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ABSTRACT

With advanced technologies to map RNA modifica-
tions, our understanding of them has been revolu-
tionized, and they are seen to be far more widespread
and important than previously thought. Current next-
generation sequencing (NGS)-based modification
profiling methods are blind to RNA modifications
and thus require selective chemical treatment or an-
tibody immunoprecipitation methods for particular
modification types. They also face the problem of
short read length, isoform ambiguities, biases and
artifacts. Direct RNA sequencing (DRS) technolo-
gies, commercialized by Oxford Nanopore Technolo-
gies (ONT), enable the direct interrogation of any
given modification present in individual transcripts
and promise to address the limitations of previ-
ous NGS-based methods. Here, we present the first
ONT-based database of quantitative RNA modifica-
tion profiles, DirectRMDB, which includes 16 types
of modification and a total of 904,712 modification
sites in 25 species identified from 39 independent

studies. In addition to standard functions adopted
by existing databases, such as gene annotations and
post-transcriptional association analysis, we provide
a fresh view of RNA modifications, which enables
exploration of the epitranscriptome in an isoform-
specific manner. The DirectRMDB database is freely
available at: http://www.rnamd.org/directRMDB/.

INTRODUCTION

Conceptually similar to DNA modifications, RNA
molecules undergo chemical modifications as well. The
first RNA chemical modifications were documented
in the 1950s in tRNAs and rRNAs (1). To date, >170
different modification types have been described, in-
cluding N6-methyladenosine (m6A), pseudouridine (�),
N5-methylcytosine (m5C), N1-methyladenosine (m1A),
methylation of 2’-O in the four nucleotides (i.e. Am, Tm,
Cm and Gm) and N7-methylguanosine (m7G) (2–7). With
recent advanced technologies to map these RNA modifica-
tions, our understanding of them has been revolutionized,
and they are now understood to be far more widespread
and important than previously thought. Systematic studies
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of this post-transcriptional regulatory layer have revealed
its profound roles in shaping cellular processes, modulating
disease risks, and governing cellular fate (8–11). For in-
stance, m6A, one of the most prevalent RNA modifications,
is proven to regulate cardiac gene expression, cell growth,
stress response, stabilize junctional RNA, etc (12–15).
Pseudouridine, the first discovered post-transcriptional
modification (16), has recently been implicated in tumor
development, maintenance, and progression (17).

RNA-seq has become a popular choice for analyzing
complex epitranscriptomics. However, next-generation se-
quencing (NGS) platforms are typically blind to nucleotide
modifications and thus need specific protocols to high-
light RNA modifications on the molecules. These typi-
cally involve three strategies: (i) antibody immunoprecip-
itation, which specifically recognizes the modified bases
with antibodies; (ii) enzyme-digestion, where RNAs are di-
gested with modification-sensitive enzymes; (iii) chemical
treatment, using chemical compounds that selectively re-
act with the modified ribonucleotide of interest. Example
of immunoprecipitation methods include m6A-seq (3), PA-
m6A-seq (18), m6A-CLIP-seq (19), miCLIP (20), m6A-
LAIC-Seq (21), m6ACE-Seq (22). Mazter-seq (23), m6A-
REF-Seq (24), and DART-seq (25) are enzyme digestion-
based methods that quantify m6A modification with single-
nucleotide resolution. Pseudo-seq (6) and AlkAniline-seq
(26) are typical chemical-based detection methods. These
methods are similar in that they enrich fragments harbor-
ing modified ribonucleotides, followed by high-throughput
sequencing and bioinformatics analysis to detect these
changes.

Although these methods provide invaluable information,
they are limited by the availability of high-quality antibod-
ies and the lack of practical chemical reactivities towards a
particular RNA modification (27). Thus, only a few of the
over 170 known modification types can be accurately and
effectively profiled. When selective antibodies or chemical
treatments are available, the RNA modification to be stud-
ied should be chosen beforehand, and customized proto-
cols must be designed for the chosen type, limiting our abil-
ity to characterize the epitranscriptome in a systematic and
flexible manner (28). Also, these methods require multiple
ligation and amplification steps during the library prepara-
tion, introducing undesired biases and artifacts (29,30). Fi-
nally, with respect to the sequencing itself, NGS platforms
face the problem of short read length. Mapping modifica-
tions on highly repetitive splicing isoforms and characteriz-
ing the co-occurrence of distant modifications in the same
transcripts remain challenges (27). Thus, most of existing
NGS-based methods have the isoform-ambiguity issue and
they report only genome-baed coordinate of RNA modifi-
cations.

