
R E S E A R CH A R T I C L E

Generalizable predictive modeling of semantic processing
ability from functional brain connectivity

Danting Meng1,2 | Suiping Wang1 | Patrick C. M. Wong3,4 | Gangyi Feng3,4

1Philosophy and Social Science Laboratory of

Reading and Development in Children and

Adolescents (South China Normal University),

Ministry of Education, Guangzhou, China

2Guangdong Key Laboratory of Mental Health

and Cognitive Science, South China Normal

University, Guangzhou, China

3Department of Linguistics and Modern

Languages, The Chinese University of Hong

Kong, Hong Kong SAR, China

4Brain and Mind Institute, The Chinese

University of Hong Kong, Hong Kong SAR,

China

Correspondence

Gangyi Feng, Department of Linguistics and

Modern Languages, The Chinese University of

Hong Kong, Hong Kong SAR, China.

Email: g.feng@cuhk.edu.hk

Suiping Wang, Philosophy and Social Science

Laboratory of Reading and Development in

Children and Adolescents (South China Normal

University), Ministry of Education, Guangzhou,

510631, China.

Email: wangsuiping@m.scnu.edu.cn

Funding information

Research Grants Council, University Grants

Committee, Grant/Award Numbers:

14614221, 14619518; Direct Grant for

Research, The Chinese University of Hong

Kong, Grant/Award Number: 4051137;

National Natural Science Foundation of China,

Grant/Award Number: 32171051

Abstract

Semantic processing (SP) is one of the critical abilities of humans for representing

and manipulating conceptual and meaningful information. Neuroimaging studies of

SP typically collapse data from many subjects, but its neural organization and behav-

ioral performance vary between individuals. It is not yet understood whether and

how the individual variabilities in neural network organizations contribute to the indi-

vidual differences in SP behaviors. We aim to identify the neural signatures underly-

ing SP variabilities by analyzing functional connectivity (FC) patterns based on a

large-sample Human Connectome Project (HCP) dataset and rigorous predictive

modeling. We used a two-stage predictive modeling approach to build an internally

cross-validated model and to test the model's generalizability with unseen data from

different HCP samples and other out-of-sample datasets. FC patterns within a puta-

tive semantic brain network were significantly predictive of individual SP scores sum-

marized from five SP-related behavioral tests. This cross-validated model can be used

to predict unseen HCP data. The model generalizability was enhanced in the lan-

guage task compared with other tasks used during scanning and was better for

females than males. The model constructed from the HCP dataset can be partially

generalized to two independent cohorts that participated in different semantic tasks.

FCs connecting to the Perisylvian language network show the most reliable contribu-

tions to predictive modeling and the out-of-sample generalization. These findings

contribute to our understanding of the neural sources of individual differences in SP,

which potentially lay the foundation for personalized education for healthy individ-

uals and intervention for SP and language deficits patients.
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1 | INTRODUCTION

Making sense of the outside world is critical for human survival and

development. The ability to store, retrieve, and manipulate meaningful

information (e.g., concepts) is central to many cognitive functions and

is also a defining characteristic of human brains (Berwick et al., 2013;

Nation & Snowling, 1998; Ratcliff et al., 2010). This so-called semantic

processing (SP) ability is a gift for humans in general. However, there
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are extensive interindividual differences in SP evidenced by various

behavioral tasks, ranging from object recognition (Lewellen

et al., 1993), categorization decision (Plaut & Booth, 2000; Schilling

et al., 1998; Yap et al., 2012) to language comprehension, and produc-

tion (Just & Carpenter, 1987; Walker et al., 1994). These behavioral

SP measures have also been demonstrated to be associated with vari-

ous cognitive components, such as executive control (Allen

et al., 2012), attention (McGlinchey-Berroth et al., 1993), selection

(Nation & Snowling, 1998), and inhibition abilities (Cain, 2006). These

findings suggest that SP may comprise multiple cognitive components

where interindividual variabilities in these components may contribute

to the variability in SP. Although these behavioral findings provide

insights into our understanding of the composition of the SP variabil-

ity, it is not yet clear to which extent the individual differences in neu-

ral organizations contribute to the individual differences in SP

behaviors.

One candidate neural source underlying variability in SP is inter-

regional functional connectivity (FC) patterns within a putative seman-

tic network (Binder et al., 2009; Binder & Fernandino, 2015). The

multifaceted essence of SP in cognitive composition suggests that the

neural implementation of SP requires joint efforts of multiple brain

regions, not only reflecting in regional activities but also more in inter-

regional connectivity. Consistent with this hypothesis, findings

derived from a large number of group-level neuroimaging studies have

shown that SP is robustly related to distributed brain regions, includ-

ing the left inferior frontal gyrus, left superior temporal gyrus/sulcus,

left middle temporal gyrus, left anterior temporal lobe, left angular

gyrus, left inferior parietal lobule, medial prefrontal cortex, and poste-

rior cingulate cortex (Binder et al., 2009; Binder & Desai, 2011;

Vigneau et al., 2006). These SP-related regions can be divided into

three subnetworks; classical Perisylvian language network (PSN),

frontoparietal network (FPN), and default mode network (DMN)

based on their resting-state FC profiles (Xu et al., 2016). The func-

tional associations of these subnetworks are distinct and may relate

to different aspects of SP. For example, PSN regions have been pro-

posed to be related to high-level linguistic processes

(Fedorenko, 2014; Fedorenko et al., 2011; Feng et al., 2016), language

learning (Feng, Li, et al., 2021; Forkel et al., 2014; Xiang et al., 2012),

and language recovery after stroke (Dehaene-Lambertz et al., 2006;

Griffis et al., 2017; L�opez-Barroso et al., 2013; Ojemann, 1991; Saur

et al., 2006). FPN regions relate to semantic control processes (Feng

et al., 2016; Geranmayeh et al., 2012, 2014, 2017; Wirth et al., 2011),

and DMN regions may relate to the social concept representation and

processing (Binder et al., 2009; Binder & Fernandino, 2015) as well as

integrating or simulating multimodal experiences (see Xu et al., 2017

for a review).

While this large body of research paints a convincing picture of

the relationship between the semantic network and SP behaviors at

the group level, it does not adequately acknowledge the tremendous

individual differences in SP. Few studies investigate whether partici-

pants' variabilities in neural patterns contribute to predicting individ-

ual differences in SP behaviors and, if so, how. With small sample

sizes and correlational approaches, previous studies show that

interindividual variability in FC between SP-related regions was asso-

ciated with individual differences in SP behaviors. In particular, the

strength of the connectivity between a network hub in the middle

temporal gyrus and other areas explains interindividual differences in

SP performance (Krieger-Redwood et al., 2016; Mollo et al., 2016;

Vatansever et al., 2017; Wei et al., 2012). These studies provide initial

evidence supporting neural connectivity as one primary source of indi-

vidual differences in SP. At the same time, there are significant limita-

tions in the findings due to the methodology constraint and solely

focusing on individual connectivity strengths.

Small sample sizes and traditional correlational approaches could

potentially inflate the neural–behavioral correlations, limiting the gen-

eralization of a finding from one population to other unseen samples.

Questions were raised on the reliability and replicability of the corre-

lational findings. Most of the previous neuroimaging studies in SP

relied on datasets with a limited number of subjects, which have low

statistical power in general, leading to inflated effect size estimates,

and poor replicability (Dubois & Adolphs, 2016; Schönbrodt &

Perugini, 2013). For example, for behavioral studies, statistical simula-

tion with the Monte-Carlo procedure has demonstrated that stable

correlation estimation should approach a minimal sample size of

250 for a significant degree of confidence (Schönbrodt &

Perugini, 2013). For fMRI studies, limited available subjects would

reduce the stability, test–retest reliability, and replicability of an acti-

vation effect estimate across experimental paradigms used (Bossier

et al., 2020; Kühberger et al., 2014).

Moreover, traditional correlational methods often overestimate

the neural–behavioral relationships and do not ensure the generaliz-

ability of the established relationship from one sample population to

out-of-sample subjects (Dubois & Adolphs, 2016; Lo et al., 2015;

Whelan & Garavan, 2014). This out-of-sample generalization ability is

rarely demonstrated in behavioral and neuroimaging studies, partly

due to the small sample sizes and lack of use of machine-learning

approaches. For example, previous studies show that machine

learning algorithms, cross-validation, and randomization procedure

can prevent overfitting data and promote model generalization and

replication (Shmueli, 2010; Yarkoni & Westfall, 2017).

