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Abstract: Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing
patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in
humans, rodents, and cortical slices have shown that awakening or the administration of activating
neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses
to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures
coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-
like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC)
and the perturbational complexity index (PCI), typically employed in animal and human brain
studies, to quantify complexity in simplified, unstructured networks, both during resting state and in
response to electrical stimulation. After CCh administration, we found a decrease in the amplitude
of the initial response and a marked enhancement of the complexity during spontaneous activity.
Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate
increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions,
requires more than activating neuromodulation and that additional factors, such as an appropriate
circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by
the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to
identify the features that are more relevant to support causal complexity.

Keywords: in vitro; micro-electrode array (MEA); cortical networks; complexity; perturbational
complexity index (PCI); spikes; local field potentials (LFP); electrical stimulation

1. Introduction

The ability of the brain (and the nervous system in general) to produce different actions
in response to several sensory stimuli depends, above and beyond single-cell specialization,
on the way neurons are connected with each other in local circuits and long-range net-
works [1]. To this end, the study of the properties and mechanisms of neuronal interactions,
both in vivo and in vitro, is fundamental for the understanding of the brain’s function.
In this context, neurosciences have evolved in recent decades, facing the complexity of the
brain and of the nervous system with a multi-level approach, involving not only many
different branches of biology (molecular and cellular biology, genetics, biochemistry, etc.),
but also physics, mathematics, engineering, and related fields. Studying brain complexity
and advancing our understanding of its function involves both innovations in experimental
methods (to observe and perturb brain activity) and in computational tools (to analyze
recorded data). Among the different electrophysiological techniques, micro-electrode array
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(MEA) technology represents a powerful tool that enables the long-term recordings of local
field potentials (LFPs) and extracellular action potentials (i.e., spikes) from a population of
neurons. Multisite extracellular recordings of neuronal cell cultures coupled with MEA
have already demonstrated their potential to reveal a wide range of neural phenomena,
from individual cell behaviors [2,3] to network dynamics [4], either in physiological [5,6]
or pathological conditions [7]. In addition, like in vivo networks, cell cultures are capable
of processing and segregating spatial–temporal input stimuli as a function of the network
state [8]. Moreover, an extended information theory framework allowed the quantification
of the extent of state dependency in cell culture responses recorded with high-density
MEAs [9]. The latter findings [8,9] well connect to theoretical works about reservoir
computing and echo-state networks [10], showing that cell cultures represent an ideal,
yet simple, system to investigate neural activity at the mesoscale network level [11,12].

Integration and segregation are key organizing principles of brain architecture and an
optimal balance between the two within cortical networks is considered as a fundamental
prerequisite for consciousness [13–15]. The arrangement of local and large-scale connec-
tivity across neuronal elements is a key determinant for optimizing the joint presence
of segregation and integration and for attaining high levels of brain complexity [14–17].
Specifically, strong local links, patchiness in the connectivity, and large numbers of short
reentrant circuits together with specific long-range connections have been identified as fun-
damental prerequisites [15,18]. However, such structural properties need to be immersed in
the appropriate milieu of activating neuromodulators in order to express high levels of com-
plexity. Accordingly, perturbations with transcranial magnetic stimulation (TMS) evoke a
chain of recurrent, complex activations in the cortex, as measured by electroencephalog-
raphy (EEG), in wakefulness but not during NREM sleep [19]. In subsequent studies the
complexity of brain responses to direct cortical stimuli, quantified by the perturbational
complexity index (PCI) [20] was tested across many different conditions in humans [20–22],
rodents [23,24], and cortical slices [25,26]. While these experiments provided fundamental
insights on the effects of neuromodulation, anesthetics, and brain lesions on PCI, the role
of basic cytoarchitectonics and local connectivity has never been explored.

In the present work, we provide a first exploration of these aspects by applying
measures of complexity to in vitro networks of neurons cultured over MEAs during phar-
macological manipulations mimicking the effects of activating neuromodulation, as in [27].
We administered carbachol (CCh) to the neuronal cultures, a cholinergic receptor agonist
that depresses evoked excitatory postsynaptic potentials (EPSPs) and evokes inhibitory
postsynaptic potentials (IPSPs), thus altering the excitatory–inhibitory balance [28,29].
We measured both spontaneous activity and responses to perturbations using approximate
measures previously employed to assess complexity in human subjects during wakefulness,
sleep, anesthesia, and disorders of consciousness, as well as in rodents and cortical slices
during pharmacological manipulation [21]. Specifically, we aimed at exploring the effects
of activating neuromodulation on dissociated cell cultures, a model of neuronal circuits
that can show rich activity patterns but lacks the typical architecture of the cortex.

