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Abstract
Blueberry (Vaccinium spp.) is an important autopolyploid crop with significant benefits for human health. Apart from its
genetic complexity, the feasibility of genomic prediction has been proven for blueberry, enabling a reduction in the breeding
cycle time and increasing genetic gain. However, as for other polyploid crops, sequencing costs still hinder the
implementation of genome-based breeding methods for blueberry. This motivated us to evaluate the effect of training
population sizes and composition, as well as the impact of marker density and sequencing depth on phenotype prediction for
the species. For this, data from a large real breeding population of 1804 individuals were used. Genotypic data from 86,930
markers and three traits with different genetic architecture (fruit firmness, fruit weight, and total yield) were evaluated.
Herein, we suggested that marker density, sequencing depth, and training population size can be substantially reduced with
no significant impact on model accuracy. Our results can help guide decisions toward resource allocation (e.g., genotyping
and phenotyping) in order to maximize prediction accuracy. These findings have the potential to allow for a faster and more
accurate release of varieties with a substantial reduction of resources for the application of genomic prediction in blueberry.
We anticipate that the benefits and pipeline described in our study can be applied to optimize genomic prediction for other
diploid and polyploid species.

Introduction

Genomic prediction, originally proposed for animal breed-
ing (Meuwissen et al. 2001), involves the use of genomic
information to predict the genetic merit of untested geno-
types. This is built upon the premise of existence of linkage
disequilibrium between causal polymorphisms and the
molecular markers used in the analysis (Meuwissen et al.
2001; Zhang et al. 2011; Daetwyler et al. 2013; de los
Campos et al. 2013). The predictive model is derived from
an extensively phenotyped and genotyped reference popu-
lation, in a so-called training step. After validation, the
model is used to predict the genomic breeding value of

candidates in a selection set. Therefore, marker effects
estimated in the training population should be predictable in
the selection population when linkage disequilibrium is
maintained across populations (Asoro et al. 2011). This
methodology has revolutionized plant breeding, allowing
breeders to perform accurate selections of superior geno-
types in early stages, skipping breeding phases, reducing
costs associated with field trials and phenotyping, and
increasing the rate of genetic gain per unit of time (Crossa
et al. 2017). Despite its importance, implementing genomic
prediction in breeding programs is challenging since it is
costly (Spindel et al. 2015; Sverrisdóttir et al. 2017; Nor-
man et al. 2018).

Theory suggests the use of high marker densities and a
large number of individuals in the training population to
improve model accuracy (Meuwissen et al. 2001). By
increasing marker density and distribution, one increases
the probability of capturing the association between markers
and causal loci, while increasing training population size
helps to avoid ascertainment bias, improving the estimation
of marker effects (Meuwissen et al. 2001; de los Campos
et al. 2013; Spindel et al. 2015). Not only size, but also the
genetic composition of the training population is critical, as
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only the genetic variation that is present in it will be used to
build the prediction model. Thus, the training population
should contain the most informative set of individuals
(Lorenz and Smith 2015), and be somewhat representative
of the population to which the model will be applied
(Habier et al. 2007, 2010). Kinship and population structure
can also be taken into account when developing prediction
models (de los Campos and Sorensen 2014).

Even though predictive performance tends to improve
with the increase of training population size and marker
density, a plateau is normally reached (Cericola et al. 2017;
Norman et al. 2018). The expansion in training population
size would significantly increase the model development
costs, since in this set all individuals should be genotyped
and phenotyped. Therefore, optimized values can and
should be established for marker number, and for training
population size and composition. Such optimization can
guide the construction of genomic prediction models with
high accuracy and a low budget (Isidro et al. 2015; Spindel
et al. 2015; Cericola et al. 2017, 2018; Abed et al. 2018).

