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TIR (Toll/interleukin-1 receptor/resistance protein) domains are cytoplasmic domains
widely found in animals and plants, where they are essential components of the innate
immune system. A key feature of TIR-domain function in signaling is weak and transient
self-association and association with other TIR domains. An additional new role of TIR
domains as catalytic enzymes has been established with the recent discovery of NAD+-
nucleosidase activity by several TIR domains, mostly involved in cell-death pathways.
Although self-association of TIR domains is necessary in both cases, the functional
specificity of TIR domains is related in part to the nature of the TIR : TIR interactions in the
respective signalosomes. Here, we review the well-studied TIR domain-containing
proteins involved in eukaryotic immunity, focusing on the structures, interactions and
their corresponding functional roles. Structurally, the signalosomes fall into two separate
groups, the scaffold and enzyme TIR-domain assemblies, both of which feature open-
ended complexes with two strands of TIR domains, but differ in the orientation of the two
strands. We compare and contrast how TIR domains assemble and signal through
distinct scaffolding and enzymatic roles, ultimately leading to distinct cellular innate-
immunity and cell-death outcomes.

Keywords: protein structure, protein-protein interactions, axon degeneration, cell-death signaling, signaling by
cooperative assembly formation (SCAF), innate immunity, plant disease resistance, toll/interleukin-1 receptor/
resistance protein
INTRODUCTION

TIR (Toll/interleukin-1 receptor/resistance protein) domains are cytoplasmic domains found in
both eukaryotic and prokaryotic proteins that are involved in innate-immunity and cell-death
pathways. They consist of 135–160 residues and typically display a five-stranded parallel b-sheet
(strands bA–bE) surrounded by five a-helices (aA–aE) (Figure 1) (1, 2). TIR-domain functions are
governed by weak and transient interactions. They predominantly function through homotypic
interactions, including self-association or association with other TIR domains, to create scaffolds
that facilitate signal transduction, leading to immune and cell-death responses (3, 4). The
mechanism of signaling employed has been described as SCAF (signaling by cooperative
assembly formation) (5–7). SCAF involves the assembly of higher-order complexes -
signalosomes or “supramolecular organizing centers” (SMOCs) (8). In the case of SCAF, receptor
activation through activating ligand binding induces receptor oligomerization, which in turn
org November 2021 | Volume 12 | Article 7844841
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nucleates recruitment and oligomerization of adaptor proteins,
and subsequently the recruitment and oligomerization of effector
enzymes that can be activated through proximity-induced
mechanisms in the resulting signalosome.

In mammals, TIR domains are found in Toll-like receptors
(TLRs), interleukin-1 receptors (IL-1Rs) and cytoplasmic adaptor
proteins, such as MyD88 (myeloid differentiation primary
response gene 88) and MAL (MyD88 adaptor-like protein)
(Figures 1, 2) (2). TLRs and IL-1Rs are pattern recognition
receptors (PRRs) that recognize evolutionarily conserved
pathogen-associated molecular patterns (PAMPs) and
endogenous danger-associated molecular patterns (DAMPs)
released by dying or damaged cells (3, 4). Upon activation, TLR
TIR domains dimerize, creating an intracellular TIR-domain
signaling scaffold, which then recruits TIR domain-containing
adaptor proteins that activate further downstream signaling (e.g.
recruiting IL-1R-associated kinases (IRAKs) and activating the
transcription factor NF-kB [nuclear factor kappa-light-chain-
enhancer of activated B cells]), to induce inflammatory responses
Frontiers in Immunology | www.frontiersin.org 2
through the production of proinflammatory cytokines and
programmed cell-death responses (3, 4).

In contrast to the scaffolding protein-protein interaction
function described above, the TIR domain-containing protein
SARM1 (sterile alpha and TIR motif containing 1) has been
found to cleave NAD+ (nicotinamide adenine dinucleotide) and
NADP+ (nicotinamide adenine dinucleotide phosphate) and
initiate axon degeneration, in a process also dependent on the
self-assembly of SARM1 TIR domains (Figure 2) (9–11). The
dual role of TIR domains, serving as scaffolds or as enzymes,
relies in part on the different assembly mechanisms of the
proteins, leading to functional specificity.