We found that CCh was effective in increasing the complexity of spontaneous activity
with respect to basal conditions. Consistent with previous experiments in humans and
animals, we also found that activating neuromodulation decreased the amplitude of the
initial oscillatory response. However, during CCh administration, the overall spatio-
temporal pattern of the spiking-evoked response remained similar to that observed in
the baseline condition, resulting in a moderate increase in PCI. This result suggests that
additional properties of the network (e.g., recurrent connectivity, feedback loops) are
needed to better mimic the changes in the spatio-temporal patterns observed in human
recordings, rodents, and cortical slices across brain states. Our findings thus prompt
additional efforts to develop more structured in vitro systems able to better recapitulate the
cellular and network mechanisms and determining the richness and complexity of activity
patterns found in higher systems.



Brain Sci. 2021, 11, 1453 3 of 20

2. Materials and Methods
2.1. Cell Cultures

Cortical cell cultures were prepared from embryonic rats at gestational day 18 (preg-
nant Sprague Dawley female rats delivered by Charles River Laboratories, Lecco, Italy).
All experimental procedures and animal care were conducted in conformity with institu-
tional guidelines, in accordance with the European legislation (European Communities
Directive of 24 November 1986, 86/609/EEC) and with the NIH Guide for the Care and Use
of Laboratory Animals. The procedure for preparing the cultures is reported in previous
studies [30,31]. Briefly, the cerebral cortices of 4–5 embryos were dissected out from the
brain and dissociated by enzymatic digestion in 5 mL of trypsin 0.125% and HBSS-diluted
DNAsi 0.25 mg/mL (Sigma-Aldrich, Saint Louis, MO, USA) at 37 ◦C for 30 min. Trypsin di-
gestion was blocked using 5 mL of Neurobasal medium (Thermo Fisher Scientific, Waltham,
MA, USA) containing 2% of B27 supplement, 1% penicillin/streptomycin, 1% L-glutamine
(Thermo Fisher Scientific, Waltham, MA, USA), plus 10% of heat-inactivated FBS (Thermo
Fisher Scientific, Waltham, MA, USA). Cells were centrifuged for 5 min at 1200 rpm and
then resuspended by pipetting in 2–3 mL of complete Neurobasal medium plus FBS. Cell de-
bris was removed by centrifuging at 700 rpm for 7 min. After resuspension in complete
culture medium, neurons were counted with trypan blue dye (Sigma-Aldrich, Saint Louis,
MO, USA) and then plated on 60-channel planar MEAs (Multi Channel Systems, MCS,
Reutlingen, Germany) that had been previously coated with borate buffer and poly-L-lysine
to promote cell adhesion (final cell density approximately 1200 cells/mm2). Cells were
finally placed in a humidified incubator having an atmosphere of 5% CO2—95% air at 37 ◦C.
Their maintenance was guaranteed by 1 mL of nutrient medium (i.e., serum-free Neurobasal
medium supplemented with B27 and Glutamax-I), 50% of which was changed weekly.

Figure 1a shows a representative MEA used for this study and a culture of neurons
grown over its surface, together with the typical bursting pattern (cf. ‘Data Analysis’)
exhibited by the recording channels.

2.2. Experimental Set-Up and Micro-Electrode Array Recordings

The MEAs used in this study (Multichannel Systems, MCS, Reutlingen, Germany) are
characterized by planar microelectrodes arranged in an 8 × 8 layout, excluding corners
and one reference electrode, for a total of 59 TiN/SiN round recording electrodes (30 µm
diameter; 200 µm center-to-center inter electrode distance). Recordings were performed
by means of the MEA60 System (MCS), composed by the Multichannel System amplifier
(bandwidth 1 Hz–3 kHz) and the Multichannel System data acquisition card. The signal
from each channel was sampled at 10 kHz. The online monitoring and recording of data
was performed by the MC_Rack software (MCS). To reduce the thermal stress of the cells
during the experiment, MEAs were kept at 37 ◦C by means of a controlled thermostat
(MCS) and covered by custom-made PDMS caps to avoid evaporation and prevent changes
in osmolarity.