Another factor that plays a key role in model develop-
ment costs when using next generation sequencing is
sequencing depth (i.e., the number of reads sequenced for a
given site in the genome), which is extremely important in
the polyploid context. Polyploidy is a common event in
plants, as about 70% of all angiosperms and 95% of all
pteridophytes underwent polyploidization during their
evolution (Soltis and Soltis 1999). These species present
more than two homo(e)logous copies of each chromosome,
where each one of them can carry different alleles. Poly-
ploids are of great importance in agriculture, representing
numerous species classified as world’s staple crops (e.g.,
wheat, rye, oat, potatoes, yams, taro, and sugarcane).
Breeding polyploids is challenging compared to diploid
species, since they can present genotypes with higher allele
dosage (i.e., the number of times that an allele is present in a
specific locus) resulting in a larger number of genotypic
classes when compared to diploid species. This leads to the
possibility of higher orders of allele interaction (see Gallais
2003). In addition, polyploids commonly present high het-
erozygosity and possibility of multivalent pairing (see Qu
et al. 1998 for details). All these factors add complexity to
the use of molecular data information, and therefore, to the
application of genome-based breeding methods.

The use of low sequencing depth in polyploids can result
in a sampling of a biased subset of alleles which might
misrepresent the real genotype of the locus (Caruana et al.
2019). This can ultimately affect genomic prediction per-
formance. Moreover, next generation sequencing continues
to suffer from high error rates, which can generate further
problems with the misclassification of genotypic classes.
This bias in genotyping can affect the results in association
studies (Grandke et al. 2016). To circumvent this bias, it has

been proposed to sequence polyploid species at higher
sequencing depth. For autotetraploid species, such as
blueberry (Vaccinium spp.), sequencing depths of 50X–80X
have been recommended to achieve confidence in the allele
dosage estimation process (Uitdewilligen et al. 2013; Bas-
tien et al. 2018). Even though there is a direct and positive
association between the increase in sequencing depth and
the quality of the called genotypes, this can also cause an
increase in genotyping costs (Gorjanc et al. 2015, 2017;
Caruana et al. 2019). For diploid animal breeding, studies
have proven that a sequencing depth of 1X is effective to
obtain high levels of accuracy in large breeding populations
(Gorjanc et al. 2015, 2017). This reduction in sequencing
depth could significantly decrease genotyping costs. How-
ever, to our knowledge, no autopolyploid study has yet
investigated the influence of sequencing depth on genomic
prediction. Herein, by using a large dataset sequenced at
high coverage, we propose to investigate the impact of
sequencing depth on prediction for three fruit quality traits
in blueberry—with different genetic architectures.

Genome-based breeding methodologies are starting to be
applied to blueberry breeding (e.g., Ferrão et al. 2018;
Amadeu et al. 2019; de Bem Oliveira et al. 2019). The
feasibility of genomic prediction has been proven for
blueberry, and promising results are expected. Implement-
ing this methodology to the selection process would lead to
an average increase of 86% for expected genetic gain and
reduce breeding cycle time from 12 to 6 years (de Bem
Oliveira et al. 2019). However, the high investment required
for genotyping is still one of the major challenges to the
practical application of genomic prediction (Sverrisdóttir
et al. 2017), and no study has yet been performed to
investigate how this process could be optimized for blue-
berry. Therefore, the objective of this research was to
evaluate the effect of marker density, sequencing depth, and
training population size and composition in order to gen-
erate a cost-effective application of genomic prediction. We
anticipate that our findings can also facilitate the task of
implementing genomic selection beyond blueberry.

Material and methods

Population and phenotyping

The blueberry genotypes included in this study comprise a
representative population of the University of Florida
Blueberry Breeding Program (as described in Cellon et al.
2018; Ferrão et al. 2018; de Bem Oliveira et al. 2019). In
summary, this population encompassed 1804 genotypes
originated from 117 biparental-designed crosses of 146
parents. Genotypes were evaluated in two production sea-
sons (2014 and 2015). To maximize divergence on the
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genetic control and heritability of the traits, three of the
eight phenotypes evaluated in previous studies were
investigated: (i) fruit weight (g), (ii) fruit firmness (g mm−1

of compression force), and (iii) total yield (1–5 scale). Fruit
weight and fruit firmness measurements were obtained from
five randomly sampled fully mature berries. To measure
weight, an analytical scale was used (CP2202S, Sartorious
Corp., Bohemia, NY). Firmness values were obtained with
the FirmTech II firmness tester (BioWorks Inc., Wamego,
KS). Yield was evaluated using a 1 (low) to 5 (high) rating
scale based on visual assessment.