Similar to mammals, plants also have a complex immune
system to protect themselves from pathogen invasion. To restrict
pathogen infection, the intracellular innate immune receptors
called NLRs (nucleotide-binding domain (NBD)/leucine-rich
repeat (LRR) receptors) directly or indirectly detect pathogen
effector proteins via their C-terminal LRR domains and activate
defense responses, including localized programmed cell death, in
FIGURE 1 | Representative TIR domain structures. TIR domains of the human (TLR1, IL-1R9, MAL, MyD88 and SARM1), lower metazoan Hydra magnipapillata
(TRR-2), plant (RPP1 and ROQ1) and bacterial (TcpB) proteins with their corresponding PDB IDs are shown. All the TIR domains show a central core of five b-
strands (bA–bE) surrounded by five a-helices (aA–aE). The functionally important BB-loop in each TIR is labeled.
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a process termed hypersensitive response (HR) (Figure 2) (12).
The central NBD (usually called NB-ARC – see Figure 2) is
important for the oligomerization of these proteins into a
signalosome called the “resistosome” upon activation. TIR
domains are found at the N-termini of a large group of NLRs
(TIR domain-containing NLRs, TNLs), as well as TIR-only
proteins, and truncated NLRs lacking LRR domains (Figure 2)
(12, 13). It is unclear if some plant TIR domains serve scaffolding
functions like the canonical mammalian TIR domains; however,
plant TIR domains self-associate and display the enzymatic
function of cleaving NAD+, sharing similarities with the
function of SARM1 (10, 14). In agreement, plant TIR domains
exhibit similar assembly mechanisms as SARM1 (10, 15, 16).

TIR domains are also found in bacteria and archaea.
Structures and functions of bacterial and archaeal TIR domains
and the corresponding proteins are poorly characterized,
compared to their animal and plant counterparts, and are not
the focus of the current review. Bacterial TIR domains are found
in a wide range of domain architectures and domain types, which
indicates diverse functional roles (Figure 2) (17). Some bacterial
TIR domains, including TcpC (Escherichia coli), TirS
(Staphylococcus aureus), PumA (Pseudomonas aeruginosa) and
Frontiers in Immunology | www.frontiersin.org 3
TcpB (Brucella melitensis), are linked to bacterial pathogenicity
(18, 19). TirS and TcpC possess NAD+-nucleosidase activity
(20), but so do bacterial TIR domains from non-pathogenic
bacteria, suggesting roles in bacterial physiology (20, 21). Recent
studies have also shown that the NAD+-nucleosidase activity of
the bacterial TIR domains is linked to bacterial antiviral defenses
(22–24).

Here, we review structural information available for various
TIR domains, focusing on the nature of the different assemblies
they form and their corresponding functional roles. Based on the
available structural and functional evidence, we observe a
correlation of TIR-domain assembly with their specific
functional roles. In this respect, they fall into two different
groups, the “scaffold” assemblies involved in innate-immunity
signaling, and “enzyme” assemblies leading to NAD+ cleavage
associated with cell-death signaling.
SCAFFOLD TIR-DOMAIN ASSEMBLIES

This group comprises the TIR domains that undergo self-
association to form a scaffold, which facilitates nucleation-
controlled cooperative recruitment of other TIR domain-
containing proteins and signal transduction (employing a
SCAF mechanism) (5–7, 25). The group includes TIR domains
from mammalian membrane receptors (TLRs and IL-1Rs), as
well as those from the cytoplasmic adaptor proteins. A number
of crystal structures of TIR domains from this group have been
determined, but the structural basis of their self-assembly only
became clear through the structural studies of higher-order
structures reconstituted for the adaptors MAL and MyD88
(26, 27).