The continuing discoveries of novel classes of RNA
modifications in various organisms call for more sensi-
tive, plastic, and convenient modification profiling meth-
ods. A promising alternative to NGS technologies is the di-
rect RNA sequencing (DRS) platform developed by Oxford
Nanopore Technologies (ONT) (31). Each nucleotide will
cause distinct ionic current signals as it passes through a
sensitive channel. This platform infers the RNA sequence
by deconvoluting the serial electric signal event when the

molecule is threading through the sensitive protein channel
(32). Natural modifications along the molecule can result
in characteristic signals that suggest both the position and
identity of modifications (33). Theoretically, direct RNA se-
quencing allows the real-time and simultaneous detection of
any given modification in the native RNA molecule. Addi-
tionally, nanopore sequencing offers ultra-long reads that
can cover the entire length of the RNA molecule, which
benefits the study of RNA modifications on splicing iso-
forms(34).

ONT sequencing platforms have yielded robust data of
reasonable quality, and several pilot studies have detected
RNA modifications from the data. For example, EpiNano
(m6A) (35), ELIGOS (27), DRUMMER (36) and the work
of Parker et al. (37) screen RNA modifications by exam-
ining the sequencing error profiles. Another body of work,
such as xPore (38), m6Anet (m6A) (39), MINES (m6A)
(34), nanom6A (m6A) (40), and nanoPsu (pseudouridine)
(41) utilized the variation in current signal intensities. These
tools were confirmed to have high accuracy for modification
detection with single-nucleotide resolution.

To date, various comprehensive databases of RNA mod-
ification sites reported by NGS approaches are pub-
licly available, including MODOMICS (42), RMBase (43),
REPIC (44), m6A-atlas (45), m5C-atlas (46), MeT-DB (47),
RMVar (48) and M6A2Target (49), which have together
provided invaluable information to help decipher the com-
plexities of epitranscriptomes. However, due to the low sen-
sitivity and detection chemistry of NGS-based approaches,
a huge proportion of modified sites have not been detected,
and the landscape of RNA modifications on the transcrip-
tome is yet to be well-studied (50). To address this gap,
we have developed DirectRMDB, the first comprehensive
database of RNA modification sites derived from direct
RNA sequencing data. In this study, a collection of 16 quan-
titative modification profiles among 25 species and various
cell types or tissues under different conditions were inte-
grated from direct RNA sequencing samples. Data from
other studies or techniques were also collected to vali-
date the collected sites. A significant advantage of DirectR-
MDB is that it provides isoform-level information, includ-
ing isoform-specific distributions of RNA modifications,
isoform expression levels and secondary structure. We con-
structed a user-friendly web interface for the query, visual-
ization, and sharing of the modification profiles and their
association with transcriptional and post-transcriptional
regulatory machinery (i.e. RNA binding proteins, miRNAs,
splicing events), as well as their potential involvement in
pathogenesis. As the first DRS-based database, DirectR-
MDB is expected to provide new insight into the complex
epitranscriptome (Figure 1).

MATERIALS AND METHODS

Collection of candidate modification sites

125 direct RNA sequencing samples for 25 species, includ-
ing 44 FAST5 and 81 FASTQ samples, were collected from
39 independent studies in the Gene Expression Omnibus
(GEO) database (Supplementary Table S1). Eight modi-
fication detection tools, namely nanom6A (40), MINES
(34), xPore (38), m6Anet (39), DRUMMER (36), ELIGOS
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Figure 1. The overall design of DirectRMDB. DirectRMDB is the first comprehensive database that integrates quantitative modification profiles deter-
mined by direct RNA sequencing. For quality assurance, eight different software tools for mining RNA modifications were rigorously integrated, and
additional next-generation sequencing samples were collected for validation. DirectRMDB provides an isoform-specific view of modification sites, includ-
ing their distribution on individual transcripts and the secondary structure predicted from the RNA primary sequences. The potential involvement of
reported sites in pathogenesis and their potential interactions with post-transcriptional machinery can also be queried.

