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Identification and characterization of the limbal epithelial stem cells (LESCs) has proven to be a major accomplishment in anterior
ocular surface biology. ,ese cells have been shown to be a subpopulation of limbal epithelial basal cells, which serve as the
progenitor population of the corneal epithelium. LESCs have been demonstrated to play an important role in maintaining corneal
epithelium homeostasis. Many ocular surface diseases, including intrinsic (e.g., Sjogren’s syndrome) or extrinsic (e.g., alkali or
thermal burns) insults, which impair LESCs, can lead to limbal stem cell deficiency (LSCD). LSCD is characterized by an
overgrowth of conjunctival-derived epithelial cells, corneal neovascularization, and chronic inflammation, eventually leading to
blindness. Treatment of LSCD has been challenging, especially in bilateral total LSCD. Recently, advances in LESC research have
led to novel therapeutic approaches for treating LSCD, such as transplantation of the cultured limbal epithelium. ,ese novel
therapeutic approaches have demonstrated efficacy for ocular surface reconstruction and restoration of vision in patients with
LSCD. However, they all have their own limitations. Here, we describe the current status of LSCD treatment and discuss the
advantages and disadvantages of the available therapeutic modalities.

1. Introduction

,e functions of cornea include protecting the delicate internal
parts of the eye and allowing proper transmission of light. ,e
corneal epithelium is the outermost layer of cornea, which is
a crucial barrier against mechanical, chemical, and pathogenic
insults. In fulfilling its barrier function, this self-renewing
stratified epithelium turns over every 5–7 days. ,e self-
renewal of the corneal epithelium is governed by the stem
cells that reside in the basal layer of the limbal epithelium,
adjacent to the corneal epithelium [1]. ,e first observation that
the limbal epithelium might be involved in replenishing the
corneal epitheliumcame fromDavanger andEvensenwhonoted
“streaking” of the pigmented limbal epithelium into the corneal
epithelium following an insult [2]; however, they did not suggest
the involvement of stem cells in this process. In 1986, Schermer
et al. proposed that the corneal epithelial stem cells resided in the
limbal epithelial basal cells [3]. It was the landmark paper. In
1989, Cotsarelis et al. for the first time proved this hypothesis by
demonstrating that label-retaining cells (amarker of slow-cycling
cells, which is a characteristic of stem cells) were preferentially
located in the basal layer of the limbal epithelium and not in the

corneal epithelium [1]. Since then, the biology of limbal epithelial
stem cells (LESCs) has attracted many attentions.

2. Characteristics of Limbal Epithelial
Stem Cells

LESCs are morphologically small, have a high nuclear-to-
cytoplasm ratio, and are relatively undifferentiated cells with
rare cycling and high proliferative capacity [4, 5].,e difference
of the limbal epithelial stem cells and corneal epithelium is
shown in Table 1. More importantly, LESCs have the capability
to regenerate the entire corneal epithelium [6]. Similar to other
somatic stem cells, LESCs highly express stem cell markers,
including transporters (e.g., ABCG2 and ABCB5) [7, 8], tran-
scription factors (e.g., C/EBPδ, Bmi-1, ΔNp63α, and Pax6)
[9–11], cell adhesionmolecules and receptors (e.g., N-cadherin,
integrins α9 and β1, and Frizzled (Fz)7), and cytokeratins
(e.g., CK15, CK14, and CK19) [12–14] [15].

2.1. Low Differentiation. Limbal epithelial basal cells are
relatively undifferentiated and thus lack the expression of
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differentiationmarkers such as keratin 3, keratin 12 [16], and
connexin 43, which is associated with a more differentiated
cell [17].