TLRs and IL-1Rs
Ten TLRs are present in humans and found either on the cell
surface (TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10) or in
intracellular endosomal compartments (TLR3, TLR4, TLR7,
TLR8 and TLR9) (28). TLRs are characterized by an extra-
cytoplasmic LRR domain, a transmembrane domain, and an
intracellular TIR domain (Figure 2). When activated by their
ligands, they mostly function as homodimers, but TLR2
functions as a heterodimer with either TLR1 or TLR6. A
considerable amount of structural information is available on
their LRR domains (29, 30), and even on the full-length TLR3
and TLR7 in complex with the membrane chaperone UNC93B1
involved in TLR trafficking (although the TIR domains could not
be visualized in this case) (31). Crystal structures of the TIR
domains of TLR1 (1), TLR2 (1, 32), TLR6 (33) and TLR10 (34)
have been reported. These TIR domains, when expressed as
separate proteins, are all monomeric in solution under the
conditions tested. The characteristic BB-loop (connecting the
bB strand and the aB helix) has been shown to play an important
role in signaling, as a naturally occurring mutation (P712H) in
this loop in TLR4 makes it non-responsive to the PAMP
lipopolysaccharide (LPS) (35). Other mutations in this loop
were also shown to abolish signaling in numerous TIR
FIGURE 2 | Domain architecture of representative TIR domain-containing
proteins. TIR, Toll/interleukin-1 receptor/resistance protein; LRR, leucine-rich
repeat; TM, transmembrane; Ig, immunoglobulin; DD, death domain; ID,
intermediate domain; NTD, N-terminal domain; RHIM, RIP (receptor-
interacting protein) homotypic interaction motif; ARM, armadillo-repeat motif;
SAM, sterile alpha motif; DBB, Dof (Drosophila downstream of fibroblast
growth factor receptor)/BCAP/BANK (B cell scaffold protein with ankyrin
repeats); ANK, ankyrin repeat; NB-ARC, nucleotide-binding adaptor shared
by APAF-1 (apoptotic protease-activating factor 1), R proteins and CED-4
(cell death protein 4); CC, coiled coil.
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domains, including TLR4 (36) and TLR7 (37). Downstream
signaling involves the recruitment of the cytoplasmic adaptors
MyD88 (for all TLRs except TLR3), MAL (as a bridging adaptor
for MyD88 in the case of TLR4 and TLR1/2/6), TRIF (TIR
domain-containing adaptor protein-inducing interferon b; for
TLR3) and TRAM (TRIF-related adaptor molecule; as a bridging
adaptor for TRIF in the case of TLR4).

There are also ten IL-1Rs (IL-1R1 to IL-1R10) in humans,
characterized by extracellular immunoglobulin domains, a
transmembrane domain, and an intracellular TIR domain
(except for IL-1R2) (38) (Figure 2). IL-1Rs recognize and bind
specific IL-1 family cytokines, which leads to recruitment of an
accessory receptor chain. The downstream signaling mechanism
is similar to that of TLRs, involving recruitment of MyD88,
IRAKs and activating NF-kB to induce inflammatory responses
(39). The IL-1R TIR domains are structurally less well
characterized, with the majority of the available structural data
limited to the complexes involving the ectodomains and their
corresponding ligands (40). The only available structure of a TIR
domain corresponds to that from IL-1R9 (IL-1RAPL1, IL-1R
accessory protein like 1) (41). However, IL-1R9 is not a classical
signaling IL-1R; it does not activate NF-kB, but has been
reported to be involved in trans-synaptic signaling (42).

Cytoplasmic TLR Adaptor Proteins
TLRs and IL-1Rs require adaptor proteins for signaling. Six
adaptor proteins have been identified in humans: MyD88,
MAL, TRIF, TRAM, SARM1 and BCAP (B-cell adaptor for
phosphoinositide 3-kinase) (28) (Figure 2). MyD88, MAL,
TRIF and TRAM are the principal signaling adaptors in this
pathway (43), while SARM1 and BCAP have been reported to
negatively regulate TLR signaling (44–46). Crystal and/or NMR
structures are available for the TIR domains from all these
proteins (2, 5, 10).

Structures of Higher-Order Assemblies of
MAL and MyD88 TIR Domains
Reconstitutionof higher-order assemblies ofMAL andMyD88TIR
domains yielded filamentous and micro-crystalline complexes,
respectively (26, 27). These reconstitution experiments correlated
with the functional signaling pathway, as the TLR4 TIR domain
seeded the assembly of MAL TIR domains, while MAL TIR
domains seeded the assembly of MyD88 TIR domains. Structure
determination of these higher-order assemblies, combined with
mutagenesis and signaling assays, has provided clarity on the
biologically relevant association of scaffold TIR domains (26, 27).
These structures feature two parallel strands of TIR domains, each
showcasing a head-to-tail arrangement of TIR domains, held
together through a BB-loop-mediated “BE” intrastrand interface.
The two strands are offset and held together through a “BCD”
interstrand interface (Figures 3, 4).