(27), the work of Parker et al. (37), and Nanopsu (41) were
used to infer possible modification sites from samples (Ta-
ble 1). It is worth noting that although direct RNA se-
quencing allows the detection of RNA modifications with
an isoform-level resolution, some tools (e.g. MINES) still
rely on genome-level features and thus cannot distinguish
between transcripts. Supplementary Figure S1 shows the
general workflow for candidate site collection. As the col-
ors indicate, the eight tools can be categorized into three
classes in terms of their required input and thus the dif-
ferent pipelines of data pre-processing: (i) Tombo-based
(i.e. nanom6A and MINES): the raw data (FAST5) was re-
squiggled (i.e. a new assignment from current signal level
data to the reference sequences was defined) with either
transcriptome or genome reference using Tombo ‘resquig-
gle’ function. Specifically for MINES, the Tombo ‘de novo
modification detection’ function was used to infer non-
canonical bases from the re-squiggled current signals. This
Tombo output was provided to nanom6A and MINES as
input and candidate m6A sites returned. (ii) Nanopolish-
based (i.e. xPore and m6Anet): the Nanopolish (51) ‘even-
talign’ function was used to map the signal events extracted
from the raw FAST5 sample to the reference transcriptome.
m6Anet and xPore then analyzed the output TXT files to
identify possible modifications. It is notable that xPore is a
comparative method, which requires modification-free sam-

ples as control. (iii) BAM-based (i.e. DRUMMER, ELI-
GOS, the work of Parker et al., and NanoPsu): FAST5 sam-
ples were base called into FASTQ format with Guppy be-
fore alignment. Base-called reads, as well as downloaded
FASTQ samples, were aligned to either reference genome or
transcriptome using Minimap2 (52) with -ax map-ont set-
tings. The resulting SAM files were transformed into BAM
files, sorted and indexed with Samtools (53). ELIGOS and
NanoPsu examine the error distribution profiles from the
alignment file directly, while DRUMMER and Simpson’s
work requires control samples to perform the modification
detection. Samples were analyzed by some or all of the
eight tools depending on their data format (i.e. FASTQ or
FAST5), the availability of control samples, and authentic
reference sequences. References used for each species are
summarized in Supplementary Table S2.

The landscape of RNA modifications on transcripts

Nanom6A, xPore, m6Anet, and DRUMMER detect bulk-
level RNA modifications by examining either error distri-
bution profiles or current signals distributions along tran-
scripts. Nanom6A maps detected sites to the reference
genome and present the results with genome coordinates.
Therefore, only xPore, m6Anet and DRUMMER were used
to predict modifications in individual transcripts. The work-
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Table 1. brief description and comparison of modification calling tools

Modification Input Isoform-level? Control sample? Algorithm

nanoPsu � BAM No No Sequencing error
ELIGOS Mixed No No
the work of Parker et al. / No Yes
Drummer Yes Yes
xpore Nanopolish output Yes Yes Current signal
m6Anet m6A Yes No
MINES Tombo output No No
Nanom6A No No

Note: ‘/’ means that detected modification types depend on the modification-free samples. For example, if an m6A-free sample is used as a control, reported
sites are expected to be m6A methylation.

flow to run the three tools is shown in Supplementary Fig-
ure S1. To compare the isoform-level modification patterns
and for the simplicity of results presentation, we converted
the transcripts’ coordinates to genomic coordinates while
keeping the isoform-level information.

Integration of results and validation by NGS methods

The collection of sites reported by each software could con-
tain a significant proportion of false-positive sites. To ensure
reliability, we collated the results from different samples and
tools and then applied strict filtration criteria to generate re-
liable modification profiles for each species. To screen high-
confident m6A sites, we searched for its known consensus
DRACH motifs (where D denotes A, G or U, R denotes A
or G, and H denotes A, C or U) from the candidate sites
and only sites reported in multiple cases (i.e. reported by
more than one tools or conditions) were kept. Candidate
uridines suggested by both ELIGOS and NanoPsu (proba-
bility > 0.8) were considered pseudouridine sites.