Least square means (LSMeans) were obtained for all
genotypes using a single trait analysis. The linear model
considered genotype and year as fixed effects (as imple-
mented by Amadeu et al. 2019). This linear model was
fitted in R with the lm function within the stats package (R
Development Core Team 2019). Adjusted means (i.e.,
LSMeans) were extracted using the lsMeans package (Lenth
2016). Subsequently, these corrected phenotypes were used
as an input for the genomic prediction analyses.

Genotypic data

Genotypes were obtained using capture-seq and processed
as described by Benevenuto et al. (2019). In summary,
15,663 120-mer biotinylated probes designed based on the
2013 blueberry draft genome sequence were used (Bian
et al. 2014; Gupta et al. 2015). Probes were aligned to a
high-quality draft genome (Colle et al. 2019), using BLAST
(Altschul et al. 1990). Probes that aligned uniquely and
within homologous groups were selected, resulting in 9390
probes used during single nucleotide polymorphisms (SNP)
calling steps. A total of 276,212 SNPs were identified using
FreeBayes v.1.0.1 (Garrison and Marth 2012), considering
the tetraploid option.

Marker data and filtering

Only SNPs that met the following criteria were retained for
further analysis: (i) minimum mapping quality score of 20;
(ii) minimum SNP phred quality score of 10; (iii) biallelic
markers; (iv) maximum genotype and marker missing data
of 0.2; and (v) minor population allele frequency of 0.05. In
addition, markers were kept when presenting average
sequencing depth per site across all individuals of 60X. To
avoid the use of imputation methods, it was required that all
data points presented a minimum sequencing depth of 2X.
A total of 87,628 SNPs were obtained after filtering, and
only SNPs on the scaffolds associated with blueberry
chromosomes (Table S1) were kept, totalizing 86,930
SNPs, which were used in the genomic prediction analysis
(presenting average sequencing depth per sample of 76X).
The minimum limit of sequencing depth= 60X was chosen

to improve the analysis, using only markers with high-
quality scores. Sequencing read counts per allele and indi-
vidual were extracted from the variant call file using the
vcfR package (Knaus and Grundwald 2017).

Continuous genotypes were used for all tests following
this formula: #a/(#A+ #a), where (#a) and (#A) refer to the
sequencing depth for the alternative and the reference allele,
respectively, as described by de Bem Oliveira et al. (2019).

Marker density

To evaluate the effect of marker density on phenotype
prediction, we obtained nine scenarios of marker filters:
500, 1000 (1k), 2000 (2k), 3000 (3k), 5000 (5k), 10,000
(10k), 20,000 (20k), 40,000 (40k), and 60,000 (60k) mar-
kers. Results obtained with these filters were compared with
results obtained for the complete set of markers 86,930
(86k). An equal number of markers was sampled from each
chromosome. Samplings were independently performed
five times for each scenario. In order to avoid eventual bias
associated with marker position, a cumulative approach was
applied, e.g., the first set of 1k markers was also included
into the first set of 2k markers, which was included into the
3k set and so on. Principal component analyses were per-
formed using the R package adegenet v. 1.3-1 (Jombart and
Ahmed 2011), in order to obtain the percentage of variance
explained in each relationship matrix.

Sequencing depth

To evaluate the effect of sequencing depth on phenotype
prediction, six scenarios were tested. First, as a benchmark,
we considered the original number of markers with average
sequencing depth of 60X. From that, five new sequencing
depth scenarios were sampled and evaluated (i.e., average
sequencing depth= 2X, 6X, 12X, 24X, and 48X). To
obtain the realized sequencing depth for each of the new
scenarios, we assumed a Poisson distribution with the mean
corresponding to each sequencing depth scenario. There-
fore, for each scenario, the total number of sequence reads
(nij) for the locus i of the genotype j was obtained assuming
nij ~ Poisson(sequencing depth), as described by Gorjanc
et al. (2015). A minimum sequencing depth of two was
established. Five distributions were independently obtained
for each sequencing depth scenario. All distributions con-
sidered the same marker positions present on the original set
(i.e., mean sequencing depth of 60X).