2.2. Infrequent Cycling. Stem cells are commonly believed to
cycle infrequently [18]. ,is characteristic has been postulated
to enable stem cells to preserve their proliferative capacity and
to minimize DNA replication-associated errors [19, 20]. Uti-
lizing this characteristic of infrequent cycling, LESCs were
identified using the “label-retaining cells” (LRCs) technique.
First, all of the dividing cells (including stem cells) are labeled
by continuous exposure to either tritiated thymidine (3H-Tdr)
or bromodeoxyuridine (BrdU). After a chasing period (usually
4–8weeks), the labeling signal in the rapidly dividing TA cells is
diminished due to dilution or by transiting out of the tissue due
to differentiation, whereas the slow-cycling stem cells still retain
their labeling. Application of this labeling technique to mouse
limbal/corneal epithelia revealed that the LRCswere exclusively
localized in the basal layer of the limbal epithelium. In contrast,
the peripheral and central corneal epithelia contained no LRC,
which was compelling evidence that the corneal epithelial stem
cells were located in the limbal epithelium [1, 19].

2.3. High Capacity for Self-Renewal and Proliferation. LESCs
have high proliferative capacity, which is demonstrated in
vitro by an ability to generate holoclone colonies [21]. On
the contrary, in the transit-amplifying (TA) cells, only the
progeny of LESCs are able to produce meroclone and
paraclone colonies [21]. Holoclone, meroclone, and para-
clone colonies represent three different proliferative capacity
clonogenicity. Holoclone colonies are believed to be derived
from stem cells and have the greatest proliferative capacity.
Meroclone colonies are believed to be derived primarily
from TA cells and have less cellular division potential. Fi-
nally, paraclone colonies are thought to be derived from
mature TA cells and have the least proliferative potential.
Cells from the stem cell-enriched limbal epithelium can
undergo 80 to 100 cell division cycles and are capable to
form holoclone colonies, whereas cells from the central
corneal epithelium undergo 15 cell divisions maximally and
only form paraclone colonies [21].

2.4. LimbalNiche. ,e limbal stem cell niche is a specific and
highly regulated microenvironment, which is required for
harboring and maintaining LESCs [22–26]. It has been

suggested that the human limbal stem cell niche is located in
the palisades of Vogt (recently termed “crypts”) [27–30].
Limbal epithelial crypts (LECs) have been demonstrated to
extend from the peripheral aspects of an interpalisade rete
ridge and further into the conjunctival stroma as a solid
chord of cells measuring up to 120 µm [27]. It is generally
believed that the niche consists of three components: (i) cell-
cell interactions between stem cells and TA cells, (ii) the
basement membrane, and (iii) the extracellular matrix and
mesenchymal cells directly adjacent to and beneath the
basement membrane. Disruption of the limbal niche by
various pathological conditions (e.g., severe immune re-
sponse and wounding) can lead to LSCD.

3. Limbal Stem Cell Deficiency

Clinically, LSCD is caused by the depletion or dysfunction of
LESCs, which leads to the inability to sustain corneal epi-
thelial homeostasis [31–35]. Patients often present with pain,
photophobia, and decreased vision in the acute stages of
LSCD. Biomicroscopy shows conjunctival hyperemia, loss of
the palisades of Vogt, and a “whorled-like” corneal epi-
thelium [36, 37]. LSCD is also associated with poor epithelial
adhesion, resulting in recurrent erosions and persistent
corneal epithelial defects. At the chronic stage, the ocular
surface is scarred and extensively neovascularized.

4. Clinical Treatments of LSCD

Clinical treatment of the LSCD varies based on the severity
and extent of involvement. For those patients with mild and
moderate LSCD, treatments involve the control of the symptoms
and causes. For patients with severe LSCD, it is necessary to
undergo ocular surface reconstruction (OSR). OSR is a series
of procedures to reconstitute the anatomic and physiologic
ocular surface, including amniotic membrane transplantation
(AMT), conjunctival limbal grafting, simple limbal epithelial
transplantation (SLET), and cultivated limbal epithelial trans-
plantation (CLET) [33, 38–41]. ,e recent progress in un-
derstanding limbal epithelial stem cell biology has formed
foundations for novel cell-based therapeutic strategies.

4.1. Amniotic Membrane Transplantation. Amniotic mem-
brane transplantation (AMT) is a method to help recreate
the integrity of the ocular surface. ,e amniotic membrane
(AM) consists of an overlying basement membrane with

Table 1: ,e features of corneal epithelial cells and limbal epithelial stem cells.