To identify the FC patterns underlying individual differences in

SP while overcoming the methodological limitations, here we used

the predictive modeling approach (Finn et al., 2015; Rosenberg

et al., 2013; Shen et al., 2017) with two-step cross-validation and gen-

eralization procedures to construct and validate SP prediction models

based on a large number of subjects (N = 868) from the Human

Connectome Project (HCP; Van Essen et al., 2013). First, to estimate

the individual differences in SP while minimizing the bias in selecting a

single SP task and reducing confoundment from other task-specific

cognitive components, we extracted a latent core SP factor from five

SP-related behavioral tests with confirmatory factor analysis. Two

other cognitive components (i.e., cognitive and motor controls) were

also estimated from other offline test tasks presumably unrelated to

SP to examine the sensitivity and specificity of the models in

predicting SP. Second, we constructed cross-validated semantic

models to predict individual latent SP scores with half of the HCP
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samples. We identified the most predictive functional connections to

build a prediction model. The model was then generalized to another

half of the unseen HCP samples and two independent datasets with

different populations and SP tasks. These in-sample and out-of-

sample model predictions were evaluated by bootstrapping and per-

mutation procedures to assess the statistical significance of the

model's predictive power, reliability, and generalizability. Moreover,

previous studies have identified factors that modulate the model pre-

dictability of cognitive traits with FC patterns (e.g., task and gender)

(Greene et al., 2018; Gao et al., 2019; R. Jiang et al., 2020). Here, we

further explored the extent to which the populational factors

(i.e., gender and age) and different fMRI task states modulate the SP

model prediction and generalization.

2 | MATERIALS AND METHODS

2.1 | Dataset description and sample population

Three datasets were used in the current study to construct prediction

models and estimate model generalization performances. The three

datasets include the HCP 1200 Subjects Release (Van Essen

et al., 2013), the semantic lexical decision (SLD) dataset (Feng

et al., 2016), and the Alice story comprehension (ASC) dataset

(Bhattasali et al., 2020). The HCP dataset was used to construct and

cross-validate models and assess in-sample model generalization

performance. The two independent datasets (i.e., SLD and ASC)

were used to estimate the out-of-sample model generalization

performance.

2.1.1 | HCP dataset

The HCP dataset includes behavioral and 3T MR imaging data from

1206 healthy young adult subjects. These subjects were asked to

complete a resting-state session and a range of cognitive tasks during

fMRI scanning (Barch et al., 2013). They also completed a battery of

cognitive assessments outside the scanner. Detailed descriptions of

these fMRI tasks and behavioral tests were listed in Methods in

Data S1 and Table S1. We applied the following criteria to exclude

subjects from the FC analysis and predictive modeling: (i) Subjects

must have completed all resting-state and task-based fMRI scanning

(including language, working memory, gambling, motor, social cogni-

tion, relation, and emotion processing tasks) as well as the cognitive

assessments of interest (see Table S1 for the detailed test descrip-

tion). Subjects with any missing data in any scans and tests were dis-

carded (N = 253); (ii) Imaging quality control. We excluded subjects

whose data was collected during the period of known intermittent

problems with head coil leading to temporal instability in acquisitions

(i.e., QC_Issue = C; N = 75); (iii) We also removed subjects whose one

or more functional scans contained any significant coil- or movement-

related artifact that manifests prominently in the “minimally

preprocessed” data (i.e., QC_Issue = D; N = 10). Finally, 868 subjects

(407 males, age range 22–35 years old) were included in our analyses.

The HCP scan protocol was approved by the local Institutional Review

Board at Washington University in St. Louis.

2.1.2 | Independent datasets

The two independent datasets were included to evaluate the out-of-

sample model generalization. These two datasets were chosen

because they both have semantic tasks during fMRI scanning and rep-

resent two types of research protocols. The SLD uses a classical

semantic priming paradigm (i.e., semantic-unrelated word pairs versus

related pairs) with rigorous experimental controls. The ASC uses a

more ecological setting probing semantic processes (e.g., semantic

access and integration) during language comprehension. The SLD

dataset has resting-state and task-based fMRI scans, consisting of

26 healthy Chinese participants (11 males, 18–28 years old; Feng

et al., 2016). All participants were right-handed undergraduate or

graduate Chinese students with normal or corrected-to-normal vision

and no prior history of neuropsychiatric disorders. They were asked

to fixate on a cross during the resting-state scans and lie still. For the

task-based scanning, the participants were asked to complete a lexical

decision task (i.e., judging whether the second word is real or not) for

a list of Chinese word pairs. Word pairs include semantic-related

(e.g., “Bread–Cake”), unrelated (e.g., “Driver–Cake”), and nonword

pairs.

The ASC dataset only includes task-based fMRI scans (Bhattasali

et al., 2020). This dataset contains 26 healthy native English speakers

(11 males, 18–24 years old, right-handed). All participants were right-

handed, with normal or corrected-to-normal vision, and no prior his-

tory of neuropsychiatric disorders. During the scanning, participants

listened passively to an audio storybook of the first chapter of Alice's

Adventure in Wonderland (duration = 12.4 min) read by Kristen

McQuillan. Participants answered 12 multiple-choice questions

related to the story after scanning.

2.2 | Imaging data acquisition

2.2.1 | HCP dataset

Structural T1-weighted images were acquired using a magnetization-

prepared rapid acquisition gradient-echo (MPRAGE) sequence

(TR = 2400 ms, TE = 2.14 ms, flip angle = 8�, FOV

= 228 � 224 � 180 mm, 0.7-mm isotropic voxels). Whole-brain gra-

dient echo-planar imaging (EPI) data were acquired with a 32 channel

head coil on a modified 3T Siemens Skyra (TR = 720 ms,

TE = 33.1 ms, flip angle = 52�, FOV = 208 � 180 � 144 mm3, 2-mm

isotropic voxels, multiband acceleration factor = 8) with 72 oblique

axial slices that alternated between phase encoding in the right to left

direction in one run and the left to right direction in the other run

(U�gurbil et al., 2013; Van Essen et al., 2012). Imaging data with

different phase-encoding directions were used for FC analysis. The
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resting-state and task-state sessions were performed separately (see

more details in Methods in Data S1).

2.2.2 | SLD dataset

This dataset was acquired using a Siemens Trio 3T MRI system with a

32-channel head coil. High-resolution T1-weighted structural images

were acquired using an MPRAGE sequence (TR = 1900 ms,

TE = 2.53 ms, flip angle = 9�, 176 slices, 1-mm isotropic voxels). The

functional MRI data were recorded by a T2*-weighted EPI pulse

sequence (TR = 2000 ms, TE = 20 ms, flip angle = 90
�
, field of

view = 224 � 224 mm, in-plane resolution = 3.5 � 3.5 mm, 38 slices,

slice thickness = 3.5 mm with 1.1 mm gap). Both resting- and task-

state fMRI data were acquired.

2.2.3 | ASC dataset

This dataset was acquired using a GE Discovery MR750 3T MRI scan-

ner with a 32-channel head coil. High-resolution T1-weighted struc-

tural images were collected with an MPRAGE sequence (1-mm

isotropic voxels). For functional data acquisition, 10 participants were

scanned with a T2*-weighted EPI sequence (TR = 2000 ms,

TE = 27 ms, flip angle = 77�, field of view = 216 � 216 mm, 44 slices,

3-mm isotropic voxels, acceleration factor = 2). Sixteen subjects were

scanned with a three-echo EPI sequence (TR = 2000 ms,

TE = 27.5 ms, field of view = 240 � 240 mm, in-plane

resolution = 3.75 � 3.75 mm, 33 slices, slice thickness = 3.8 mm with

0.05 mm gap). Only task-state fMRI data were acquired.