Probe density

Capture-seq is a genotyping-by-sequencing methodology
that uses customizable targeted hybridization technology.
To this end, probes complementary to target sequences are
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designed to cover specific regions on the genome, simpli-
fying the sequencing process. Therefore, the number of
probes impacts the number of SNPs and the costs associated
with genotyping. Here, we tested the effects of probe den-
sity (nprobe) on phenotype prediction by applying seven
filters, assuming values between 50 and 5000 probes (i.e.,
nprobe= 50, 100, 500, 1000, 2000, 3000, 5000). For
sampling, a fixed distance between probes was set, and
chromosome information was considered (Table S1). To
assure random selection of probes and to perform five
random samplings for each filter, five random start points
were set for each filter. In order to evaluate the combined
effect of probe density and sequencing depth on phenotype
prediction, the probe analysis was conducted under all five
sequencing depth scenarios (2X, 6X, 12X, 24X, 48X,
and 60X).

Training population size and composition

To define how to best create the training population, two
approaches were considered: (i) random sampling and (ii)
sampling considering family information. As with the
number of markers, a cumulative approach was adopted for
sampling. For the random scenario, samplings comprising
120, 240, 480, 960, and 1560 individuals were used to
create the training populations.

For the scenario considering family information, filters
were applied considering a cumulative increase in the
number of individuals sampled per family. Only data from
families with ten individuals or more were used in these
analyses, for a total of 103 families or 1706 genotypes.
Training populations tested contained 1, 3, 6, 9, 12, and 15
individuals per family.

In order to understand the interaction between training
population size/composition and sequencing depth, all
analyses were performed considering four of the sequen-
cing depth scenarios previously described (i.e., 6X, 12X,
24X, and 60X). These scenarios were chosen considering
results obtained for the sequencing depth analysis in
this study.

Genomic prediction models

Models were implemented considering the G-BLUP meth-
odology (VanRaden 2008), assuming the following mixed
linear model: y ¼ μþ Xgþ ϵ, where y is a vector of
adjusted phenotypic values, X is the incidence matrix
linking observation in the vector y to their respective gen-
otype effects in the vector g. Normality was assumed for the
additive and residual effects, where g � MVN 0;Gσ2a

� �
; and

the residual variance ϵ � MVNð0; Iσ2eÞ. Genetic covariance,
G, was estimated using the ratio option in the AGHmatrix R
package (Amadeu et al. 2016) as: G ¼ ZZ0

h , where the

marker matrix M comprises the ratio values, Z is the mean-
centered M, and h is a scale factor, where h ¼ Pm

i¼0 s
2
i and

s2i is the variance of the vector zi (centered marker vector)
(Ashraf et al. 2016; de Bem Oliveira et al. 2019). For the
residual, I was an identity matrix. MVN denotes the
n-dimensional multivariate normal distribution.

For each combination of trait and scenario, models were
individually fit using the R package BGLR v. 1.0.5 (Pérez
and de Los Campos 2014). Chain convergences were
evaluated to define analysis parameters. Predictions were
based on 35,000 Gibbs sampling iterations, in which 5000
were removed as burn-in, thinning of five and default
hyper-parameters were used (for details see Pérez and de
Los Campos 2014).

Cross-validation, predictive ability, and significance
tests

For all analyses, we fixed the testing population size at 200
individuals (i.e., validation population). Five random sam-
ples were obtained for training and testing populations
(pseudo 5-fold validation), and testing populations were
kept constant for all factors analyzed. Predictive ability for
all scenarios was obtained by computing the Pearson cor-
relation between predicted and adjusted phenotypes
(LSMeans). Mean squared errors were obtained as the
average squared difference between the predicted and
adjusted phenotypes. In order to verify significance between
the factors tested in each analysis, post hoc tests assuming
Tukey correction (σ= 0.05) were performed, using func-
tions implemented in the R package agricolae (de Mendi-
buru 2020). Since no evidence of population structure was
observed in earlier studies, (Ferrão et al. 2018; de Bem
Oliveira et al. 2019) we did not consider using any cor-
rection for it.