Limbal epithelial stem cells (LESCs) Corneal epithelium (CE)

Morphology High nucleus-to-cytoplasm ratio; smaller than CE
(10.1± 0.8 µm)

Lower nucleus-to-cytoplasm ratio;
column cell (17.1± 0.8 µm)

Blood supply High vascularization Avascular
Clonogenicity Holoclones Paraclones
Pigmentation Intrinsic melanogenesis Absent pigment, transparency
Epithelial cell marker K5 and K14 K3, K12, and Cx43
Putative stem cell marker ABCG2, K19, vimentin, integrin α9 and so on —
Metabolic activity Low High
Cell cycling Slow cycling Fast cycling
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a rich extracellular matrix, including heparin sulfate pro-
teoglycans, laminin, and collagens. ,ese components act as
a scaffold for the epithelial cells [38, 42, 43]. ,e AM also
contains various growth factors, protease inhibitors, and
anti-inflammatory and antiangiogenic factors and thus ex-
erts potent anti-inflammatory and antiscarring effects [44].
,e AMmimics the natural stem cell niche and therefore has
the potential to enhance the self-renewal of limbal epithelial
stem cells [45]. For the past decade, the amniotic membrane
has become an ideal substrate for various transplantation
procedures on the ocular surface [46, 47].

4.2. Autologous Conjunctival Limbal Transplant. Traditional
autologous limbal transplantation has a long history. In 1989,
Kenyon and Tseng described a large series (26 consecutive
cases) of conjunctival limbal autograft (CLAU) in patients with
unilateral ocular surface diseases [48]. A six-month follow-up
study showed that the CLAU resulted in the improvement in
visual acuity, rapid surface healing, and stable epithelial
adhesion without recurrent erosion or persistent epithelial
defect, as well as a regression of corneal neovascularization.
,is pioneer work identified that the transplanted limbal tissue
can rehabilitate the corneal surface [48]. However, traditional
autologous limbal transplantation requires a large limbal
epithelial biopsy from a healthy eye, which increased the
potential of damaging the donor eye [49].

4.3. Allograft Limbal Stem Cell Transplant. For patients with
a total bilateral LSCD, allograft limbal stem cell transplant is
one of the approaches to reconstruct the ocular surface [6].
,e conjunctiva and limbus, presumably including stem
cells, can come from living relative (parent or sibling) or
cadaveric limbal tissues. Allograft limbal stem cell transplant
can provide immediate postoperative epithelialization and
rapidly reconstruct the ocular surface. However, to avoid
rejection of the allograft, systemic immunosuppression is
required. Adverse effects related to long-term immuno-
suppression are common, including anemia, hyperglycemia,
elevated creatinine, and elevated levels of liver function
markers [50, 51]. Interestingly, a long-term study showed
that eventually, only recipient DNAs were detectable in the
regenerated epithelium of the majority of the successful
cases. ,is suggests that the allografted limbal epithelium
promotes regeneration of the corneal epithelium in patients
with LSCD, at least in part, by activating residual stem cells
and enhancing their self-renewal [52]. It is possible that
allografted limbal stem cells secrete factors that are necessary
for maintaining stem cell homeostasis. It is very important to
elucidate what these factors are and whether direct appli-
cation of such factors onto the ocular surface can restore the
corneal epithelium.

4.4. Simple Limbal Epithelial Transplantation (SLET). In
2012, Sangwan et al. introduced a simple limbal epithelial
transplantation (SLET) [53]. In this technique, a fresh amniotic
membrane had been attached on the cornea by a fibrin glue;
a small (2× 2mm) donor limbal graft from the unaffected eye

was harvested and divided into tiny pieces and then seeded on
the AM.,is technique provides a simple approach that makes
the LESCs expand in vivo [54–60].

