directly on the bacteria. In human epithelial cells, this
assembly platform is composed of GBP1, 2, 3 and 4 [54–56,59]. Outer membrane vesicles [60] can also activate
the non-canonical inflammasome in a GBP-dependant manner [61]. In mice, GBPs facilitate the recruitment
and localisation of IRGB10 to the membrane of invading pathogens, resulting in the destruction of the patho-
gen membrane and subsequent release of LPS and DNA, activating the non-canonical and AIM2 inflamma-
somes, respectively [62,63]. Humans do not express a functional orthologue of IRGB10. Caspase-4 and -5
active species are yet to be fully characterised; however, studies suggest that the p32/p10 form of caspase-4
could be the active species [64]. Studies into caspase-11 have supported this, showing that caspase-11 needs to
be cleaved at the IDL to generate a fully active species [65,66]. Caspase-4 and -11 have also been suggested to
be activated by the NLRP6 inflammasome downstream of Lipoteichoic acid (LTA) recognition [48]. However,
the molecular basis of this process is not fully understood. Fatty acids and oxidised lipids have also been sug-
gested to be endogenous ligands for the non-canonical inflammasome with cell-specific outcomes [67–69].
The cellular context controlling caspase-5 activation remain elusive. Specific LPS structures (e.g. Outer mem-

brane vesicles from Pseudomonas aeruginosa) [70] and NLRP1 [6] were suggested to activate caspase-5.
However, features enabling caspase-5 activation (instead of caspase-4) are subject of current investigations.

Caspase specificity
Inflammatory caspases are highly specific proteases that cleave defined protein substrates to orchestrate the
innate immune responses. In the following section, we will discuss how caspases achieve this specificity
through diverse mechanisms (Figure 2).

Table 2 Inflammasome-forming pattern recognition receptors

Pattern recognition receptor Examples of activating stimuli

NLRP1 Proteases from pathogens [39,40]
viral dsRNA [41]
Toxoplasma gondii [42]

NLRP3 Pore-forming toxins (Hemolysin, Candidalysin) [43,44]
B-glucan [45]
ATP [46]
Urate crystal [47]

NLRP6 Lipoteichoic acid (LTA) [48]

NLRP7 Lipopeptide [49]

NLRC4/NAIP T3SS proteins, Flagellin [50]

AIM2 Cytosolic DNA [51,52]

Pyrin Rho GTPase inactivation [53]

GBPs LPS [54–56]
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Primary specificity
Caspases natural substrate must be present in the same cellular compartment as the caspase and their cleavage
site present specific features. First, the P10 position is usually occupied by a small aliphatic amino acid.
Secondly, the cleavage site is usually located in a solvent-exposed flexible structural element and is accessible to
the protease active site. Finally, caspase substrate often displays an optimal primary cleavage sequence [71].
The substrates primary cleavage sequence bind through the caspase substrate-binding pocket, which can gen-

erally accommodate four amino acids from the substrate. According to the Schechter-Berger nomenclature
[72], caspases recognise an aspartate in position P1 and several different amino acids in position P4 to P2
(Figure 2). Using small peptide library, the preferred substrate sequence for each caspase has been defined.
Inflammatory caspases prefer aromatic or hydrophobic amino acids in position P4, glutamic acids in position
P3, and small aliphatic amino acids in position P2 [73].
Recently, caspases were shown to cleave artificial substrates containing glutamic acid and phosphorylated

serine in position P1, expanding the potential sequence of substrates [74].
Although the focus has been towards the primary tetrapeptide, multiple studies have highlighted the influ-

ence of extended subsites on caspase specificity. The Salvesen group identified extended subsites in caspase-11
and caspase-5 substrates that increase cleavage of selected substrates [75,76]. Extended subsites have also been
suggested in other caspases [32].
The ability of certain caspases to cleave these primary sequences can also be influenced by post-translational

modifications of the substrates. For example, phosphorylation of the substrates primary tetrapeptide has been
shown to influence the ability of apoptotic caspases to cleave certain substrates [74,77]. However, its influence
on inflammatory caspase specificity is currently unclear.
Caspase specificity to small peptides led to the development of caspase inhibitors. However, these inhibitors

display relative specificity as they can target other caspases [78]. For example, an inhibitor derived from
caspase-8 favourite recognition sequence will also inhibit efficiently other caspases [78].
Determinants outside the substrate-binding pocket have also been shown to influence caspase specificity [79].