2.3 | Estimation of latent SP ability

We selected five offline behavioral tests in the HCP dataset to esti-

mate a latent core SP factor. These tests were derived from the NIH

Toolbox Cognition Battery (Gershon et al., 2013). We select tests that

require participants to store, retrieve, or manipulate meaningful

objects or conceptual information explicitly or implicitly to a certain

extent. The five tasks include the Picture Vocabulary (PicVoc) (mea-

sures the object representation, semantic access, and vocabulary

retrieval ability), the Oral Reading Recognition (ReadEng) (measures

the semantic retrieval of words and reading decoding ability), List

Sorting Working Memory (ListSort) (measures temporal storage of

visually and orally presented objects), Picture Sequence Memory

(PicSeq) (measures storage capacity of a series of visual objects and

events), and Pattern Comparison Processing Speed (ProcSpeed) (mea-

sures the object representation and processing speed of object dis-

cernment) (see Table S1 for a detailed description of each test).

We selected these tests because they are related to SP to a cer-

tain extent. For example, PicVoc and ReadEng may be more related to

the traditional-defined semantic processes due to the tasks requiring

participants to access actively (e.g., in PicVoc) and manipulate (e.g., in

ReadEng) semantic information explicitly. The other three tests

(i.e., PicSeq, ListSort, and ProcSpeed) involve semantic processes

implicitly, where the participants need to access the semantic infor-

mation of the stimuli (e.g., concrete objects or concepts) to complete

the tasks. For example, PicSeq requires participants to memorize the

order of sequentially presented objects and events (Bauer

et al., 2013). The objects and events are thematically related, and the

participants need to understand the semantic relationships of the

objects and events to better memorize and recall the test items. Like

PicSeq, ListSort and ProcSpeed require information to be accessed at

the semantic level during the tasks to a certain extent. At the same

time, these tests may vary their focus in assessing different cognitive

components (e.g., working memory and pattern extraction).

We also included two tests related to general cognitive control

(CC) and four tests related to motor control (MC) to estimate the

latent CC and MC factors, respectively. The two CC-related tests

include dimensional change card sort (CardSort), which measures

executive function and cognitive flexibility, and flanker task (Flanker),

which measures selection and inhibition ability. The four MC-related

tests include the 2-min walk endurance (Endurance) (measures endur-

ance), 4-m walk (GaitSpeed) (measures locomotion), 9-hole pegboard

(Dexterity) (measures dexterity), and grip strength dynamometry

(Strength) (measures strength). These tests do not include meaningful

object items or conceptual or language stimuli.

We adopted a confirmatory factor analysis (CFA) with those

behavioral test variables to estimate the latent SP, CC, and MC factors.

CFA is a multivariate statistical procedure often used to test how well

the observed variables support the theoretical constructs of interest

(Harrington, 2009). CFA attempts to reproduce the observed covari-

ances between test items of interest with a more concise set of latent

factors. CFA was used to confirm the putative latent SP factors using a

set of test variables, which partition the test variances into two broad

types: the variances due to a common latent SP factor and variances

due to task-specific settings. We specified a hypothesized three-factor

model. The five SP-related test variables contributed to a latent SP fac-

tor, two CC-related test variables contributed to a latent CC factor,

and four MC-related test variables contributed to a latent MC factor.

Scores from the tests were normalized and age-adjusted using the

age-appropriate band of Toolbox Norming Sample (bands of ages 18–

29, or 30–35), where a score of 100 indicates performance that was at

the national average and a score of 115 or 85 indicates performance

1 SD above or below the national average for participants' age band.

We conducted the CFA model fitting using the R package Lavaan

(Rosseel, 2012) with the maximum likelihood function to iteratively min-

imize the differences between the model-implied variance–covariance

matrix and the sample variance–covariance matrix. The latent factor

scores were generated for all participants after the model fitting.

2.4 | SP scores of the independent datasets

We used the semantic priming effect in lexical decision time as indi-

viduals' SP scores for the SLD dataset. The strength of semantic
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priming was calculated by subtracting the lexical decision time of the

semantic-related condition (i.e., a target word paired with a semanti-

cally related prime word) from the semantic-unrelated condition (i.e., a

target word paired with an unrelated prime word) for each

participant. Semantic priming was first reported by Meyer and

Schvaneveldt (1971). Lexical decision time to a word is facilitated by

prior presentation of its semantically related words. For example, prior

exposure of “doctor” would facilitate subsequent recognition of

“nurse” (faster in recognition time). We used this semantic priming in

recognition time as an SP index to reflect individual participants'

semantic access/activation processing ability. Generally, more

semantic priming reflects more facilitation in semantic processes

(e.g., semantic access) of the target words, thus reflecting tighter rela-

tionships between the related words in participants' mental semantic/

conceptual representations. Trials with error responses and response

times deviating from the mean of all trials by more than three stan-

dard deviations were removed. The semantic priming scores across

subjects range from �66.7 to 87.0 ms (mean = 21.0 ms).

For the ASC dataset, the performance of a story comprehension

test was used as individuals' SP scores. Participants were required to

answer 12 questions after listening to an audio storybook. To answer

these questions correctly, participants need to accurately understand

the content of the storybook (i.e., speech signals) during scanning,

where they were required to extract the meaning of individual words

and cohesively combine them (Hagoort, 2005; Werning et al., 2012).

SP involved in this task is defined as accessing the meaning of individ-

ual words and integrating the individual semantic units into larger rep-

resentations. Relative to the semantic priming effect, this

comprehension SP score is a more ecological measure of SP ability

and requires less experimental control. Higher scores implicate the

participants have better semantic and/or language processing ability.

These comprehension scores range from 5 to 12 (mean = 9.81,

SD = 1.67).

2.5 | Imaging data analysis

2.5.1 | Preprocessing

All three datasets were processed with the same analysis pipeline.

The HCP data was downloaded in its minimally preprocessed form

(i.e., after motion correction, B0 distortion correction, co-registration

to T1-weighted images, and normalization to the MNI152 space; see

Glasser et al. (2013) for detailed preprocessing parameters). The other

two independent datasets were preprocessed with the same proce-

dure as the HCP using Data Processing Assistant for Resting-State

fMRI (DPARSF) (Yan & Zang, 2010). Before calculating FC matrices, all

the preprocessed datasets were resliced into 3.5 mm3 voxel size. We

then applied band-pass filtering (0.01–0.08 Hz) to remove physiologi-

cal noises, and linear detrend to remove slow drifts. We also regressed

out variances of nuisance variables including 12 head motion parame-

ters, global signals, white-matter signals averaged from the deep cere-

bral white matter, and cerebrospinal fluid signals averaged from the

ventricles to reduce non-neuronal contributions to variable covari-

ance. To avoid unwanted frequency components leaking back into the

data, we applied the regression with all the nuisance regressors in a

single one-step model (Jo et al., 2010; Jo et al., 2013). In addition, due

to the controversy about including global signals in the regression

analysis of the resting-state data (Gavrilescu et al., 2002; Saad

et al., 2013), we also analyzed the data without global signal regres-

sion to examine the extent to which this preprocessing step

influenced the predictive modeling and model generalization.

2.6 | FC matrix construction

We used a semantic brain template of 60 nodes to derive FC patterns

within the semantic network for each participant. This template is

constructed based on a meta-analysis deriving from 120 SP-related

fMRI activation studies from Binder et al. (2009). These network

nodes are frequently reported in a range of semantic task manipula-

tions (e.g., words vs. pseudo words, semantic vs. phonological tasks,

high vs. low meaningfulness conditions, etc.). All the regions are listed

in Table S2. We defined a sphere with a radius of 6 mm for each node

as a region of interest (ROI) and ensured no spatial overlapping among

these ROIs. Representative mean time series of each ROI were

extracted by averaging all voxels within that region. The interregional

FC was estimated by calculating the pairwise Pearson correlation

coefficient of the time series between each pair of ROIs. The FC was

then normalized with Fisher's r-to-z transformation. Finally, a 60 � 60

symmetric connectivity matrix was obtained for each participant in

each scanning session. For the HCP dataset, each participant had

eight FC matrixes, separately calculated from the resting-state, lan-

guage, working memory, gambling, motor, social cognition, relation

processing, and emotion processing task fMRI data. For the SLD

dataset, each participant has two FC matrixes (i.e., the resting state

and the SLD task). For the ASC dataset, each participant has an FC

matrix (i.e., the story comprehension task).