Results

Effect of marker and probe density

Both marker density and number of probes significantly
affected model performance (Fig. 1). Considering marker
density, estimated values for predictive abilities varied from
0.34 to 0.47 for fruit firmness, from 0.32 to 0.49 for fruit
weight, and from 0.26 to 0.36 for yield. A steep increase in
predictive ability was observed for all traits when con-
sidering the interval of 500–5k markers. However, for all
traits, a plateau was quickly reached, and predictive ability
values obtained with 10k markers or more were not sig-
nificantly different to those estimated using the full set of
markers (Fig. 1a).
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Similarly, the percentage of variance explained by the
first principal component (PC1) obtained in the relationship
matrices analyses had also reached a plateau around 10k
SNPs (Fig. 2). The PC1 obtained when using <10k markers
varied from 13.93 to 16.44%. When using more than 10k
markers, PC1 values ranged from 16.55 to 16.97% (Fig. 2).

The probe analysis confirmed these results. In the scenario
containing 50 probes, predictive ability values were as low as
0.33, 0.32, and 0.18; they reached a plateau around 0.44,
0.47, and 0.33, respectively, for fruit firmness, fruit weight,
and yield when the number of probes varied between 2k and
5k. In addition, an increase of only 0.03 for predictive ability
was observed when using all the 9.3k probes (Fig. 1b).

It is interesting to notice that the mean number of mar-
kers captured per probe was 18 (Fig. S1), and that with 50
probes ~550 markers were obtained, increasing when more
probes were used. This is, 100 probes= ~1k markers; 500
probes= ~4.7k markers; 1k probes= ~9k markers; 2k
probes= ~19k markers; 3k probes= ~28k markers; and 5k

probes= ~47k markers. Therefore, when using 2k or more
probes we were able to capture more than 10k markers,
allowing us to generate accurate models. In addition, sig-
nificantly higher bias and standard deviations were found
when fewer markers and probes were used (<5k markers
and <1k probes; Fig. 1).

Effects of training population size and composition

Model performance was significantly improved with the
increase of training population sizes, independent from the
population composition (i.e., random sampling or using
family information; Fig. 3). Significant differences between
sampling methods were observed. With the exception of
yield, higher predictive ability values were obtained when
family information was used, even with smaller training set
sizes.

For all traits, the use of ~1000 individuals has generated
predictive ability values that did not differ significantly
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from the values obtained with the complete set of indivi-
duals (Fig. 3). In addition, when considering family infor-
mation, the use of 618 individuals in the training population
(6 individuals per family) resulted in predictive ability
>0.46 for firmness (Fig. 3a), while similar values were only
obtained for the random scenario when using all 1560
individuals for training (Fig. 3b). Along with higher pre-
dictive ability values, the use of family information has also
generated more stable predictions (i.e., smaller standard
deviations; Fig. S2).

Effect of sequencing depth

As the sequencing depth increased, a fast plateau of the
predictive ability values was observed for all traits (Fig.
4). Sequencing depth as low as 6X yielded similar pre-
dictive ability values to those observed at higher
sequencing depth scenarios, such as 60X (Fig. 4). There
was no interaction between the sequencing depth used and
the number of individuals in the training population,
regardless of the scenario applied (i.e., random or by
family; Fig. 5).
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However, a significant effect of sequencing depth was
observed when probe density was included; larger pre-
dictive ability values were obtained with higher sequencing
depth (Fig. 6). For all traits, predictive ability plateaus with
the increase of sequencing depth. This plateau was achieved
faster when a higher number of probes were used.
Assuming the use of at least 3k probes, sequencing depths
of 12X or even 6X provided predictive ability values not
significantly different from the ones obtained with higher
sequencing depths (Fig. 6 and Table S2).