ELIGOS identified a set of putative modification sites
without characterizing their modification type. Therefore,
NGS technologies were used to label these unknown types
of candidate modification sites. Specifically, 10 modification
profiles for human (i.e. m1A, methylation of 2’-O in the four
nucleotides, m7G, AtoI, m6Am and m5U, m5C), two modi-
fication profiles for mouse (i.e. m1A and m5C), three modi-
fication profiles (i.e. f5C, dihydrouridine and ac4c) for yeast,
and two modification profiles (i.e. m6A and Y) for Ara-
bidopsis thaliana were collected from public resources, in-
cluding m6A-atlas, m5C-atlas, RMDisease, MODOMICS,
and supplementary data of published works. To ensure re-
liability and save space, unlabeled ELIGOS results were ex-
cluded from the final proposed profiles but can be down-
loaded from DirectRMDB.

To further validate our results, we collected high-
confident modification sites and modification-enriched
peaks derived from next generation sequencing samples
(Supplementary table S3). Additionally, multiple modifica-
tion profiles reported by LC-MS techniques were down-
loaded from MODOMICS and RMBase. Cross-validation
was performed between candidate and NGS/LC-MS-
derived sites. Sites confirmed by other techniques were
clearly labeled. We also compared our results with sites pub-
lished by other ONT-based modification detection studies
(38,54). Overlapped sites were indicated as well.

Secondary structure prediction

RNA plays a vital role in the cell, not only as an inter-
mediate product for the transmission of genetic informa-
tion, but also as a functional element. Single-stranded-
RNA molecules can fold into specific and stable structures.
It is known that there is a strong association between their
functions and structures (55). The three-dimensional struc-
ture of RNA molecules can only be determined by X-ray
crystallography, nuclear magnetic resonance, and other la-
borious and high-cost methods (56). Therefore, we present
the secondary structure of isoforms, which is easier to pre-
dict computationally. We use RNAfold (57), a widely used
RNA secondary structure prediction software, with default
parameter settings, to infer the structure from the RNA pri-
mary sequences. The landscapes of RNA modifications on
each isoform under different conditions were annotated and
highlighted on the predicted structure. For a better view,
ultra-long reads (>2001nt) were cut into 2001nt fragments
that contained modified bases.

Quantitative profiles of putative modification sites

44 FAST5 samples from nine species were collected to quan-
tify the modification status of high-confident modification
sites under different cell lines/tissues and conditions. The
Tombo ‘de novo modification detection’ function was used
to investigate non-canonical (i.e. modified) bases within in-
dividual reads and the fractions of modified reads aligned to
each genomic position were output with Tombo ‘text out-
put’ command. The modification fraction is used to quan-
tify the modification status of reported sites. In addition to
modification status, the transcripts’ expression profiles were
also estimated from the BAM file with transcriptome refer-
ence using nanocount (58), isoform expression level calcu-
lation software designed for direct RNA sequencing data.

Basic annotation for modification sites

Gene annotation files were downloaded from Gencode (Hu-
man and Mouse) (59) and NCBI (60) (other species). Those
high-confidence sites (genome-wide) were annotated by col-
lected gene annotations and were classified into different
gene types and genomic regions using ChIPseeker (61). In
addition to basic gene annotation, the potential interac-
tions between modifications and splicing events, miRNA
as well as RNA binding proteins (RBPs) were included in
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Table 2. The data statistics for DirectRMDB

RNA modifications

Species m6A � 2′-O-Me m5C m1A Other Total

Human 195 871 134 834 1506 26 033 2979 3803 365 026
Mouse 186 175 45 397 / 970 693 / 233 235
Yeast 148 59 / / / 19 226
22 other species 203 973 102 241 / / / 11 306 225

Note: The numbers in the table indicate the total count of each modification type. In human, ‘Other’ refers to m7G, m5U, m6Am, and AtoI modifications,
while in yeast, ‘Other’ refers to ac4c, D, Y and f5C. Please refer to Supplementary Table S4 for more details.

human and mouse. miRNA target sites, RBP binding, and
other events information were obtained from starBase (62),
POSTAR (63) and the UCSC genome browser database
(64), respectively. Since nanopore sensor protein takes a
k-mer (4–6nt) as input each time, the presence of non-
canonical bases could cause misleading signals thus influ-
encing the deconvolution of adjacent bases. Therefore, for
each site, we indicated the presence of other modifications
within 5bp upstream and downstream as a warning of false
positives.