2.7 | Predictive model construction procedure
(Phase 1)

We randomly split the HCP sample into two parts (N = 439 each) for

predictive model construction and in-sample generalization estima-

tion, respectively (see the overview of the analysis schema in

Figure 1). We combined the 10-fold cross-validation (CV) with boot-

strapping and permutation procedures to estimate CV prediction per-

formances and construct a cross-validated SP prediction model (Feng

et al., 2018; Feng et al., 2021). First, we randomly split the HCP

model-construction sample (N = 439) into 10-folds. Nine folds of the

subjects (i.e., training set) were used for model training, and the held-

out fold (i.e., testing set) was used for model validation. To avoid over-

fitting the model with a large number of FCs, we employed a feature

selection procedure to select the most informative features

(i.e., network edges) during modeling training. For each training set,
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we computed the partial Pearson correlations between FC strengths

and SP scores for each edge, where age and gender were controlled

(Cai et al., 2020; He et al., 2020). We discarded the nonsignificant

edges with a threshold of p = .005 while selecting the positively and

negatively correlated edges separately as predictive features to train

prediction models (Beaty et al., 2018; Rosenberg et al., 2016). The

two types of edges were modeled separately because their connec-

tion patterns could contribute differently to the model prediction

based on previous findings (Feng et al., 2021; Rosenberg et al., 2016).

We also combined these two types of edges in model construction

and generalization to examine whether the model performance would

outperform models with only one type of edge. Different feature-

F IGURE 1 Schema of the predictive modeling and generalization evaluation procedure. The HCP participants were randomly split into two
groups (50% each) for model construction (Phase 1) and generalization evaluation (Phase 2), respectively. This random splitting procedure was
repeated 100 times to minimize sampling bias. For each splitting, at the model construction phase, we used 10-fold cross-validation (light red
box), bootstrapping, and permutation procedures to construct and validate models (green box). At the end of Phase 1, a prediction model was
built with all the Phase 1 samples and selected edges derived from the edgewise permutation test. At Phase 2, we generalized the prediction
model to various independent HCP data and subpopulations, including different task states, gender, and age groups, to estimate the in-sample
generalization performance. Another two independent datasets were used to assess out-of-sample model generalization (the bottom box). We
randomly selected 90% of participants to calculate generalization performance, and this procedure was repeated 10,000 times for the
nonparametric permutation test. iter = iteration
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selection thresholds (e.g., 0.001 and 1% of the total number of edges)

were also used to examine the reliability of the model prediction.

Next, to further reduce the number of feature dimensions, we used

principal component analysis (PCA) to summarize the main principal

components (PCs) and selected the PCs that were significantly

correlated with the SP scores with a threshold of p = .05. For positive

prediction models, the selected components vary from 1 to

16 (mean = 5.29) across iterations. For negative predictive models,

the selected components range from 1 to 16 (mean = 6.47) across

iterations. These feature selection and dimension reduction proce-

dures were conducted only in each training set independent of the

held-out testing set. Finally, a linear prediction model was constructed

with the selected PCs as predictive features and the latent SP factor

as the dependent variable. This trained model was then applied to the

held-out 10% unseen participants to predict their SP scores. This

cross-validation process was repeated 10 times to predict all the par-

ticipants' SP scores. Pearson correlations between the observed and

predicted SP scores were used to assess the model prediction perfor-

mance (i.e., r[observed,predicted]).

We employed bootstrapping and permutation test procedures to

evaluate the reliability and statistical significance of the model predic-

tions. In the bootstrapping procedure, we repeated the 10-fold CV

procedure 1000 times. Each CV repetition would result in a slightly

different prediction performance r[observed,predicted] due to the sampling

differences in partitioning the training and testing sets. Therefore, a

prediction distribution was generated after 1000 CV iterations. To

test whether the bootstrapping-based prediction distribution

occurred by chance, we adopted a permutation test procedure

(i.e., randomization test) where all participants' SP scores and their

FCs were scrambled before being used for predictive modeling. Spe-

cifically, the FCs and the SP scores were permuted independently to

generate a fully randomized data matrix. The 10-fold cross-validation

procedure was repeated 1000 times with the randomized matrix to

generate a null (chance) prediction distribution. Statistical significance

of the model predictions was determined by comparing the medium

r[observed,predicted] of the bootstrapping distribution with the

permutation-based null distribution. The 95th percentile points of

each null distribution were used as the critical values for a one-tailed

test against the null hypothesis with p = .05. In addition, we obtained

a set of significantly selected edges based on the feature selection

procedure with an edgewise permutation test with a threshold

of p = .001.

2.8 | Model generalization and evaluation
(Phase 2)

At the model generalization phase, we built prediction models with all

the significantly selected edges (positive- and negative-correlation

edges separately) and model-construction samples to estimate gener-

alization performance. Data with different fMRI states (i.e., resting

and other task states) and subpopulation groups (i.e., age and gender)

were selected from another half of the HCP sample (i.e., model-

generalization samples) to examine to what extent these factors influ-

ence the model generalization. To this end, we randomly selected

150 participants' resting-state and task-state (including seven tasks)

data as a generalization set for each generalization iteration. We

chose 150 participants to ensure each subpopulation group had suffi-

cient and equal participants for model generalization estimation. The

models constructed in Phase 1 were then applied to the generalization

set individually to estimate generalization prediction performances.

This in-sample generalization procedure was repeated 1000 times to

obtain a generalization prediction distribution for each model built in

Phase 1.

Similarly, to estimate to which extent age and gender modulate

the generalization, we randomly selected 150 females and males and

150 adults younger and older than 30 years respectively for generali-

zation sets. The choice of 30 years old to split the data into two

groups was to ensure each age group had an equal number of partici-

pants based on HCP's age classification (four age ranges: 22–25, 26–

30, 31–35, and 36+). The same generalization procedure was applied

to each of these subpopulations. The Pearson correlation between

observed and predicted SP scores was used to assess model generaliz-

ability. To minimize sampling bias, we repeated the random splitting

procedure (i.e., randomly splitting the HCP into construction and gen-

eralization samples) 100 times. A model was constructed for each

split; therefore, 100 models were built at Phase 1. As a result, the

accumulative iteration for cross-validation (Phase 1) and generaliza-

tion (Phase 2) procedures was 100,000 times.

To estimate the out-of-sample model generalization performance,

we used all the HCP participants to build a prediction model and gen-

eralize the model onto two independent datasets (i.e., SLD and ASC).

Both datasets are previously published. These datasets were collected

with different experimental settings (e.g., different semantic tasks,

data collection procedures, MRI data acquisition, language use, etc.).

We only used the language task fMRI data from the HCP dataset and

significant edges selected from this task to build the prediction model

for out-of-sample generalization because the language task data

yielded the best CV and in-sample generalization performances. We

then applied this HCP model to the two datasets to generate

predicted SP scores. Pearson correlations between observed and

predicted SP scores were used to assess the out-of-sample generaliz-

ability. We repeated this out-of-sample generalization and the

corresponding permutation test procedures 10,000 times (with 90%

of the samples each). Statistical significance was determined by com-

paring the bootstrapping distribution and the permutation-based null

distribution. All the prediction analyses were performed with custom-

ized MATLAB scripts.

We used a Linux desktop workstation with two Intel Xeon CPUs

(16-core processors each) to preprocess the data and build and vali-

date the prediction models. It took about 12–60 h for each fMRI task

(�60 h for HCP) for preprocessing and extracting the FC patterns for

all participants. Thanks to the parallel computing technique, the pre-

diction model construction and validation process were highly acceler-

ated. It took around 6 h for the prediction model construction and

about 2 h for generalization. Also, to facilitate the iterative
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computational processes (i.e., bootstrapping and permutation proce-

dures), we used two feature-selection techniques (Pearson's correla-

tion and PCA) to remove noninformative features and reduce data

dimensions. Thus, the model construction and validation were signifi-

cantly accelerated.

2.9 | Predictive modeling with different brain
network modules

To further estimate the prediction contributions of different intra-

and internetwork connections, we conducted predictive modeling

with the same bootstrapping and permutation procedures for each

module of subnetwork connections. First, we classified the 60 seman-

tic network nodes into three subnetworks based on previously

defined network labels (Xu et al., 2016). Xu et al. performed a modu-

larity analysis with the spectral optimization algorithm to detect net-

work communities. They found three sub-networks, Perisylvian

network (PSN), frontoparietal network (FPN), and default mode net-

work (DMN), based on the resting-state FC patterns. We then

separated the edges into six divisions based on their intra- and inter-

network connectivity. Specifically, the six divisions (i.e., connection

modules) include three modules of intranetwork connections (PSN–

PSN, FPN–FPN, and DMN–DMN) and three modules of internetwork

connections (PSN–FPN, PSN–DMN, and FPN–DMN). The same pre-

dictive modeling procedures were conducted for each connection

module.