2.3. Experimental Protocol

After a period of rest (~30 min) outside the incubator to allow the culture to adapt to the
new environment and reach a stable level of activity, the experiment started. The protocol
included 30 min of basal recording (i.e., in Neurobasal medium) followed by two sessions
of electrical stimulation (10 min each) from two different sites. The sites were chosen inde-
pendently for each culture and the two sites able to evoke the most prominent responses
were selected, according to the same approach adopted in our previous studies [6,32].
We then applied the cholinergic agonist carbachol (CCh, 20 µM), as reported in previous
studies [27,29], by directly pipetting it into the culture medium and recorded from the
cultures for 1 h in the absence of electrical stimulation. Since we observed that mechanical
perturbation caused by the addition of any substance to the medium through a pipette
could cause temporary instability of the firing rate, we discarded the first 10 min of record-
ing following CCh administration. After one hour, we repeated the electrical stimulation
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protocol in the presence of CCh, using the same locations for stimulation and performing
the stimulation in the same order that was used in the basal recording. This allowed us
to compare the evoked response at the baseline (i.e., in Neurobasal medium) and during
the drug treatment, to evaluate whether and how the presence of CCh influenced the
evoked response of the network. For each stimulation session (duration 10 min), a total of
120 trials per stimulation site were collected. The stimulus shape was the same across all
experiments and all experimental phases (biphasic voltage pulse, duration 600 µs, 750 mV
half-amplitude every 5 s). These parameters have been shown to be the most effective ones
for evoking responses in neurons cultured on MEAs [33], without inducing any form of
long-term change [34,35]. A total of 9 experiments were performed using mature cultures
in the 5th–7th week in vitro.

2.4. Data Analysis

There are two main types of extracellular signals which can be recorded from a network of
neurons: local field potentials (LFPs) and multi-unit activity (MUA). LFPs (<300 Hz) constitute
the low-frequency component of the raw signal and are related to the activity of an entire
neuronal population, responsible for the generation of neural oscillations in the recorded
network [36]. The MUA constitutes the high-frequency portion of the raw signal (>300 Hz) and
represents the spiking activity of the neurons nearby the recording electrodes [37]. In this
study, we analyzed both LFP and MUA, by following the methodology reported in the
scheme of Figure 1b and briefly described below.

2.4.1. Local Field Potential (LFP) Analysis

To select the LFP components, we low-pass-filtered the raw data between 1 and 300 Hz.
We then computed the power spectral density (PSD) of the decimated signal (sampling
frequency 1 kHz) (µV2/Hz) using the Welch method (Windows = 5 s, overlap = 50%).
We considered only the lower frequency bands of the signal, in particular the delta (1–4 Hz),
theta (4–11 Hz), and beta (11–30 Hz) bands, as in our previous study [27]. To characterize
the LFP, we calculated the power in each of those frequency bands for all the electrodes
of the MEA in the dataset. Then, we averaged the power for all the electrodes for each
recorded MEA to obtain a mean value for each frequency band.

For the stimulation phase, we computed the mean response to the stimulation pulse
for the top 20 channels for each culture that displayed the highest MFR (mean firing rate,
spikes/s). We then considered the response to the stimulation (100 ms before and 900 ms
after the stimulus) and repeated the analysis described above, computing the power in each
frequency band. To eliminate the artifact, we discarded the first 10 ms after the stimulus.
PSD was computed using the Pwelch function in MATLAB with the following parameters:
win = 200 ms, overlap = 50%, Fs = 103 Hz and Max frequency = 100 Hz.

2.4.2. Multi-Unit Activity (MUA) Analysis

In the high-pass filtered data (f > 300 Hz), we detected spikes (i.e., single over-threshold
peaks) and bursts (i.e., groups of tightly packed spikes) using custom software developed
in our or other laboratories [38–41]. We then computed the following electrophysiologi-
cal parameters, which were also used in our previous work [27]: mean firing rate (MFR,
spikes/s), inverse burst ratio (IBR, percentage of spikes outside the burst), and burstiness
index (BI, index of the burstiness level of the network, as described in [41]). The BI index is
normalized between ‘0’ (no bursts) and ‘1’ (burst-dominated network) values. We normal-
ized each experiment with respect to the mean of the selected parameter (i.e., MFR, IBR,
and BI) during the basal recording.

Since we observed that the electrophysiological parameters reached steady-state values
after 30 min of CCh administration, we divided the CCh recording phase into two data-driven
phases, namely CCh1 and CCh2 (i.e., the first 30 min and the last 20 min, respectively).