Potential involvement of individual modification sites in
pathogenesis

It is known that RNA modifications are closely related
to the progression of diseases. To investigate the contri-
bution of individual modification sites in disease develop-
ment, we analyzed their positional relationship with poten-
tially disease-associated genetic mutations. Sites that exactly
overlapped with mutations were indicated. Collection of
single nucleotides polymorphisms (SNPs), including both
common variations and clinical mutations for human and
mouse, was downloaded from dbSNP (65).

Database and web interface implementation

MySQL was used to store and manage the metadata. Hy-
pertext Markup Language (HTML), Cascading style sheets
(CSS) and Hypertext Preprocessor (PHP) were used to
build the web interface. Genome browser JBrowse2 (66) was
used to provide an integrated view of reference sequences,
modification site information, related RBP binding, splic-
ing, miRNA binding event, and associated SNPs.

RESULTS

The eight modification detection tools, applied to 125 direct
RNA sequencing samples, suggested more than 16,000,000
candidate modification sites. By manually integrating, eval-
uating, and filtering the results, a total of 904 712 sites of
16 chemical modifications, namely m6A, �, m1A, m6Am,
2’-O-Me, m5U, m7G, m5C, D, f5C, Y and ac4c, across 25
species, including Homo sapiens, Mus musculus, Arabidopsis
thaliana, Sus scrofa and Escherichia coli, were confidently
identified (Table 2 and Supplementary Table S4). Among
these proposed sites, 149 353 human sites and 91 910 mouse
sites were further confirmed by other techniques (i.e. NGS
techniques and LC–MS) (Supplementary Figure S2). The
landscapes of RNA modifications on human and mouse

transcriptomes were evaluated. 225 041 sites in 26 039 dis-
tinct human transcripts and 228 558 sites in 21 413 mouse
transcripts, corresponding respectively to 88 230 and 112
820 bases on the human and mouse genome, were found.
We also predicted the secondary structure of isoforms and
calculated their expression levels under specific cell lines and
conditions.

Quantitative modification profiles (i.e. the fraction of
modified reads) for nine species under 44 different cell
lines/tissues and conditions were calculated. Gene anno-
tation of 20 species was successfully performed, while an-
notation of the Bipolaris sorokiniana, Candida nivariensis,
Chikungunya virus and influenza A virus failed since no fea-
sible annotation file is available for these species. Since non-
canonical bases can influence the deconvolution of adja-
cent nucleotides due to the nanopore sequencing chemistry,
we evaluated the interaction between reported modification
sites. A total of 105 581 sites were screened as consecutive
modifications (i.e. has other modifications within 5 bp up
and downstream). For human and mouse, we also investi-
gated the interaction between RNA modification and RNA
binding proteins, splicing sites, and miRNA targets. For hu-
man, 171 RNA binding proteins, 826 miRNAs, and 101 587
splicing events are suggested to be associated with respec-
tively 275 956, 54 390 and 108 738 modification sites. For
mouse, we identified 39 RNA binding proteins, 905 miRNA
and 79 010 splicing events that are related to RNA modifi-
cations. Also, 80 614 human sites and 5636 mouse modifi-
cation sites are documented SNP sites, suggesting their po-
tential involvement in disease development.