2.10 | Control analyses

We further applied our trained SP models to predict CC and MC

scores to examine whether the SP prediction model is semantic-

domain-specific in explaining individual differences in SP or domain-

general so that the models can be used to predict other cognitive

traits (i.e., CC and MC) that do not require manipulation and

processing of semantic information. Moreover, we tested whether a

domain-general model can be used to predict SP scores. To do so, we

constructed two prediction models for the CC and MC scores with

half of the HCP samples. We then estimated how well these two

models could be used to predict SP scores with another half of the

unseen HCP samples.

3 | RESULTS

3.1 | The latent core SP factor

The confirmatory factor analysis (CFA) was used to extract a latent

variable to reflect SP from five behavioral variables (see Figure 2a for

the distributions of the five test scores). Another two latent variables

for cognitive control (CC) and motor control (MC) were also estimated

for comparisons and control analyses. The three-factor CFA model

has a robust model fit to the data (χ2[41] = 463.264, p = 1.00 � 10�4,

RMSEA = 0.109, CFI = 0.750). The five selected tests contributed dif-

ferently to the SP latent variable (Figure 2b, left panel) as expected

due to these tasks involving SP differently. In particular, the Picture

Vocabulary (PicVoc: R2 = .755), Oral Reading Recognition (ReadEng:

R2 = .841), and List Sorting (ListSort: R2 = .212) tests contributed

more to the SP latent scores than the other two tests (i.e., Picture

Sequence Memory and Pattern Comparison Processing Speed tests).

The SP latent variable shows a moderate-to-low correlation with the

other two latent variables (R2[SP,CC] = .169; R2[SP,MC] = .118; see

Figure 2b, right panel). The distribution of the SP scores across the

entire HCP population is shown in Figure 2c. These SP scores were

used for predictive modeling and model generalization estimation.

3.2 | Cross-validation performance in predicting
latent SP scores

At the model construction phase, the SP prediction models built with

FC features of the language task (LT) were significantly predictive of

individual SP scores (see Figure 3a left panel for the predicted

vs. observed scores). This cross-validation (CV) model performance

was not only statistically significant but also reliable across CV repeti-

tions, which was demonstrated by the bootstrapping and permutation

procedures with 100,000 iterations (the positive-predictive model:

rpos[observed,predicted] = .322, p = 2.00 � 10�5; the negative-predictive

model: rneg[observed,predicted] = 0.317, p = 2.00 � 10�5; Bonferroni-

corrected; Figure 3a, right panel).

We also reconducted the CV predictive modeling with FC data

that the global signals were not regressed out from each ROI's time

series. We found that the CV prediction performances without global

signal regression (see Figure S1A for the results) are consistent with

the results shown in Figure 3. The contributing edges were largely

overlapped (Figure S1B), which demonstrated that global signals do

not significantly influence the prediction performance of our model. In

addition, when we applied the same CV predictive modeling to the

PicVoc and ReadEng raw scores (the top two behavioral metrics con-

tributing to the latent SP factor estimation), we found the results were

consistent with that of SP scores (see Figures S2 and S3 for details).

The model performance with both types of edges was also signifi-

cantly better than chance (rall[observed,predicted] = 0.318,

p = 2.00 � 10�5) but it did not outperform the positive-predictive

model (model comparison: p = .533; nonparametric permutation test)

or the negative-predictive model (p = .494). The CV prediction perfor-

mance of the LT data outperformed models of the resting state and

other tasks (see Figure 3b; LT vs. resting state [Rest]: p = .005; LT

vs. relational task [RT]: p = .005; LT vs. gambling task [GT]:

p = 7.07 � 10�5; LT vs. emotion task [ET]: p = 7.03 � 10�5; LT

vs. working memory task [WM]: p = .014; LT vs. motor task [MT]:

p = .153; LT vs. social task [ST]: p = .191; nonparametric tests with

Bonferroni corrected p).

We identified connections (i.e., edges) that were significantly

selected during the CV model training with the edgewise permutation
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test. We classified the significantly selected edges (i.e., predictive

edges) into two types (i.e., positively and negatively predictive edges).

The positively predictive edges indicate that increased FC strengths

are associated with enhanced SP ability. These positive predictive

edges are mainly those PSN intranetwork connections (selection

rate = 38.4%) and PSN–DMN (32.1%) and PSN–FPN (14.3%) inter-

network connections (see Figure 3c, left panel), notably including the

connections between the orbital part of the inferior frontal gyrus

(IFG), temporal pole (TP), middle temporal gyrus (MTG), and angular

gyrus (AG). In contrast, the negative predictive edges indicate that

increased FC strengths are associated with poorer SP ability. We

found that the negative predictive edges were distributed across net-

work modules, mainly those PSN–DMN (31.9%), PSN–FPN (26.3%),

DMN–DMN (18.7%), and FPN–DMN (17.0%) connections, mainly

including edges between an FPN node, inferior parietal lobule (IPL),

and PSN temporal nodes, as well as FPN intranetwork connections

(e.g., an edge between IFG and IPL) (Figure 3c, right panel; all the sig-

nificantly predictive edges were listed in Table S3).

To further examine the contributions of the edges in the model

construction while minimizing the influence of the highly correlated

FC edges, we conducted the predictive modeling for the SP scores

with the ridge regression approach (Gao et al., 2019). The ridge

regression assigns a coefficient to each selected edge and shrinks

the regression coefficients of correlated edges to deal with the col-

linearity problem. We found that the CV prediction performances

and contributing edges revealed by the ridge regression approach

were consistent with that of the present approach (see Figure S4

for details).

With predictive modeling for each module of connections

(i.e., PSN–FPN, PSN–DMN, PSN–PSN, FPN–DMN, DMN–DMN, and

FPN–FPN; see Figure 4a for the connection patterns), we found that

different modules showed varying degrees of predictive power

(Figure 4b). The significant positively predictive edges are those mod-

ule connections between PSN and the other two subnetworks as well

as the PSN intranetwork connections (rPSN–FPN = .220,

p = 6.00 � 10�5; rPSN–DMN = .220, p = 6.00 � 10�5; rPSN–PSN = .219,

p = 1.52 � 10�4; rFPN–DMN = .176, p = .002; rDMN–DMN = .154,

p = .007; rFPN–FPN = .075, p = .300; Bonferroni corrected p;

Figure 4b). The significant negatively predictive edges are those inter-

network connections between PSN and DMN, PSN and FPN, and

FPN and DMN as well as the DMN and FPN intranetwork connec-

tions (rPSN–FPN = .235, p = 6.00 � 10�5; rPSN–DMN = .199,

p = 4.80 � 10�4; rPSN–PSN = .066, p = .587; rFPN–DMN = .223,

p = 6.09 � 10�5; rDMN–DMN = .203, p = 3.06 � 10�4; rFPN–

FPN = .151, p = .007; Bonferroni corrected p) (Figure 4b). Detailed

predictive edges for each module were displayed in Figure 4c. These

F IGURE 2 Confirmatory factor analysis (CFA) was used to estimate the latent semantic processing (SP) component and another two putative
control components. (a) Test score distributions for the five SP-related tests. The five tests include oral reading recognition (ReadEng), picture
vocabulary (PicVoc), list sorting (ListSort), picture sequence memory (PicSeq), and pattern comparison processing speed (ProcSpeed) (see detailed
descriptions of the tests in Table S1). These score distributions were shown in different colors for different tests. (b) A three-factor CFA model
(SP, CC, and MC components) was constructed and estimated. The number beside each line denotes each test variable's contribution (R2) to
explaining the latent factors. (c) The score distribution of the latent SP factor was displayed in the histogram.
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module-based prediction results are consistent with the overall edge-

wise prediction results described in Figure 3c.

3.3 | Model generalization in predicting
independent HCP samples

We constructed predictive models with all the samples used at Phase

1 and the significantly selected edges derived from the edgewise per-

mutation test (p < .001) to estimate model generalization. We used

the language task's fMRI data to build the models for generalization

because the CV performance of the language task data outperformed

the resting state and other tasks (see Figure 3b). The predictive

models' in-sample and out-of-sample generalization performances

were assessed with another half of the unseen HCP dataset and the

two independent datasets, respectively.