Discussion

Genomic prediction has revolutionized both plant and ani-
mal breeding by significantly accelerating the selection
process. In blueberry, an autotetraploid outcrossing species,
the genomic prediction feasibility was recently proven and
promising results are expected for increasing genetic gain
and shortening the breeding cycle (de Bem Oliveira et al.
2019). In order to develop strategies to decrease sequencing
costs, which limits genomic prediction implementation as a
breeding tool for many species, here we evaluated the effect
of training population sizes and composition, marker den-
sity, and sequencing depth on phenotype prediction. Using
blueberry as a model, we show that all these factors can be
substantially reduced, without significantly affecting pre-
diction. The average predictive ability values obtained with
our optimized models were 0.42, 0.45, and 0.32 for fruit
firmness, fruit weight, and fruit yield, respectively. These
values are moderate to high, and equivalent to the values

obtained in our previous studies (Amadeu et al. 2019; de
Bem Oliveira et al. 2019).

Marker density

Genomic prediction implementation relies on high-
throughput genotyping of large breeding populations.
Determining a balance between predictive performance
and marker density is considered a relevant outcome for
practical purposes. We evaluated the impact of probes and
marker densities on the predictive ability of three impor-
tant traits. Notably, we observed a plateau for predictive
ability for all traits when increasing marker/probe den-
sities, illustrating that we can significantly reduce marker/
probe density without negatively affecting the predictive
ability. As previously described (Daetwyler et al. 2008;
Wray et al. 2013, 2019), the expectation of the prediction
accuracy is associated with the independent markers in
which the effects can be estimated (M), the sample size
(N), and the proportion of the heritability explained by the
markers used (h2M , i.e., “marker heritability”). Hence, the
proportion of the variance explained by the markers
determines the upper limit of capturing causal effects.
This factor is conditioned by the size of linkage dis-
equilibrium blocks, since it ultimately delimits the number
of independent markers that can be sampled. Thus, the
increase of accuracy associated with variations in marker/
probe densities can plateau, as verified in our analyses
(Fig. 1). In our population, we suggest that the effective
number of markers was obtained for all traits when using
around 10k randomly distributed markers or when 2k
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probes or more were used, generating similar predictive
ability results as those obtained when using the full
dataset (i.e., 86,930 markers or 9390 probes). From a
practical standpoint, this would represent a reduction of
~90% on marker and probe densities, which should sig-
nificantly decrease sequencing cost, positively affecting
the implementation of genomic prediction.

The optimization of marker density has also been
reported in other crops, such as rice (Spindel et al. 2015),
barley (Abed et al. 2018), and wheat (Arruda et al. 2015;
Cericola et al. 2017), suggesting the use of 7k, 2k, 1.5k, and
1k markers, respectively, to obtain model performance
equivalent to models using whole datasets. When compared
with these previous studies, our results show that for
blueberry a slightly higher number of markers would be
required to maximize predictive ability and reduce costs
(i.e., 10k SNPs). However, blueberry is an outcrossing,
polyploid species with high heterozygosity and fast linkage
disequilibrium decay (Ferrão et al. 2018; de Bem Oliveira
et al. 2019). These conditions are normally related with a
necessity of higher number of markers to succeed in asso-
ciation studies.

Training population size and composition

The training population size used to build the prediction
models has a direct effect on the cost of genomic prediction
implementation, since it defines how many individuals
should be genotyped and phenotyped in order to generate
accurate models. Here, we investigated the effects of
training population size and population composition on
model accuracy, with the goal of minimizing costs. Our
results indicated that predictive ability increases as training
population size increases. However, as observed in other
studies (e.g., Cericola et al. 2017; Norman et al. 2018), this
increment was not linear and a plateau was reached (Fig. 3).
Our results suggest a training population size of ~1k to
achieve accurate prediction, which represents a reduction of
20% in the number of individuals to be evaluated. The
decrease in training population size would contribute not
only to reducing sequencing costs, but could drastically
reduce the time, work, and costs involved in phenotyping
and maintenance of plants in the field.