To characterize the amount of synchronization inside each neuronal network we used
the spike time tiling coefficients (STTCs, [42]). We computed the STTCs using the function
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sttc of the Python module Elephant [43]. In order to speed up the computations of the
STTC, we optimized the existing code, achieving a speed factor of ~200 on a DELL XPS
laptop equipped with an Intel® Core™ i7 Processor. The modified code is available on
Github (https://github.com/thierrynieus/Spike-Time-Tiling-Coefficient, accessed date:
29 October 2021). Then, we also verified that the result was consistent with another
measure used in the literature to quantify spike synchrony. We quantified synchrony
with the parameter-free SPIKE synchronization measure [44] implemented in the python
PySpike package [45].

To investigate the effect of the electrical stimulation on the neuronal activity, we computed
the post-stimulus time histogram—PSTH [32], which represents the average stimulus
response of each site. The PSTH was calculated by considering a time window of 400 ms
following each stimulus of the train in the recorded signal. We first divided each time
window into 4 ms bins and then counted the number of spikes that occurred in each time
bin. The probability of the response was then obtained by dividing the spike count per time
bin by the number of trial times the bin size. With this definition, all channels with PSTH
area below one were removed from the statistical analysis as in [6]. We then computed the
percentage of variation of the PSTH area (PA) as follows:

∆PA [%] =
100 ∗ (PACCh − PABAS)

PABAS
(1)

where PABAS is the area of the PSTH computed during the electrical stimulation session
in the basal condition (i.e., without any pharmacological treatment), whereas PACCh is the
PSTH area computed during the electrical stimulation phases in the CCh condition.

We defined as significant a channel that displayed changes in PSTH higher or lower
than a specific threshold that was defined based on the ‘stability’ phases. We selected as sta-
bility phases the stimulation sessions during the evoked activity without CCh. Specifically,
we divided every stimulation session (S1 or S2) into two equal parts of 5 min each (1–5 or
5–10 in the Equation (2)). For each divided session of 5 consecutive minutes, we computed
the histogram of the variation in PSTH area (∆STIM1, ∆STIM2) as depicted in Figure 1c.
We computed the difference (∆STIM1, ∆STIM2) as follows:

∆STIM = PA5–10 − PA1–5 (2)

where PA5–10 is the area of the PSTH computed during the electrical stimulation session in
the last 5 min during basal phase, whereas PA1–5 is the PSTH area computed in the first
5 min of the baseline during the electrical stimulation phases.

The threshold was defined as the TH20 = mean ± SD of the PSTH area variation
(equal to ±20%).

2.4.3. Complexity Indices

The complexity indices aim to quantify the richness of the spatial–temporal patterns
displayed by neural networks. Most of them have originally been defined for brain record-
ings to characterize the brain states in different conditions (anesthesia, stroke, disorder of
consciousness, etc.). In the EEG field, Schartner et al. [46] defined a set of indices computed
on the spontaneous activities and showed that the brain complexity of healthy subjects
undergoing propofol-induced general anesthesia decreased with respect to their awake
state. However, those indices well quantified differentiation, while integration cannot,
in general, be assessed. Here, instead, we relied on a set of complexity indices designed to
measure both the differentiation and integration properties of neural activity. In particular,
we computed the ‘neural complexity’ index during spontaneous activity. While there are
several definitions of complexity indices computed on the spontaneous activity, much less
work has been carried out for evoked activity. The ‘perturbational complexity index’ [20]
represents one of the few exceptions. The description of the above-mentioned complexity
measures is briefly reported below.

https://github.com/thierrynieus/Spike-Time-Tiling-Coefficient
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Neural Complexity. The neural complexity (NC) [14] is computed on the spontaneous
activity and it measures how much the complementary bipartitions of a network are
integrated and segregated. In order to compute NC, at first the instantaneous firing rate
(IFR) of each electrode is obtained by binning the spike trains with a bin size of 20 ms.
For a given n, the network is subdivided in complementary subsets of n (Xn(t)) and 60-n
electrodes (X(t)− Xn(t)), the IFR of the partitions, IFR(Xn(t)) and IFR(X(t) − Xn(t)), is obtained
by averaging the IFR of the corresponding electrodes. Finally, the mutual information (MI)
is computed between the partitions. The latter procedure is repeated 100 times (j = 1, . . . , 100)
to provide a sample of the bipartitions on which MI is computed and finally the average mutual
information (<MI>) across samples is retained. This operation is repeated, varying n from
5 to 30 (with step 5), and NC is obtained as the sum of the <MI> values.