The structure of the filament formed byMALTIR domains was
determined by helical reconstruction cryo-electron microscopy
(cryo-EM) (26). It revealed a hollow tube consisting of 12
protofilaments, with each protofilament corresponding to a two-
stranded assembly of TIR domains described above.
Frontiers in Immunology | www.frontiersin.org 4
The intrastrand BE interface includes the area around the BB-
loop of one subunit and the EE surface (the bD and bE strands and
theaEhelix)of the interacting subunit (Figure3A).The interstrand
interaction connecting the two strands involves the residues on the
BCsurface (aBandaChelices)ofone subunit fromstrand1and the
CD surface (aD helix and the CD loop) of another subunit from
strand 2 (Figure 3A). Structure-based mutagenesis studies
confirmed that key residues in both interfaces (e.g., P125A in the
intrastrand interface; L162A, L165A,W156A, Y159A andF193A in
the interstrand interface) are necessary for the activation of
downstream signaling through NF-kB, whereas mutations of
residues mediating interactions between protofilaments were not
found to have consequences for function (26).

The structure of the MAL TIR domain-nucleated microcrystals
of MyD88 TIR domain was determined using two approaches,
microcrystal electrondiffraction (microED) and serial femtosecond
crystallography (SFX) with an X-ray free electron laser (X-FEL)
source (bothyieldingnearly identical structures) (27).The structure
shows that the TIR domains of MyD88 assemble in a fashion
analogous to MAL TIR-domain protofilaments (Figure 3A). The
interfaces responsible for this association were again found to be
relevant to signaling, with the mutations R196A, W284A, I253D
and R288A in the intrastrand interface, and mutations K238A,
L241A, F270A and F270E in the interstrand interface abolishing
TLR4-induced NF-kB activation (27). The analogous structural
arrangement ofTIR domains in theMALandMyD88higher-order
assemblies suggests a hierarchical, nucleation-controlled and
cooperative mechanism for TLR signal transduction, in which the
receptor and adaptor TIR domains assemble via the inter- and
intrastrand interactions observed in the MyD88 and MAL TIR-
domain higher-order assemblies, leading to formation of a TIR-
domain signalosome. This in turn promotes clustering of the
MyD88 death domains (DDs) to form a signalosome termed the
“Myddosome” (47), recruiting and activating IRAKs (26, 27),
thereby facilitating signaling through a SCAF mechanism.

Several mutations in the TIR domains of TLRs and adaptors are
associated with disease. In MyD88, the R196C polymorphism,
which is associated with susceptibility to pyogenic bacterial
infection during childhood (48), maps to the intrastrand interface
of the TIR-domain signalosome. Similarly, the L252P gain-of-
function variant of MyD88, which is found in diffuse large B cell
lymphoma and promotes tumor survival through enhancedNF-kB
activation (49), also maps to the intrastrand interface. The
corresponding mutant forms extremely stable oligomers,
compared to the wild-type protein, explaining the molecular basis
of its phenotype (50).

Interestingly, in one of the crystal structures of the TRR-2 TIR
domain from the lower metazoan Hydra magnipapillata (PDB ID
4W8G), a parallel two-strand arrangement analogous to MAL and
MyD88 TIR-domain signalosomes is observed (Figures 1, 3A).
These signalosomes are therefore likely to be structurally
conserved in a range of eukaryotes.

The interactions observed in the MyD88 and MAL TIR-
domain signalosomes were not captured in the crystal structures
of any of the mammalian TLR or adaptor TIR domains.
However, surfaces equivalent to the ones mediating interstrand
November 2021 | Volume 12 | Article 784484
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interactions (involving residues in aB, aC and aD helices and
the BB-loop; “BCD surface”) are found to mediate symmetric
dimer formation in the crystals of a number of TLR and IL-1R
TIR domains (TLR1, TLR2, TLR6, TLR10 and IL-1R9) (5).
While it is possible that functional surfaces simply find
alternative, biologically irrelevant binding partners when
forming crystals, it could be that such symmetric interaction
contributes to the regulation of signaling by representing an
inactive, auto-inhibited state, especially in the case of TLRs that
always exist as dimers; such an interaction would presumably be
broken when the receptor is activated by ligand binding and the
signalosome formation would be allowed.