For in-sample generalization, different task states (i.e., resting-

state and seven tasks) and subpopulations (i.e., two age groups and

two gender groups) of the unseen HCP dataset were used to estimate

to which extent these variables affect the generalization performance.

First, we generalized our trained model from the language task data to

the data derived from different fMRI states. We found that the posi-

tively predictive model significantly generalized to unseen individuals

for the language task data (LT: median r = .249, p = .0068; permuta-

tion test; the same for the following tests) and the motor task (MT:

r = .208, p = .037), but not for the other states (Rest: r = .105,

p = .792; WM: r = .157, p = .200; ET: r = .132, p = .405; GT:

r = .139, p = .341; RT: r = .092, p = .999; ST: r = .154, p = .226;

Bonferroni corrected p). The generalization performance of the lan-

guage task was significantly better than the resting state (p = .016;

uncorrected). However, no significant difference was found between

the language task and most of the other task states in generalization

(LT vs. WM: p = .090; LT vs. ET: p = .044; LT vs. GT: p = .055; LT

vs. MT: p = .188; LT vs. RT: p = .017; LT vs. ST: p = .067; uncorrected

p). These results indicated that the language task not only selectively

enhances CV prediction but also in-sample model generalization

(Figure 5a, left panel). To further explore which module of connec-

tions contributed to this task effect in generalization, we conducted

the model generalization analysis for each network module individu-

ally. We found that mainly those edges connecting to the PSN yielded

F IGURE 3 Cross-validated model prediction performance and the significantly contributing network connections. (a) SP prediction
performance at the model construction phase. Left panel, scatter plot shows linear correlations between predicted and observed SP scores; right
panel, bootstrapping- and permutation-based prediction distributions derived from the positively (red) and negatively predictive (blue) FCs,
respectively, with language task (LT) data. Perm = permutation-based distribution. (b) Prediction distributions across fMRI states. Each box in the
boxplot represents the quartile of each prediction distribution. Permutation test: *p < .05; **p < .01; ***p < .005, Bonferroni corrected. Data
abbreviations: ET, emotion task; GT, gambling task; LT, language task; MT, motor task; Rest, resting state; RT, relational task; ST, social task; WM,
working memory task. (c) Significantly predictive edges that contribute to the model prediction. The thickness of the edges denotes the statistical
significance derived from the edgewise permutation test. Left panel, significant positive-predictive edges; right panel, significant negative-
predictive edges. Node colors denote network modules; edge colors denote inter- and intranetwork connection modules. Node abbreviations:

AG, angular gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; MTG, middle temporal gyrus; OG, occipital gyrus; TP, temporal pole.

MENG ET AL. 4283



significant model generalization (rPSN–PSN = .248, p = .005; rPSN–

FPN = .239, p = .007; rFPN–DMN = .199, p = .020; Bonferroni

corrected p). While the PSN intranetwork connections (i.e., PSN–PSN)

contributed most to the generalization, the model generalization of

the PSN–PSN connections in the language task also outperformed

that in the resting state (LT vs. Rest: p = .039, uncorrected; Figure 5a,

right panel).

We further examined the in-sample generalization performance

to different gender and age groups of the HCP dataset for the positive

predictive models (see Figure 5b,c). We selected these subpopula-

tions' resting-state and language-task data as the target for generaliza-

tion. We examined to which extent age and gender variables

modulate the generalizability of the SP prediction model. For the lan-

guage task data, the trained model significantly generalized to predict

SP scores of both females (r = .359, p = 2.00 � 10�5, Bonferroni

corrected) and males (r = .174, p = .030; Bonferroni corrected). The

model's generalizability was significantly higher for females than males

only for the language task data (p = .039; Bonferroni corrected)

(Figure 5b, left panel). Those edges connecting to the PSN nodes

yielded significant model generalization only for females (rPSN–

PSN = .332, p = 1.20 � 10�4; rPSN–FPN = .279, p = .002; rPSN–

DMN = .240, p = .009; rFPN–DMN = .190, p = .045; Bonferroni

corrected). The gender effect in generalization was most prominent in

the PSN intranetwork connections (males vs. females: p = .014,

uncorrected) (Figure 5b, right panel), similar to the task effect. No sig-

nificant generalization prediction was observed for resting-state data

for either gender group (female: r = .140, p = .080; male: r = .040,

p = .624; corrected). We further tested whether the homogeneity in

F IGURE 4 Predictive modeling (Phase 1) for each module of connections. (a) Six connection modules. Key regions in each module were
labeled. (b) Prediction powers for different modules and types of edge. The red and blue boxes represent the predictive powers of positive- and
negative-predictive models, respectively. The order of the modules was sorted by the mean prediction r-value of the positive models in
descending order. Perm, permutation-based distribution. **p < .01; ***p < .005, Bonferroni corrected. (c) Significantly predictive edges for each
connection module. The red-colored and the blue-colored edges represent the significant positively and negatively predictive connections,
respectively. Edgewise permutation test, p < .005. Node abbreviations: AG, angular gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule;
MFG, middle frontal gyrus; MTG, middle temporal gyrus; OG, occipital gyrus; PCC, posterior cingulum cortex; Prec, precuneus; rMTG, right
middle temporal gyrus; rSTG, right superior temporal gyrus; TP, temporal pole.
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FC strengths within the females was significantly less than that within

the males. We randomly selected 100 males and females and calcu-

lated their standard deviations (SD; a proxy of inhomogeneity) of the

FC strengths of the significantly predictive edges (displayed in

Figure 3b). This process was repeated 10,000 times to estimate SD

distributions. We found that the SD of the FC strength for females

was significantly smaller than that for the males (p = .001, nonpara-

metric test), suggesting that females' SP-related FCs are more homo-

geneous than males.

Moreover, for both age groups, significant generalization predic-

tions were found only for the language task data (young: r = .285,

p = 2.60 � 10�4; old: r = .269, p = 5.80 � 10�4, corrected p), consis-

tent with the overall generalization results. However, no significant

difference in generalization was found between the younger and older

participants, neither for the language task (corrected p = .874) nor for

resting-state data (corrected p = .873) (Figure 5c).

For the generalizability of the negative-predictive models, both

task status and gender effects were found (Figure S5). First, significant

in-sample generalization (vs. the chance distribution) was found only

for the language task data (r = .316, p = 3.20 � 10�4, Bonferroni

corrected), but not for any of the other fMRI states (ps >.1). The gen-

eralization performance of the language task data was significantly

better than the resting state (p = .014, Bonferroni corrected) and

most of the other task states (LT vs. ST: p = .018; LT vs. ET: p = .037;

LT vs. GT: p = .070; LT vs. MT: p = .041; LT vs. RT: p = .039; LT

vs. WM: p = .160; Bonferroni corrected; see Figure S5A, left panel).

We further found that most of the subnetwork connections

(i.e., PSN–FPN, PSN–DMN, DMN–DMN, FPN–DMN, and FPN–FPN)

except the PSN intranetwork connections (i.e., PSN–PSN) contributed

to the task enhancement in model generalization (LT vs. Rest: pPSN–

FPN = .023, pPSN–DMN = .013, pDMN–DMN = .024, pFPN–DMN = .016,

and pFPN–FPN = .031; uncorrected p) (Figure S5B, right panel). How-

ever, these comparisons were not significant after multiple compari-

sons correction (LT vs. Rest: pPSN–FPN = .138, pPSN–DMN = .075,

pDMN–DMN = .142, pFPN–DMN = .096, and pFPN–FPN = .183). For the

generalization in different gender and age groups, the model's gener-

alizability was significantly higher for females than males only for the

language task data (p = .043, uncorrected) (Figure S5B, left panel).

F IGURE 5 The in-sample generalization performance of the positive predictive models was modulated by task and gender. (a) Model
generalization performance was estimated with independent HCP samples across different task states. ET, emotion task; GT, gambling task; LT,
language task; MT, motor task; Perm, permutation; Rest, resting state; RT, relational task; ST, social task; WM, working memory task.
(b) Predictive model generalization performance was estimated with independent HCP samples of the two gender groups, respectively. (c) model
generalization performance for the two age groups. Right panels in (a–c) show generalization evaluation for each of the six connection modules.
These connection modules are sorted according to the significance of the task state effect in descending order. Boxplots represent 25th and 75th
percentiles (box) and range (whiskers) for the distributions. Asterisks indicate the significance of the generalizability (vs. null distributions):
*p < .05; **p < .01; ***p < .005; Bonferroni corrected.
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However, this gender effect in generalization did not reach signifi-

cance in any module of the connections (Figure S5B, right panel).