As expected, we also observed that the composition of the
training population significantly affected predictive ability.
Our results indicate that the use of a smaller and more
representative training population, could generate a higher
accuracy when compared to models built using a larger
population of randomly chosen individuals. In addition,
higher variation in predictive ability was observed in smaller
training populations, or when family information was not
considered (Fig. 3). High variance in predictive ability can
impact prediction, and consequently, the long-term response

to selection, which is a non-desirable risk in breeding pro-
grams (Hickey et al. 2014; Gorjanc et al. 2015).

Our results were in accordance with Hickey et al. (2014),
who shows that when the relationship between the training
population and the testing/selection population decreases, a
higher number of individuals are necessary to achieve the
same predictive performance. Relatedness is known to
affect accuracies (Habier et al. 2007, 2010; Daetwyler et al.
2013; Wientjes et al. 2013). This effect is associated with
the shared linkage disequilibrium blocks and its influence
on the estimation of effects for each marker. Besides the
linkage disequilibrium associated with physical linkage,
closely related individuals are more likely to share specific
causal polymorphisms and other genetic interaction effects
(spurious LD), since they share a higher fraction of the
genome than distantly related individuals (Lorenz and
Smith 2015).

Overall, three points should be considered in genomic
prediction models: population structure, relationship (family
effect), and Mendelian sampling (within family effect). The
use of pedigree and genomic information can be used to
estimate population structure. Yet, the increase in the
number of individuals for a given family can help to esti-
mate the Mendelian sampling effect (Hickey et al. 2014).
The use of family information helps to model both linkage
disequilibrium and cosegregation, which can improve pre-
dictive ability and may avoid the decline in model accuracy
over time (Habier et al. 2013). Therefore, increasing train-
ing population size and considering family information
helped to improve model performance. That is, by capturing
the effects of different genetic blocks (Mendelian sampling)
in the phenotype expression, we improved the estimation of
effects and consequently, improved prediction ability.

Sequencing depth

Optimizing sequencing depth could have a major impact on
genotyping costs when using a next generation sequencing
platform. This is because less sequencing will be allocated
per individual, enabling more samples to be multiplexed
per sequencing lane (Gorjanc et al. 2015; Abed et al. 2018).
Here we evaluated the effect of six depth scenarios (i.e., 2X,
6X, 12X, 24X, 48X, and 60X) on phenotype prediction.

The complexity of defining thresholds for sequencing
depth in polyploids is associated with difficulty in esti-
mating allele dosage. Given the high number of genotypic
classes that these species can present, the expected signal
distribution obtained during sequencing for each genotypic
class progressively approximates a continuous distribution
(Grandke et al. 2016; de Bem Oliveira et al. 2019). The
addition of a low depth scenario in this context could
increase the challenges in attributing genotypic classes. The
problem here is that the misclassification of genotypes can
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ultimately generate bias in association analyses, resulting in
an incorrect estimation for the allele effects (Grandke et al.
2016), and hampering the application of genome-based
breeding for polyploids.

Uitdewilligen et al. (2013) and Bastien et al. (2018)
suggest using sequencing depths of 50X–80X for an accu-
rate assessment of allele dosage in autotetraploids. How-
ever, more modest values are shown by Griffin et al. (2011)
and Gerard et al. (2018) (15X and 25X, respectively).
Nevertheless, Grandke et al. (2016) shows that with next
generation sequencing, no method works properly to
determine allele dosage in autopolyploids. In fact, the
sequencing depth adopted in polyploid studies is variable
(e.g., Ashraf et al. 2014; Norman et al. 2018). To our
knowledge, the impact of sequencing depth on genomic
prediction for autotetraploids has not yet been addressed.
Herein, by taking advantage of a large population size
sequenced using high sequencing depth, we demonstrated
that the depth values recommended for autotetraploid
sequencing (~60X) are conservative in the genomic pre-
diction context. We found that values as low as 6X could
generate accurate predictions (Fig. 4).