Exosites
Exosites are structural motifs that allow binding of substrates independently of the primary substrate binding
pocket. Although insufficient to allow substrate cleavage on their own, exosites enhance the cleavage efficiency
of specific substrates and are used by various proteases to achieve protease specificity.
Exosites were first observed in apoptotic caspases. Caspase-7 harbours an exosite in its N-terminal domain

that consist of four lysines [79]. Recently, this exosite has been suggested to bind RNA, facilitating

Figure 2. Substrate recognition mechanism by caspases.

(A) Representation of the caspase substrate-binding pocket. Four subsites on the caspase (Subsite 4 to Subsite 1) recognise

the classical tetrapeptide on the substrate (P4 to P1). (B) Structure of the complex between caspase-11 (pink and cyan) and

Gasdermin D (PDB: 6VIE) demonstrates that caspases can use exosite to recognise specific substrates. The structure shows

the tetrapeptide recognise by the substrate-binding pocket (green) and the exosite (blue) that binds an additional region on

Gasdermin D.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1315

Biochemical Society Transactions (2021) 49 1311–1324
https://doi.org/10.1042/BST20200986

https://creativecommons.org/licenses/by/4.0/


RNA-binding protein cleavage by caspase-7 [80]. Similar sequences have been found in other apoptotic cas-
pases, such as caspase-6 [81].
Until recently, no structure of caspases with their protein substrates were available. However, two recent

papers outline unprecedent details on how exosites allow substrate specificity by inflammatory caspases.
Shao’s and Tsiao’s lab reveal the structure of caspase-1, -4 and -11 bound to the C-terminal fragment of

GSDMD [82] or the full-length GSDMD [83]. Their structures reveal that the interaction between the loop L2
and L2’ of the caspase IDL creates a new binding site for the C-terminal domain of GSDMD, increasing
caspase affinity for GSDMD and reducing the impact of a defined primary sequence (positions P4–P1 accord-
ing to Schechter–Berger nomenclature [72]) for GSDMD to be cleaved by inflammatory caspases (Figure 2).

Figure 3. Canonical vs non-canonical inflammatory caspases signalling.

(A) PRRs recognise recognise DAMPs and PAMPs to activate the canonical inflammasome. This results in the activation of

caspase-1 which cleaves GSDMD leading to pore formation and pyroptosis. Caspase-1 also activates pro-inflammatory

cytokines IL-18 and IL-1b, which are release during pyroptosis and other substrates with unknown functional consequences

(protein X). (B) Intracellular LPS from Gram negative bacteria activates the non-canonical inflammasome. GBPs aid the

activation of caspase-4 and -5 by LPS. Caspase-4 and -5 cleave GSDMD, inducing pyroptosis, and other substrates with

unknown functional consequences (protein X).
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So far, GSDMD is the only inflammatory caspases substrate that has been clearly shown to bind on an
inflammatory caspase exosite. However, recent evidence suggests that similar sites are also present for IL-1β [84].
Developing inhibitors that target exosites instead of the primary substrate-binding pocket bear the promise

of more specific inhibitors.

Table 3 Inflammatory caspases substrates

Substrate
Uniprot
ID Cleavage site (P4–P10) Function Caspase

Gain/
Loss Conserved Reference

IL-1a P01583 Ile/Ala/Asn/Asp(104)/Ser Pro-inflammatory
cytokine

5 G M/H [95]

IL-1B P01584 Phe/Glu/Ala/Asp(27)/Gly Pro-inflammatory
cytokine

1/5 G D/M/H [4,89]

IL1B P01584 Tyr/Val/His/Asp(116)/Ala Pro-inflammatory
cytokine

1 G D/M/H [4,89]

IL-18 O95256 Leu/Glu/Ser/Asp(36)/Tyr Pro-inflammatory
cytokine

1/4/5 G M/H [75,111]

IL-37 Q9NZH6 Trp/Glu/Lys/Asp(20)/Glu Anti-inflammatory
cytokine

1 G H [94]

casp3 P42574 Ile/Gly/Thr/Asp(175)/Ser Apoptotic pathway 1/4 G M/H [112,113]

casp7 P55210 Ile/Gln/Ala/Asp(198)/Ser Apoptotic pathway 1 G D/M/H [87]

Bid P55957 Ile/Glu/ala/Asp(75)/Ser Apoptotic pathway 1 G D/M/H [107,114]

BAP31 P51572 Ala/Ala/Val/Asp(231)/Gly Apoptotic pathway 1 G D/H [115]