However, the quantity differences between females and males were

observed across modules except for PSN's intranetwork connections.

Also, no significant difference in generalization was found between

the younger and older groups, neither for the language-task (p = .660,

corrected) nor resting-state (p = .495, corrected) data (Figure S5C).

3.4 | Out-of-sample model generalization
evaluation

To further examine to which extent the cross-validated models can be

generalized to independent datasets (i.e., out-of-sample generaliza-

tion) collected in different populations and with different task settings

and SP measures, we generalized our HCP model onto two indepen-

dent datasets to predict their semantic performances: the semantic

priming scores and the story comprehension scores. The out-of-

sample model generalization was often unsuccessful in previous

attempts. Therefore, we considered this analysis as an exploratory

test and selected a wide range of percentages of significant edges as

FC features to build HCP models to examine whether the number of

connections modulates the generalization performance. We found

that only the positive-predictive model can significantly predict

unseen individuals' reading comprehension scores in the ASC dataset

across a wide range of edge selection percentages (e.g., 50% edge:

r = .491, p = .005, uncorrected) (Figure 6a). However, the positive

HCP model can only marginally significantly predict semantic priming

scores in the SLD dataset when 50% of the predictive edges are used

(r = .330, p = .058, uncorrected). No significant out-of-sample gener-

alization was found when we applied the negative-predictive models

(Figure 6b). We also tried to combine both the positive and negative

models for generalization. However, the model generalization perfor-

mance did not outperform the positive-predictive model alone.

3.5 | Control analyses

To further examine to which extent the HCP model is domain-specific

(i.e., selectively predicting SP scores instead of other components), we

applied the built SP model to predict CC and MC scores. We found

that the positive predictive model was not significantly predictive of

CC or MC scores (Figure S6A, upper panel). The negative-predictive

model was weakly predictive of CC but not MC's (Figure S6A, lower

panel). These results indicate that the generalizable positive-predictive

SP model is semantic-domain-specific in predicting individual SP

abilities.

In addition, we further examined whether the CC and MC predic-

tion models built with half of the HCP sample can be used to predict

the SP scores from another half of the participants. We ran the pre-

dictive modeling analysis (including the Phase 1 model construction

and Phase 2 in-sample generalization) with the CC and MC scores.

The models trained with the CC and MC scores cannot significantly

predict held-out participants' SP scores (Figure S6B,C). These findings

provide converging evidence supporting the specificity of the SP

model and the FC patterns underlying individual differences in SP.

4 | DISCUSSION

The present study used the connectome-based predictive modeling

approaches and datasets with sizable samples to examine the func-

tional network organizations underlying individual differences in SP

ability. We constructed predictive models with rigorous cross-valida-

tion, bootstrapping, and permutation procedures. We then assessed

the model's generalizability with unseen in-sample and out-of-sample

datasets. We demonstrated the robust relationships between individ-

ual differences in SP and variabilities in FC organization while over-

coming the low effect size inherent by small sample sizes and

traditional correlational approaches. We identified a cluster of intra-

and internetwork connections where their variabilities contributed

significantly to predicting individual SP scores. Increased FCs both

within the Perisylvian network (PSN) and between PSN and other

subnetworks are predictive of superior SP ability. In contrast,

increased FCs between a frontoparietal network (FPN) node, inferior

parietal lobule, and other subnetworks are predictive of poorer

SP. These predictive relationships were enhanced when subjects par-

ticipated in a language task comparing resting-state and other tasks.

This task-specific enhancement in prediction is more prominent for

females than males. Also, the SP prediction model built with HCP

samples has the potential to generalize to independent datasets that

used very different neuroimaging and behavioral paradigms. These

findings—that connectome-based models predict different measures

of SP across different populations—provide significant insights into

F IGURE 6 Out-of-sample generalization performance for two
independent datasets. (a) The out-of-sample generalization of the
positive-predictive model built from the HCP dataset. The line chart
illustrates the out-of-sample generalization performance across a
different percentage of predictive features (i.e., edges). (b) The out-of-
sample generalization performance of the negative-predictive model.
Dataset abbreviations: ASC LT, language-task data from the ASC
dataset; n.s., not significant; SLD LT, language-task data from the SLD
dataset; SLD rest, resting-state data from the SLD dataset. Edges (%),
percentage of significant edges used to build an HCP model for
generalization. Permutation test (vs. null distributions): *p < .05;
**p < .01; uncorrected p.
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our understanding of the neural network organizations underlying

individual differences in SP and reveal detailed effects on how

task and demographic factors modulate model generalization

performances.

The current models, which are constructed by the HCP dataset

and capable of generalizing to different in-sample and out-of-sample

datasets, make significant progress toward identifying neuromarkers

of SP. SP is not a unitary ability; instead, it has been related to various

cognitive and control components. Therefore, it is challenging to

select an unbiased behavioral test that can only reflect the core com-

position of SP while minimizing the test- or task-specific components

so that the built model can be generalized to other semantic task con-

texts. Here we used a new analytic strategy by selecting five different

SP-related behavioral measures and using confirmatory factor analysis

to extract a core latent SP component instead of one task. This

approach could minimize biases in task selection and maximize the

representation of the latent SP measure. Also, we included two puta-

tive domain-general latent factors, cognitive control (CC) and motor

control (MC), where their test materials do not involve any semantic

stimuli, and their tasks do not require any SP-related processes. Addi-

tional control analyses confirmed that neither the CC nor the MC

model was predictive of SP scores, while the SP models were not con-

sistently predictive of CC or MC scores. These findings suggest that

the current SP models and the underlying connectivity organization

are mainly specific to the SP component that requires the manipula-

tion and process of semantic or conceptual information. Nevertheless,

we cannot rule out the possibility that some of the connectivity orga-

nization patterns (e.g., PSN) found here may also reflect joint contri-

butions of multiple cognitive components (e.g., semantics-phonology

or semantics-working memory) tightly linked to the SP. Future studies

should be conducted with more component-specific behavioral tests

to isolate their underlying FC organization.

In addition to demonstrating the prediction performance of the

SP model, we further reveal that FCs connecting to the PSN nodes

play a critical role in the model prediction and generalization, espe-

cially the interplay between the FPN and PSN. Increased FCs within

PSN and between PSN and FPN are associated with superior SP abil-

ity, especially between the inferior frontal gyrus (IFG) and distributed

temporoparietal PSN nodes. Previous studies have shown that both

structural and FC properties of the PSN were associated with seman-

tic task performance (Bookheimer, 2002; Saur et al., 2008). The pre-

dictive PSN intranetwork connections mainly included the

connections between the left IFG and the left middle temporal regions

(e.g., anterior to posterior). These regions are the main constituents of

the canonical language system that is more activated by language

tasks than control tasks (Fedorenko et al., 2011; Fedorenko &

Thompson-Schill, 2014). For example, the left middle temporal gyrus

(LMTG) has been proposed as a hub in the semantic and language net-

work. LMTG has widely distributed connections with other language

areas (Turken & Dronkers, 2011). The FCs between the LMTG and

other regions, including the left IFG and dorsal lateral and medial pre-

frontal cortex are associated with individual differences in semantic

behaviors (Jackson et al., 2016; Wei et al., 2012). Also, our results are

consistent with previous studies on aphasia patients and stroke

patients, where a selective disruption of IFG and impaired connec-

tions between IFG and left anterior superior temporal regions were

associated with semantic impairments (Meinzer et al., 2011). The pre-

dictive FCs found in PSN and FPN could potentially be neural indica-

tors of language/semantic impairments/disorders and neural

predictors for future intervention since these connections have been

demonstrated to be tightly linked to various language functions

(e.g., semantic and syntactic processes) (Badre et al., 2005; Krieger-

Redwood et al., 2016; Papoutsi et al., 2011; Snijders et al., 2010;

Tyler & Marslen-Wilson, 2007; Vatansever et al., 2017).