Comprehensive atlas of various types of RNA modifications

We constructed DirectRMDB, the first database that in-
tegrates direct RNA sequencing data to explore post-
transcriptional modifications of RNAs. A user-friendly web
interface was provided to search, browse, visualize and
download the 16 types of high confidently collected modi-
fication sites and their potential relationships with miRNA
targets, RBPs, splicing events, and pathogenesis. Jbrowser2
was integrated for interactive exploration of individual
sites or regions of interest. We also provided isoform-level
information, including the landscape of RNA modifica-
tions on individual transcripts, annotated secondary struc-
tures and transcripts expression levels under particular cell
lines, tissues, and conditions. The DirectRMDB database
is freely available at: http://www.rnamd.org/directRMDB/,
and has a mirror at: www.xjtlu.edu.cn/biologicalsciences/
directRMDB.

http://www.rnamd.org/directRMDB/
http://www.xjtlu.edu.cn/biologicalsciences/directRMDB
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Figure 2. Case study on protein-coding gene RNF138. (A) Searching by gene name. (B) 101 sites of four modification types on the RNF gene. (C) Number
of modifications detected by different software. (D) Pie chart of the number of modifications detected in each cell line. (E) Basic information of the example
site with ID of ‘directRMDB HomoSapiens 114258’. (F) Conditions involved in the example site and fraction of modified reads under different conditions.
(G) Genome browser view of the example site and its relationships with RNA binding proteins, miRNAs and pathogenesis.
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Figure 3. Case study on lncRNA MALAT1. (A) Basic information of the example site with ID of ‘directRMDB HomoSapiens 176403’. (B) Information
of other techniques or studies that confirmed the example site. (C) Information of site located within the 11bp region centered by the example site.

Case study on protein-coding gene RNF138

Ring finger protein 138 (RNF138) is a ubiquitin ligase be-
longing to the E3 ligase family, which harbors a ring fin-
ger protein domain, three zinc-finger-like domains, and a
ubiquitin-interacting motif (67,68). It promotes cell sur-
vival via counteracting apoptotic signaling or directly in-
fluencing genome stability. Emerging evidence has linked
the RNF138 protein with tumorigenesis, neurodegenerative
disorders, and chronic inflammatory conditions (69,70). By
searching through the Homo sapiens repository from direc-
tRMDB with the gene name RNF138 (Figure 2A), 101 en-
tries, with one AtoI, one m6Am, 45 m6A and 54 � sites,
detected by MINES, m6Anet, Nanopsu, nanom6A, and
ELIGOS from 7 different cell lines were returned (Figure
2C and D). Among the results, ELIGOS screened the ma-
jority of them (i.e. one AtoI, one m6Am, 25 m6A and 54
� sites), suggesting its high sensitivity in screening modi-
fied bases. MINES only contributes to one m6A site, which
can be explained by its strict evaluation criteria. Entries
without available RBP binding, miRNA, splicing site, SNP,
and transcriptomic information or not confirmed by NGS
methods can be removed by clicking the corresponding but-
tons in the top filters box. Users can also retrieve sites of spe-
cific modification types from certain cell lines, tools or RNA
types (e.g. mRNA, rRNA and tRNA) of interest. Detailed
information on individual sites can be acquired by clicking
the site ID. Taking ‘directRMDB HomoSapiens 114258’ as
an example, from the basic information returned, it is an
m6A site reported by ELIGOS and nanom6A from four dif-
ferent samples under two cell lines (Figure 2E). Figure 2F
shows the fraction of modified reads on different samples.
Since no transcript information is available for these sam-
ples, the transcripts ID column is filled with NAs (for Not
Available). In terms of interaction with regulatory events,
this m6A site is expected to associate with two RNA binding

proteins and two miRNAs. Also, this modification might
play an important role in pathogenesis since it is a reported
SNP site, where the adenosine base is mutated to guanosine
in certain cases (Figure 2G).