The use of continuous genotypes instead of dosage
parameterization could have contributed to the achievement
of accurate prediction under low depth scenarios. By doing
so, we avoided the bias associated with the misclassification
of genotypic classes (Clark et al. 2019; de Bem Oliveira
et al. 2019). However, further investigation is needed
comparing ploidy standardizations (i.e., allele dosage) and
continuous genotypes in the context of sequencing depth to
confirm this hypothesis. Further studies could also evaluate
the use of corrections for the relationship matrices, such as
done by Cericola et al. (2018) or by Dodds et al. (2015).
This could improve the predictive ability under lower
sequencing depth scenarios, allowing the use of a very low
coverage for polyploid models, such as the values obtained
for livestock by Gorjanc et al. (2015).

Sequencing depth had a higher effect on predictive
ability when we evaluated the number of probes/markers
(Fig. 6). We show that for accurate prediction in blueberry
~20k markers (i.e., 2k probes or more) with an average
sequencing depth of 12X will be needed. These results are
in agreement with the Gorjanc et al. (2015) study on
diploids, where for a low sequencing depth a higher number
of markers were necessary to obtain the same predictive
ability of models using higher depth values. Our optimized
scenario would represent a decrease in marker density of
78% and a decrease of 80% on sequencing depth, when
compared with the full dataset used in this study. Thus, even
though a higher number of markers would be necessary to
obtain accurate models (i.e., from the previously indicated
10k–20k), the allocation of resources would still be sig-
nificantly affected by the reduction of sequencing depth.

For an example of the effect that changing sequencing
depth could have in the allocation of resources, consider this
scenario: blueberry possesses a genome of 0.6 Gb, therefore
7.2 Gb of sequencing data would be necessary to theoreti-
cally cover the genome of one sample considering a depth
of 12X, while 36 Gb of data per sample would be necessary
to obtain a depth of 60X. Next generation sequencing
platforms available on the market, such as Illumina®

NovaSeq (S4 2×150), can generate up to 3 000 Gb of
sequencing data when running a full flow cell. Therefore, to
obtain a depth of 12X a total of 417 samples could be
multiplexed per run, while to obtain a depth of 60X only
83 samples could be multiplexed per run (based on personal
communication from University of Florida ICBR—Next-
Gen DNA Sequencing).

Conclusion

By investigating multiple combinations of genotype and
phenotype scenarios, here we provide guidelines for opti-
mizing genomic prediction implementation for blueberry
breeding. We show that accurate predictions can be
obtained with moderate marker density (10k, representing
an eightfold decrease compared to our original dataset) and
low-to-mid sequencing depth (6X–12X). Moreover, we
showed that total costs for genomic prediction imple-
mentation can be significantly reduced, making use of a
smaller training population size for building the prediction
models (i.e., ~1k individuals), and that the use of family
information to compose the training set can improve the
results obtained. Altogether, our findings have important
cost implications for a practical implementation of genomic
prediction. The effect of this parameter reduction should be
validated in future studies. While this study focused on the
genomic prediction implementation for a specific breeding
scheme in blueberry, the pipeline explained here can be
used to improve and guide resource allocation decisions for
other crops, especially polyploids.

Data availability

Genotype information, as well as Supplementary informa-
tion, are available at the Dryad Digital Repository: https://
doi.org/10.5061/dryad.8pk0p2nk9. Files contained on these
links are LSMeans for the phenotypes of 1804 individuals,
genotype information containing information of alternative
(AO) and reference alleles (RO) for 87,628 markers, and
Supplementary information 1–3, which includes respec-
tively: Supplementary figures, including Fig. S1 displaying
the absolute frequency distribution for the number of mar-
kers and marker distribution considering chromosome
information; Fig. S2 showing the standardized mean
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squared error distribution considering training population
size and composition; and Fig. S3 comprising the sequen-
cing depth distribution of the data. Supplementary tables
comprising Table S1 containing the chromosome names,
size, and the number of markers and probes per chromo-
some; and Table S2, containing the predictive ability and
Tukey groups for the analysis involving the interaction
between the number of probes and the sequencing depth.
The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article,
figures, and tables.
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