In summary, the scaffold TIR-domain signalosomes
correspond to parallel two-stranded open-ended assemblies of
TIR domains, held together by two asymmetric interactions, the
intrastrand and interstrand interactions, mediated by the BE and
BCD interfaces, respectively (Figures 3, 4). The nucleation-
controlled cooperative assembly of these signalosomes is
responsible for the SCAF mechanism of signaling.
ENZYME TIR-DOMAIN ASSEMBLIES

This group comprises the TIR domains that undergo self-
association, which facilitates NAD+-nucleosidase activity and
eventually cell death. It includes TIR domains from the
mammalian protein SARM1 and plant TIR domain-containing
Frontiers in Immunology | www.frontiersin.org 5
proteins. While some bacterial and archaeal TIR domains have
also been shown to have NAD+-nucleosidase activity, the
structural basis of their self-association and enzymatic activity
is not well characterized and may be different from their
eukaryotic counterparts discussed in this group (10, 20). On
the other hand, the TIR domains from SARM1 and plant NLRs
assemble in an analogous fashion, forming two-stranded
assemblies different from that of the scaffold TIR-domain
assemblies (Figures 3, 4). The association of TIR domains in
each individual strand resembles the one observed in scaffold
TIR-domain signalosomes, featuring a head-to-tail arrangement
mediated by the BB-loop-containing BE interface. However, the
two strands in enzyme TIR-domain assemblies are associated in
an antiparallel, rather than parallel, fashion. The interstrand
interface corresponds to a symmetric “AE interface”, involving
the aA and aE helices. This structural information is based on
three key structures: the crystal structure of the SARM1 TIR
domain (10), and the cryo-EM structures of activated
resistosome complexes of the TNLs ROQ1 and RPP1 (15, 16).

SARM1
While SARM1 has a number of suggested roles in the regulation
of innate immunity, the central function appears to be to serve as
the executioner of Wallerian or programmed axon degeneration,
a highly conserved pathway of injury-induced axon degeneration
(51–54). SARM1 facilitates rapid depletion of NAD+ in response
to axon injury, leading to subsequent axon demise (10, 11, 55).
A

B

FIGURE 3 | Structural basis of eukaryotic TIR-domain assembly formation. (A) Scaffold TIR-domain assemblies, held together by the BE and BCD interfaces,
represented by the TIR domains from MAL, MyD88 and TRR-2. (B) Enzyme TIR-domain assemblies held together by the BE and AE interfaces, represented by the
TIR domains from SARM1, RPP1 and ROQ1.
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SARM1 deletion mutants lacking the TIR domain show a
dominant-negative phenotype, delaying axon degeneration
(52). In addition to its C-terminal TIR domain, SARM1
contains an N-terminal ARM (armadillo repeat motif) domain
and central tandem SAM (sterile alpha motif) domains. SAM
domains form an octameric ring, and the formation of such an
oligomeric state is essential for axon degeneration (10, 52, 56).
The SARM1 TIR domain has intrinsic NAD+-nucleosidase
activity, cleaving NAD+ into nicotinamide and either ADPR
(ADP-ribose) or cyclic ADPR (cADPR) (10, 11, 57). The active
site has similarities to that of the NAD+ glycohydrolase CD38,
including a catalytic glutamate residue (10, 11). Mutation of this
residue is sufficient to abolish NAD+-nucleosidase activity,
indicating similar mechanisms of NAD+-nucleosidase activity
among these enzymes (10, 11). Self-association of SARM1 TIR
domains is essential for enzyme activity (10, 11). The crystal
structure of the SARM1 TIR domain revealed the two-stranded
antiparallel arrangement described above, and mutational
Frontiers in Immunology | www.frontiersin.org 6
analysis of the BE (D594A, E596K, and G601P) and AE
interfaces (L579A and H685A) revealed that these interactions
are functionally important for stabilization of the active
conformation of the TIR domains (10).