Case study on lncRNA MALAT1

Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), a long non-coding RNA (lncRNA) that has
been confirmed to influence cancer development and metas-
tasis (71). 73 modification sites from the DirectRMDB
homo sapiens sets, including m6A, m5C, pseudouridine, and
2’-O-Me, were found on MALAT1 transcripts. Similarly,
detailed information for individual modification sites, in-
cluding interaction with RNA binding proteins, miRNAs,
and other sites, can be acquired by clicking the site ID.
Taking directRMDB HomoSapiens 176403 as an example
(Figure 3A). It is a pseudouridine sites screened by ELI-
GOS and nanoPsu from human ENDOC and SEAC cell
lines. Also, a previous study (GSE60047) based on �-seq
also found pseudoridine modification at this position (Fig-
ure 3B). Figure 3C shows that an m1A site is located 4 bp
downstream of the examples site. Since the nanopore sensor
protein can interact with ∼5nt regions simultaneously, the
presence of another non-canonical bases nearby may cause
misleading signals and thus influence the analysis. Although
the example site is reported in multiple cases and was sup-
ported by other techniques, it is possible that the site is false
positive as the result of adjacent misleading signals.

Case study: isoform level exploration of RNA modifications

TXNDC12 (chr1:52020131..52056171, GRCh38.p14 as-
sembly) and KTI12 (chr1:52042103..52033810) are two
genes that share common regions on chromosome 1. For an
RNA modification site located within the shared regions,
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Figure 4. Case study: isoform level exploration of RNA modifications. (A) Genome and isoform level views of RNA modifications. (B) Basic information
of the example site with ID of ‘directRMDB HomoSapiens 142249’. (C) Screenshot of predicted secondary structure of ENST00000371614. The example
modification site is highlighted (red). (D) Transcripts information, including transcriptomic coordinates, expression levels.

it can be difficult with NGS epitranscriptomics profiling
methods to decide which genes or transcripts it belongs to.
Fortunately, direct RNA sequencing technologies offer a
solution to this isoform ambiguity problem thanks to the
longer reads. By more precisely aligning reads to transcrip-
tome references, modifications can be confidently located in
an isoform-specific manner (Figure 4A). Here, the m6A site

with ID of ‘directRMDB HomoSapiens 142249’ is taken as
an example (Figure 4B). From a genome-wide view, it is lo-
cated on the shared region of TXNDC12 and KTI12 and
was wrongly assigned to TXNDC12 by ChipSeeker in a ran-
dom manner. On the directRMDB details page, in contrast,
we can see that m6Anet unambiguously assigned this site to
ENST00000371614, an isoform for the KTI12 gene, under
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four different conditions. Also, expression levels of KTI12
isoforms under the four conditions are displayed (Figure
4C). The picture of the predicted RNA secondary structure
with highlighted modified bases can be queried by clicking
the ‘show’ button on the ‘secondary structure’ column (Fig-
ure 4D).

Conclusion

Maps of various RNA modifications have been constructed
by coupling antibody immunoprecipitation or chemical
probing with high-throughput sequencing. However, cus-
tomized protocols are required for each RNA modification
type, thus limiting our ability to characterize the plasticity
of the whole epitranscriptomics systematically and in an un-
biased fashion. Fortunately, the development of direct RNA
sequencing platforms enables the mapping of diverse RNA
modification types simultaneously and detection of any
given modification present in native RNA molecules. With
the rapid accumulation of direct RNA sequencing data and
designed ONT tools, we constructed DirectRMDB, the first
database of multiple RNA modifications unveiled by di-
rect RNA sequencing technologies. By taking advantage of
direct RNA sequencing technologies, DirectRMDB offers
several novel features compared with existing epitranscrip-
tomics databases: (i) since ONT direct sequencing gener-
ate ultra-long reads and is less vulnerable to isoform am-
biguity, we confidently presented isoform-specific distribu-
tion of RNA modification sites. (ii) we provided transcript
expression levels under different conditions. (iii) we inte-
grated novel modifications sites that have not been detected
by NGS-methods. Also, a user-friendly graphical interface
integrated with a genome browser was constructed to facili-
tate the query, visualization, and analysis of this novel, fine-
grained epitranscriptomics data. Due to the nature of ONT
direct sequencing, the results might contain some false pos-
itive site. Therefore, we clearly indicated the tools, samples,
and other techniques (i.e. NGS techniques and LC–MS)
that support each site. Users could filter, select and use sites
based on their understanding and knowledge. Overall, Di-
rectRMDB provides a fresh view of the epitranscriptome.
We will continue to update and improve the database by in-
tegrating the latest sequencing data and advanced tools to
ensure that it remains a valuable resource for the research
community.
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