PARP1 P09874 Asp/Glu/Val/Asp(214)/Gly Apoptotic pathway 1 L D/M/H [116]

SYAP1 Q96A49 Phe/Val/Ser/Asp(278)/Ala Signal Transduction 1/5 UN D/M/H [89]

GSDMD P57764 Phe/Leu/Thr/Asp(275)/Gly Pyroptosis 1/4/5 G D/M/H [89,97,99]

Actin P60709 Leu/Val/Val/Asp(11)/Asn Cell structure 1 UN D/M/H [89]

Actin P60709 Gly/Gln/Lys/Asp(51)/Ser Cell structure 4 UN D/M/H [89]

Actin P60709 Asp/Ser/Gly/Asp(157)/Gly Cell structure 1 UN D/M/H [89]

Gelsolin P06396 Asp/Glu/Thr/Asp(403)/Gly Cell structure 1 G M/H [89]

Spectrin Q13813 Asp/Glut/Thr/Asp(1185)/
Ser

Cell structure 4 UN D/M/H [117]

ARPC5 O15511 Asp/Glu/Glu/Asp(29)/Gly Cell structure 1 UN D/M/H [89]

RCSD1 Q6JBY9 Glu/Glu/Val/Asp(272)/Gly Cell structure 1 UN H [89]

IQGAP1 IQGAP1 Asp/Glu/Val/Asp(8)/Gly Cell structure 1 UN D/M/H [89]

GAPDH P04075 Lys/Thr/Val/Asp(189)/Gly Metabolism 1 L D/M/H [88]

ENO1 P06733 ? Metabolism 1 UN H [88]

TPI1 P60174 ? Metabolism 1 UN H [88]

PIP4K2B Q9UBF8 Phe/Ser/Val/Asp(488)/Ser Kinase 1 UN D/M/H [89]

BASP1 P80723 Thr/Lys/Ser/Asp(165)/Gly Channel 1 UN H [89]

CALU O43852 Tyr/Ile/Gly/Asp(216)/Met Calcium-binding 1 UN D/M/H [89]

USP10 Q14694 Leu/Glu/Asn/Asp(138)/Gly Ubiquitin protease 1 UN D/M/H [89]

HOIP Q96EP0 Leu/Glu/Pro/Asp(348)/Leu Ubiquitin ligase 1 L M/H [118]

HOIP Q96EP0 Leu/Val/Val/Val/Asp(387)/
Ser

Ubiquitin ligase 1 L D/M/H [118]

TFAP2A P05549 Asp/Arg/His/Asp(19)/Gly Transcription 1 UN M/H [119]

Max P61244 Ile/Glu/Val/Glu(10)/Ser Transcription 5 UN M/H [110]
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Inflammatory caspases substrates and signalling
Caspase substrate cleavage has three functional consequences: a loss-of-functions, a gain of functions or a
no-consequence effect. Caspase cleavage may also affect protein stability and target specific substrates to protea-
somal degradation [85,86].
Proteomic studies have identified substrates for caspase-1 in mice [87,88] and humans [89] but so far failed

to successfully identify caspase-4 and-5 substrates. Table 3 summarise substrates that have been identified by
forward and reverse proteomics and shows that caspases are involved in multiple pathways (Figure 3).

Cytokines
Caspase-1 was originally identified as an Interleukine-1β (IL-1β)-converting enzyme and was originally charac-
terised to cleave and mature this cytokine. Caspase-1 also processes the IL-18 pro-form into its mature form.
The cytokines IL-1β and IL-18 are unconventionally secreted through GSDMD pores or following cell lysis
[90,91]. Caspase-4 also cleave these cytokines, although much less efficiently than caspase-1 [75]. Cleavage of
IL-1β and IL-18 leads to the recruitment of additional phagocytes and contributes to the generation of a fever.
Caspase-8 also cleaves IL-1β and IL-18 during multiple situations [92,93].
Caspase-1 also cleaves IL-37, an anti-inflammatory cytokine, to promote IL-37 nuclear translocation and

genetic repression of anti-inflammatory cytokines [94].
Caspase-5 has been reported to cleave IL-1α in senescent cells, a process that may contribute to

aging-associated inflammation [95].