In the inactive SARM1octamer, interactionof theARMandTIR
domains is responsible for preventingTIR-domain self-association,
directly inhibitingNAD+-nucleosidase activity (58–60). TheARM-
TIR inhibitory interaction is regulated by the cellular ratios of
NAD+ and its metabolites NMN (nicotinamide mononucleotide)
andNaMN(nicotinic acidmononucleotide), throughbinding to an
allosteric site in theARMdomain;NMNas an activator, andNAD+

and NaMN as inhibitors (59–63). Injury-associated increase in
NMN results in the release of this ARM-TIR autoinhibition and
subsequent assembly of TIR domains (59).

Plant TIR Domains
TIR domains from several plant NLRs and TIR-only plant
proteins can also cleave NAD+, dependent on the TIR domain
A

B C D

FIGURE 4 | Schematic representation of TIR-domain assemblies. (A) Overview of TIR-domain assemblies. (B) Scaffold TIR-domain assemblies, represented by the
structures formed by the TIR domains from human MAL and MyD88. These parallel two-stranded assemblies are held together by the intrastrand BE interfaces, and
the interstrand BCD interfaces. (C) Schematic diagram of a single TIR domain, to highlight the BB-loop, BCD, EE and AE surfaces (the diagram does not differentiate
the structures of TIR domains in monomeric and signalosome forms). (D) Enzyme TIR-domain assemblies, represented by the structures formed by the TIR domains
from human SARM1 and the plant NLRs ROQ1 and RPP1. These antiparallel two-stranded assemblies are held together by the intrastrand BE interfaces and the
interstrand AE interfaces.
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self-association and the conserved glutamate residue at the
catalytic site; this activity is essential for cell-death signaling
(10, 14). Crystal structures of numerous plant TIR domains
[including those from RPS4 and RPS4-RRS1 heterodimer,
AtTIR, SNC1, RPP1 and RPV1 (64–67)] feature a symmetrical
AE interface analogous to the one observed in SARM1, and
mutagenesis of residues in this interface was shown to abolish
cell-death signaling in plants (10, 65–68). The AE interface often
features conserved residues, such as the SH (serine-histidine)
motif in the aA helices of the TIR domains, which allows
stacking and hydrogen-bonding interactions across the
interface (65). Charged residues surrounding the SH motif
further stabilize the AE interface (67). However, the structure
of a functional TIR-domain assembly only became clear based on
the cryo-EM structures of ROQ1 and RPP1 NLRs (15, 16).

Activated ROQ1 and RPP1 form tetrameric structures, largely
through the interactions of their NBDs (15, 16). This NBD-
mediated tetramer exhibits four-fold symmetry; however, the
TIR domains arranged on top of this tetramer exhibit only two-
fold symmetry, featuring a dimer of dimers. The arrangement of
TIR domains is identical to the arrangement of SARM1 TIR
domains observed in the corresponding crystals. Therefore, each
dimer features the symmetrical AE interface, but the two dimers
are held together through BE interfaces (Figure 3B). Such a BE
interface was never observed in any of the crystal structures of
plant TIR domains; however, the DE surface mediating this
interaction has been implicated previously in the function of
these domains through site-directed mutagenesis (67–69).

The BE interface-mediated interaction is crucial for NAD+-
nucleosidase activity, because in the absence of this interaction,
the positively charged lysine and arginine residues in the BB-loop
block NAD+ binding to the active site. In the presence of BE-
interface interaction, the BB-loop moves under the DE surface
and allows access by the substrate to the NAD+-binding site.
Jointly, the AE and BE interface-mediated interactions facilitate
the appropriate conformation of the active site to enable
enzymatic activity (16). The oligomerization of plant NLRs,
driven largely by the NBDs, is presumed to nucleate assembly
of the TIR domains.