It is worth noting that the Perislyvian regions and their predic-

tive connections found here may not just reflect individual differ-

ences in SP. They may also reflect the interactions between

semantics and other language and cognitive components, such as

semantics-phonology and semantics-working memory interactions.

The predictive network hubs include the orbital IFG and inferior

parietal regions. These frontoparietal regions were previously related

to working memory and phonological processing of language stimuli

(Ardila et al., 2016; Price & Devlin, 2011). Also, the ReadEng task,

weighted highest in the latent SP factor, has been shown to require

phonological decoding processing (Dickens et al., 2019). Therefore,

the predictive PSN connections may also reflect interaction compo-

nents (e.g., semantic-phonology or semantic-working memory).

Future works should be conducted with additional tests designed

for measuring phonology and working memory to test this

possibility.

We also show that increased FCs within FPN and between FPN

and other subnetworks is predictive of poorer SP ability. One critical

node in FPN, the left inferior parietal lobue (LIPL), significantly con-

tributes to the negative predictions. Increased FC strengths between

the LIPL and a range of PSN nodes across the inferior frontal and mid-

dle temporal regions are associated with decreased SP ability. LIPL

has been characterized as a provincial hub and internetwork connec-

tor. This region has been proposed as connecting the semantic control

system in FPN with a putative language-based semantic system in

PSN and a memory-based simulation system in DMN (Xu et al., 2016).

Increased connectivity between the LIPL and the other two systems

may be related to decreased efficiency in SP. For example, in a chal-

lenging semantic retrieval task, people with superior SP ability can

solve the task relatively quickly and efficiently where they may only

rely on increased focal FCs between the frontotemporal PSN regions.

However, people with poor SP ability may need additional assistance

from other semantic systems, especially the FPN control system to

solve the difficult task and the DMN memory-based system for

retrieving additional information. Thus, increased FCs between the

internetwork connector LIPL and the other two systems may be a

compensation mechanism for those with poor SP. They need to

retrieve additional task-related SP information to make a decision.

This compensation interpretation may also explain why increased FCs

between PSN posterior temporal regions and DMN occipital regions

are associated with poorer SP ability. Future studies should further

explore and test this possibility.
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We further demonstrate that the built SP models can be general-

ized to unseen independent in-sample and out-of-sample data. We

also explore to which extent task states and demographic factors

(i.e., gender and age) modulate the generalization performance. We

found that both task and gender were critical factors affecting how

well a trained SP model derived from one sample can be generalized

to unseen samples. In particular, using a language task significantly

enhances the generalization performance over resting-state and other

task-state data. This language-task enhancement effect is consistent

with previous findings from group-level FC studies where they found

increased FCs between the frontoparietal cognitive-control regions

and language areas when subjects performed language tasks (Cole

et al., 2014; Di et al., 2013; T. Jiang et al., 2004; Smith et al., 2009).

For individual prediction findings, previous studies show that cogni-

tive tasks enhance individual differences of fluid intelligence in FC

patterns, such that predictive models built from task fMRI data out-

perform models built from resting-state data (Finn et al., 2017; Greene

et al., 2018; R. Jiang et al., 2020). Consistent with and moving beyond

this finding, we demonstrate here that only language tasks can amplify

individual differences in FC patterns more tightly related to individ-

uals' behavioral semantic performance than other tasks. We demon-

strate that this language-task-specific amplification effect can be

observed not only for cross-validation prediction but also for model

generalization. One possibility of this task-amplification effect in

model prediction is that the language-task-induced functionally rele-

vant FC changes over resting state and other task states, which sub-

serve behavioral performance of the semantic tasks not only at the

group level but also at individual differences level. During a language

task, the FC patterns reorganize based on the task demand for optimal

processing of the language stimuli in hand (Feng et al., 2015), espe-

cially semantic information. Therefore, the individual differences in FC

during language tasks are best associated with behavioral test scores

that involve similar semantic processes. In contrast, resting-state FCs

are unconstrained, and it is likely to involve many SP-irrelevant com-

ponents, for example, mind wandering (Godwin et al., 2017), arousal

(Koike et al., 2011), attention (Bonnelle et al., 2011), and different

levels of conscious thoughts (Smallwood et al., 2012).

In addition to the task effect, we also demonstrate sex differences

in model generalization. We found that model generalization to

females was more robust than males. This gender effect may be due

to sex differences in SP-related network organization, task-induced

neural activation patterns, or both (Baxter et al., 2003; Biswal

et al., 2010; Satterthwaite et al., 2015; Scheinost et al., 2015). For

example, previous studies have revealed that females had more focal

activation in the left hemisphere and greater right posterior temporal

and insula activations during SP-related tasks than males (Baxter

et al., 2003). In FC patterns, detectable sex differences were found

across network modules and seed-based connectivity strengths

(Biswal et al., 2010). Consistent with these findings, recent FC studies

demonstrate that multivariate resting-state FC patterns are associated

with individuals' cognitive profiles of “male” and “female”
(Satterthwaite et al., 2015). Extending these previous findings, we

demonstrate that predicting unseen females' SP scores is better than

that of males with their FC patterns. The sex differences in

neurocognitive measures reported in previous studies may not fully

explain the underlying cause of the generalization differences found

here. One potential source of the sex differences in model generaliza-

tion is FC homogeneity. We show that FCs between females are sig-

nificantly more homogeneous (i.e., less interindividual variability) than

males. The differences in FC homogeneity between females and males

may be one potential factor in the gender differences in model gener-

alization performance. This speculation suggest that researchers may

consider sample homogeneity when building prediction models. The

group-specific model may yield superior prediction performance than

group-general models. Future studies should be conducted to system-

atically investigate how feature homogeneity modulates the generali-

zation of a prediction model.

Moving beyond cross-validation prediction, we adopted in-

sample and out-of-sample generalization estimation with independent

datasets. Overestimation of prediction performance is commonly

found with traditional correlational approaches and small sample sizes.

At the same time, there is a failure to maintain the independence of

training and testing datasets. To ensure data independence, we

ensure that model validation and estimation were true tests of the

models' ability to generalize to unseen subjects at every analysis step.

We defined the model predictions based on the levels of generaliza-

tion to unseen subjects (i.e., level 1: cross-validation; level 2: in-sample

generalization; level 3: out-of-sample generalization) with an increas-

ing level of data independence. For prediction with the out-of-sample

generalization procedure, the model built with HCP samples and the

positive SP-related FCs has the potential to be generalized to unseen

datasets with different settings, such as different populations, tasks,

languages, data acquisition, and MRI scanners. This finding implies

that the SP prediction model captures the core and maybe universal

relationships between individual SP variability and FC organizations.

Nevertheless, there is a limitation to the out-of-sample generali-

zation estimation in the current study. We only included two previ-

ously published datasets as out-of-sample datasets. While it is

successful in generalization for one independent dataset, it is not rela-

tively reliable in predicting SP scores in another. The sample sizes of

the independent datasets are relatively small, which could limit our

examination of the out-of-sample model generalization. Future stud-

ies need to assess the out-of-sample generalization performance with

more and sizable datasets and further examine what factors modulate

the generalization across datasets.

The model generalization performance based on combined posi-

tive and negative edges did not significantly outperform the models

with only positive- or negative-predictive connections. It may imply

that simply adding up the two types of features linearly to train a

model is not an effective (although efficient in computation) way to

boost the model generalization further. Further studies may need to

solve this technical challenge when combining different predictive

features in a model to improve generalization. Another possibility is

that the negative connections may not be essential and unique in

explaining individual differences in SP behaviors; therefore, they do

not contribute to the model generalization when adding these
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negative edges. Consistent with this speculation, the negative-

predictive model was not successfully generalized to the out-of-

sample datasets.

5 | CONCLUSIONS

In summary, we show that FC patterns play a critical role in explaining

the individual differences in SP ability. The SP prediction model con-

structed from the HCP dataset has the potential to generalize to inde-

pendent cohorts with different experimental settings, suggesting

potentially robust model reliability and generalization. FCs connecting

to the Perisylvian network show the most reliable contributions to

predictive modeling and model generalization. These findings contrib-

ute to our understanding of the neural sources of individual differ-

ences in SP, which potentially lay the foundation for personalized

education and improve intervention outcomes for SP and language

deficits patients.
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