A multicenter study on 68 eyes from patients who un-
derwent SLET for unilateral LSCD reported promising results
[61]. Clinical success was achieved in 57 (84%) cases. With
a median follow-up of 12 months, the survival probability
exceeded 80%. Recently, long-term clinical outcomes of a large
cohort of patients (125 cases) with unilateral LSCD occurring
after ocular burns showed that 76% patients maintained
a successful outcome. In addition to surface restoration, most
patients undergoing SLETreported a significant improvement
in visual acuity. Immunohistochemistry revealed successful
regeneration of the normal corneal epithelium (CK3(+)/12(+))
without admixture of conjunctival cells (Muc5AC(−)/CK19
(−)) and replenishment of the limbal stem cell (ΔNp63α
(+)/ABCG2(+)) reserve [62]. ,e SLET has a similar success
rate to the traditional autologous limbal transplantation. Better
yet, different from conjunctival limbal grafting, autologous
SLET requires only a tiny limbal tissue from the unaffected
eye carrying minimal risk to the donor eye. Additionally, in
comparison with ex vivo cultivated limbal epithelial trans-
plantation, SLET does not need clinical-grade laboratory
support, which has the advantage of low cost and is easily
replicable by practicing corneal surgeons [63].

5. Cell-Based Therapy

Cell therapy involves tissue engineering techniques and the
idea of stem cell plasticity for achieving corneal epithelial re-
generation.,is approach represents new potential therapeutic
modalities. ,e underlying principal is to use the least amount
of tissue to ex vivo expand cells into an epithelial sheet on
carriers and to reconstruct severely damaged ocular surfaces.

5.1. Cultivated Limbal Epithelial Transplantation (CLET).
Transplantation of autologous cultures of limbal epithelial stem
cells was first reported by Pellegrini et al. [64]. Two patients with
unilateral LSCD at the severe chronic stage of alkali burns re-
ceived CLET. Limbal epithelial cells from a 1-2mm2 limbal
biopsy sample were expanded in vitro on a feeder layer con-
sisting of nonproliferating 3T3-J2 feeder cells and a polymerized
fibrin matrix. Confluent cultured limbal epithelial sheet was
placed on a corneal wound bed. Two-year follow-up showed that
the regenerated corneal epitheliumwas stable. In 2010, Pellegrini
et al. reported a long-term clinical investigation of CLETwith the
large samples (112 LSCD patients) [65]. In this study, 76.6% eyes
showed permanent restoration of a transparent, renewing the
corneal epithelium. ,is suggests that CLET is an effective
method to reconstruct the ocular surface [66, 67]. Interestingly,
the failure of transplantation of the limbal epithelial cultures is
significantly associated with the lack of holoclone-forming cells
(stem cells) in limbal epithelial cultures.,erefore, it is of clinical
significance to identify regulators that could be pharmacologi-
cally targeted to enhance the stem cell number.

5.2. New Approaches to Maximize Ex Vivo Expansion of
Limbal Epithelial Cells. A major challenge for CLET-based
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therapies is to maintain LESC homeostasis and enhance the
self-renewal of LESCs in limbal epithelial cultures during ex
vivo expansion. MicroRNAs (miRNAs) are emerging as
important controllers of stem cell potency, proliferation, and
differentiation [68–74]. For example, miR-205 plays a po-
tentially important role in regulating cell proliferation and
survival, via targeting the PI3K/Akt pathway [75, 76]. Such
a regulation could impact effective expansion of limbal
epithelial cells. Another critical miRNA family is miR-
103/107 that is preferentially expressed in the stem cell-
enriched limbal epithelium and targets novel proteins
involved in processes related to stem cell behavior [77]. miR-
103/107 targets p90RSK2, a kinase that regulates G0/G1
progression, and this helps to maintain a slow-cycling
phenotype [78]. miRs-103/107 also promote increased
holoclone colony formation by regulating MAP3K7 sig-
naling and JNK activation through noncanonical Wnt sig-
naling. By targeting NEDD9 (HEF1), miR-103/107 ensures
maintenance of the essential stem cell niche molecule,
E-cadherin (E-cad) in limbal keratinocytes [78]. By targeting
protein tyrosine phosphatase, receptor type M (PTPRM),
miR-103/107maintains low levels of Cx43, which is a feature
of several stem cell-enriched epithelia [78]. Collectively,
miR-103/107 plays critical roles in the regulation of stem
cell proliferation and the interaction of stem cells with
their surrounding cells [79]. ,ese findings form a foun-
dation for development of a novel approach to improve
the preservation of limbal stem cells in ex vivo cultures
prior to CLET. It has been demonstrated that microRNAs
can be topically delivered into limbal/corneal epithelia
[78]. ,us, it has a clinical potential to topically admin-
ister miR-103/107 into limbal/corneal epithelia, which
may activate and preserve the remaining limbal stem cells
of patients with LSCD.