In summary, the enzyme TIR-domain signalosomes involve
anti parallel head-to-tail asymmetric intrastrand and symmetric
interstrand interactions, mediated by the BE and AE interfaces,
respectively (Figures 3, 4). Such an assembly is required for
configuring the NAD+-nucleosidase active site, and consequently
enzymatic activity and biological function (axon degeneration or
cell death).
SIGNALING BY COOPERATIVE
ASSEMBLY FORMATION

Both the scaffold and enzyme types of TIR-domain signalosomes
function through a signaling mechanism termed SCAF (5–7).
Compared to a more gradual signal amplification in a classical
signaling pathway, SCAF enables a rapid and strong response to
minute amounts of stimulus, resembling a switch; it is therefore
Frontiers in Immunology | www.frontiersin.org 7
well suited to innate-immunity and cell-death pathways. An
important aspect of regulation involves the nucleation barriers to
oligomerization (25). In the case of scaffold TIR-domain
assemblies, the effector enzymes correspond to proteins kinases
( IRAKs) , which can ac t i va t e themse lves through
phosphorylation when brought together. In the case of enzyme
TIR-domain assemblies, the TIR domains themselves serve as
effector enzymes, as they require self-association for activity. In
both scaffold and enzyme groups, other domains play key roles to
create a functional pathway, for example LRR domains as
receptors (also called sensors) in TLRs and plant NLRs, ARM
domains as receptors in SARM1, and DDs and NBDs as adaptors
in TLR and plant NLR pathways. The presence of more than one
self-associating domain provides further opportunities for
regulation of the system (e.g. auto-inhibition between the DD
and TIR domains in MyD88), which ultimately creates a large
range of concentrations where the system is poised for activation
(50, 70, 71).
CONCLUSIONS AND FUTURE
DIRECTIONS

TIRdomains are found inanimals, plants, bacteria andarchaea, and
often have functions associated with innate immunity and cell
death. Self-association of TIR domains is key to their function, but
weak affinities prevent association until aided by activating ligands,
other domains in TIR domain-containing proteins, or adaptor
proteins. The differences in the structures of scaffold and enzyme
TIR-domain assemblies correlate with their distinct functional
roles. Scaffold TIR-domain signalosomes, represented by MAL
and MyD88 TIR-domain complexes, correspond to parallel two-
stranded assemblies that are used in nucleation-controlled
pathways that are activated by PAMPs or DAMPs and result in
the activation of protein kinases (such as IRAKs). Enzyme TIR-
domain signalosomes, represented byTIR-domain complexes from
SARM1 and plant NLRs, correspond to antiparallel two-stranded
assemblies with NAD+-nucleosidase activity that form in response
to NMN or plant pathogen effector protein binding, respectively.
Both groups of assemblies feature an analogous head-to-tail
arrangement of TIR domains in individual strands, mediated by
the BE interface, but differ in their interstrand association. In line
with their analogous interstrand interactions, the functionally
important BB-loop adopts a similar conformation in the
assembled state in both cases.

Our classification into the two groups of TIR-domain
signalosomes is based on a limited number of signalosome
structures, and further work will be required to establish how
generally applicable the current models are to TIR-domain
signaling, and what variations exist in different pathways.
However, in support of our general conclusions, molecular,
mutational, and functional data on a large variety of TIR domains
are consistent with our proposed models. For example, the TIR
domain of the TLR adaptor TRAM only has limited sequence
identity to those from MAL and MyD88, yet it is compatible with
filaments with the same arrangement of TIR domains as seen in the
November 2021 | Volume 12 | Article 784484
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latter two cases (26). Similarly, the Arabidopsis plant TIR-only
immune receptor RBA1 and the TIR-only protein BdTIR of
unknown function from the monocot plant Brachypodium
distachyon display self-association-dependent NAD+-
nucleosidase activity (14). Nevertheless, further studies on
different TIR domain-containing proteins will be required to
understand the breadth of similarities and differences in their
molecular basis of function, in particular the less characterized
proteins from bacteria and archaea. Another important but poorly
characterized aspect involves the molecular details of the reaction
catalyzed by different enzymeTIRdomains.While all characterized
enzyme TIR domains cleave the nicotinamide moiety off the
substrate NAD+ molecule, many produce a cyclic variant of the
remaining ADPR, rather than just the linear ADPR molecule.
Human SARM1 produces a small proportion of the classical
cADPR, but several bacterial and plant TIR domains instead
produce variants with a different cyclic linkage (11, 14, 20). The
chemical structures of these variants remain uncharacterized, as do
their roles in the corresponding biological pathways.
Frontiers in Immunology | www.frontiersin.org 8
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