Gasdermin D
Gasdermin D (GSDMD) is a central executor of pyroptosis (Figure 3). Following cleavage by caspase-1, -4
(-11), -5 and -8, the GSDMD N-terminal fragment is freed from its inhibitory counterpart (C-terminal frag-
ment) and is able to form pores at the plasma membrane and into different organelles [96–99]. GSDMD pores
allow secretion of pro-inflammatory cytokines (IL-1β, IL-18) and the release of a myriad of DAMPS (e.g. ATP,
Galectin-1) [100,101]. Additionally, GSDMD pores generate potassium efflux to allow caspase-1 activation
through the NLRP3 inflammasome, downstream of the non-canonical inflammasome [102,103]. Terminal
membrane rupture downstream of GSDMD pores has been shown to be mediated by the membrane protein
NINJ1 [104]. In neutrophils, GSDMD cleavage by non-canonical inflammatory caspases allows the generation
of neutrophil extracellular traps [105].

Other substrates
Caspase-1 can cleave proapoptotic proteins like Bid and caspase-3 and -7. It has been suggested to control
infection by specific pathogens and stands as a backup cell death mechanism if pyroptosis is counteracted by
pathogens [106–108].
Caspase-1, -4, -5, and -11 can cleave and inactivate cGAS to control type I IFN response and modulate anti-

viral responses [109].
Caspase-1 has been shown to cleave other substrates however, the functional relevance of these substrates

remains unclear. For example, caspase-1 may contribute to cell demise by cleaving many structural proteins (e.
g. vimentin, actin, gelsolin, IQGAP1 and others (Table 3)). Caspase-1 may also regulate RNA-mediated pro-
cesses and metabolism by cleaving ribonucleoproteins [87,89] and glycolytic enzymes [88] (Table 3)).
Known caspase-4 and -5 substrates are minimal, and efforts to identify them thus far have been limited.

Outside the substrates mentioned above, caspase-5 cleaves the transcription factor Max after glutamic acid
[110], and SYAP1 at an unknown site [89].

Caspases and their substrates during evolution
Numerous caspase substrates are conserved throughout evolution. Inflammatory caspases are present in verte-
brates, from the zebrafish [120,121] to higher primates [20] (Table 3; D (Danio rerio), M (Mus musculus), H
(Homo sapiens)). Human inflammatory caspases share high similarities with higher primates caspases.
Multiple substrates seem to be conserved during evolution and many of their cleavage site position (Table 3)

is highly conserved, suggesting a role for various caspases substrates throughout evolution. Ancestral reconstitu-
tions of caspases support the co-evolution of caspases and their substrates [71,122].
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Caspase inhibitors
Whereas apoptotic caspase activity is controlled by the inhibitors of apoptosis proteins (IAP) [123], endogen-
ous inhibitors controlling inflammatory caspase activity are poorly characterised.
SerpinB1 was suggested to be an endogenous inhibitor of inflammatory caspases in some cell types, such as

neutrophils [124].
The CARD-only proteins (COPs) and PYD-only proteins (POPs) can inhibit inflammatory caspases indir-

ectly by regulating inflammasome formation and/or caspase recruitment to their activating platform [125].
The involvement of inflammatory caspases in a range of diseases containing an inflammatory component

(from obesity to cancer and sepsis [126,127]) supports the urgency to develop specific inhibitors that can target
one or multiple inflammatory caspases.
Vertex developed a caspase-1/4 inhibitor, VX765, that was taken to clinical trials [128]. However, the studies

were halted in stage 2 due to liver toxicity [129].
The development of caspase inhibitors that target exosites highlights the possibility of more specific

inhibitors.
In addition, the development of exosite inhibitors has the potential to generate inhibitors that target deleteri-

ous functions of caspases, without affecting the beneficial ones, by modulating the cleavage of selected
substrates.

Perspectives
• Importance in the field: Inflammatory caspases are crucial for regulated immune responses

and linked to diverse pathologies from sepsis to cancer.

• Summary of the current thinking: Inflammatory caspases are activated either by canonical or
non-canonical inflammasomes. GBPs are novel innate immune sensors that form a non-
canonical inflammasome and facilitate LPS presentation to caspase-4 and -11. Caspases rec-
ognise their substrates through substrate binding-pockets and use exosites to increase sub-
strate selectivity.

• Future directions: Research to identify and characterise novel caspase substrates will expand
our understanding of inflammatory caspases in health and disease. Future research will
address how inflammatory caspases activity is controlled by endogenous mechanisms and
inhibitors. Targeting caspase exosites may allow for the development of more specific
pharmacological inhibitors.
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