It is well established that autophagy is required for stem
cell homeostasis in various tissues [80]. Consistent with this
idea, we have demonstrated that the autophagy activity is
significantly higher in the basal layer of the limbal epithelium
comparedwith the corneal epithelium.More interestingly, the
holoclone colony-forming ability wasmarkedly diminished in
limbal epithelial cells when autophagy was blocked [81].,ese
new findings suggest that autophagy is a positive process for
maintaining stem cells [82]. ,e signaling pathways that
regulate autophagy specifically in the limbal basal layer need
to be elucidated.

5.3. Cultivated Oral Mucosal Epithelial Transplantation
(COMET). Bilateral LSCD patients who have no remaining
LESCs can turn to autologous cultivated oral mucosal ep-
ithelial transplantation (COMET). It has been shown that
COMET is a feasible substitute for allogenic limbal stem cell
transplantation without the need for long-term systemic
immunosuppression [83–89].

,e cultivated oral epithelial cells formed a stratified
tissue. ,e tissue-engineered oral epithelium expressed pro-
liferation and progenitor markers Ki-67 and p63 in the basal
layer of the cell sheets, suggesting that the epithelium had
regenerative capacity [90]. ,e transplanted epithelium also

expressed K3, K19, Ki-67, p63, p75, and the cornea-specific
PAX6 and K12 [90]. ,is study confirms that the oral cells,
transplanted to the corneal surface, can survive and stably
reconstruct the ocular surface. ,ey acquire some of the
corneal epithelial-like characters at the ectopic site. However,
compared with cultured limbal epithelial cells, COMET has
significantly higher angiogenic potential. In addition, the
underlying mechanisms involved in the transformation of the
oral mucosal epithelial cells into the differentiated corneal
epithelium remains unclear.

5.4.Mesenchymal StemCells. Mesenchymal stem cells (MSCs)
are a group of fibroblast-likemultipotentmesenchymal stromal
cells [91]. MSC can be isolated from a wide range of tissues,
including bone marrow, umbilical cord, adipose tissue [92],
and corneal stroma [93]. Because of an urgent need for alter-
native autologous stem cell sources for bilateral LSCD, MSC has
been tested in the treatment of LSCD. Holan et al. demonstrated
that bone marrow MSCs (BM-MSCs) had similar therapeutic
effects in the experimental LSCD model of alkali-injured rabbit
eyes compared with LESCs [94]. Some studies suggested the
differentiation of MSCs into corneal epithelial cells. However,
the precise mechanism by which MSCs differentiate into
corneal epithelial cells remains elusive. It has also been sug-
gested that MSCs produce growth factors that can support the
growth of residual corneal epithelial cells and LESCs [95].
Recent researches by Shaharuddin et al. found that cultured
limbal MSCs expressed the common putative limbal stem
cell markers, which demonstrated limbal-derived MSC-
exhibited plasticity [96].

6. Conclusion

Basic science has contributed greatly to our understanding
of the location, function, regulation of proliferation, and
differentiation of limbal epithelial stem cells. Conventional
autogenic and allogenic conjunctival limbal transplantation
is an effective method but is limited by tissue availability. To
overcome the shortage of donor-based tissues, scientists now
focus their attention on cell-based therapy. With the re-
finement of in vitro culture and expansion techniques, and
improved scaffolds and matrices, it is anticipated that a new
generation of regenerative procedures will be available for
use in the clinic to ultimately resolve the problem of LSCD.
Finally, an emerging idea that supplies factors in vivo to
activate and preserve the remaining limbal stem cells may
lead to a pharmacological therapy which will ultimately
replace surgery for treatment of corneal diseases with limbal
stem cell deficiency.
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