NC(X) =
30

∑
n=5

< MI(IFR(Xn
j (t)); IFR(X(t)− Xn

j (t))) > (3)

The mutual information was estimated by the pyentropy package [47], the firing rates
were discretized in 6 levels, and the information bias was corrected with the Panzeri–Treves
method (pt in pyentropy).

Perturbation Complexity Index. We quantified the perturbation complexity index
(PCI) in cortical cell cultures by analyzing the evoked spiking activity. Compared to the
human data, cortical cultures yielded a higher signal-to-noise ratio; therefore, we used
a smaller number of trials (120) and standard statistics to assess the significant evoked
activity. The activity of each channel was binned (bin size = 5 ms) around the stimulation
artifact (1000 ms before and 500 ms after the stimulus).

The threshold for significant activation was determined by the bootstrap statistics used
in [20] with 500 repetitions, and setting the acceptance value alpha = 0.05. We then extracted
a binary matrix of significant sources (SS(x,t)) that represented the spatial (channel x) and
temporal (time t after stimulation) activations caused by the electrical perturbation [20].
The channels in the matrix SS(x,t) were sorted from bottom to top on the basis of their
total activity during the post-stimulus period (i.e., according to the number of activations).
To quantify the minimal amount of redundant information contained in the binary matrix
S(x,t), the matrix was compressed using the Lempel–Ziv complexity measure. Finally,
PCI is defined as the Lempel–Ziv complexity measure normalized between [0, 1] to make the PCI
comparable across conditions (e.g., carbachol treatment). PCI is defined as PCI = C

Hsrc·L/ ln(L) ,
where C is the Lempel–Ziv complexity and L is a constant (L = (number of channels) ∗
(number of time points) = 60 ∗ 100). The term Hsrc is called the source entropy and it is
defined as: Hsrc = −p0· ln2(p0)− p1· ln2(p1), where p1 and p0 represent the fraction of ‘1′

(significant activations) and ‘0′ (non-significant activations).

2.4.4. Statistical Analysis

The data are expressed as mean ± standard error of the mean (SE). Statistical tests
were performed to assess the significant difference among the experimental conditions.
The normal distribution of data was assessed using Kolmogorov–Smirnov normality test.
According to the distribution of data, we performed either parametric (e.g., t-test) or non-
parametric (e.g., Mann–Whitney) tests, and p < 0.05 was considered significant. Statistical
analysis was carried out by using OriginPro (OriginLab Corporation, Northampton, MA, USA).
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zoom of the squared area highlighted in the previous picture (scale bar 200 µm); a typical raw trace recorded from a
representative micro-electrode of the MEA. (b) Scheme of the data analysis workflow. Data were acquired by means of the
MC_Rack software (MCS). We then processed it by following two approaches: (i) by band pass filtering in the frequency band
1–300 Hz, we obtained filtered data which was then decimated at 1 kHz, i.e., the local field potentials (LFPs); (ii) by high
pass filtering (>300 Hz) we obtained filtered data which were processed by means of a spike detection algorithm, to obtain
the multi-unit activity (MUA). The MUA was further analyzed to detect firing and bursting parameters and to compute the
correlation index, in the form of the spike time tiling coefficient (STTC). For both (i) and (ii), we analyzed the spontaneous as
well as the evoked activity (see Methods for details on the analysis). (c) Selection of the PSTH threshold during the stability
phases (see Methods). On the left, the variation in the PSTH area in the basal condition is computed by considering the
responses to stimulation in the first and in the second five-minute time frames. The variation in the percentage of the PSTH
area for all the channels in all the experiments was then plotted as a histogram (rigth panel) which served to define the
‘natural’ fluctuation range of the considered parameter. The threshold was then defined as the mean ± 1SD of the PSTH
area variation of the obtained histogram, which resulted I being equal to ± 20%. We then named that threshold TH20.

3. Results

Each culture of our dataset was first recorded in basal condition (i.e., spontaneous
activity) and then underwent electrical stimulation (i.e., evoked response). Analyses were
performed both in terms of MUA and LFPs. We then added carbachol (CCh) and repeated
the same procedure, in order to investigate both oscillations and spiking during spon-



Brain Sci. 2021, 11, 1453 8 of 20

taneous activity and in response to stimulation during the drug treatment. As we used
two different measures to quantify complexity in our cultures, namely neural complexity
(computed during spontaneous, non-stimulated condition), and the perturbational com-
plexity index (computed on the evoked response), we present the results to focus first on
the analysis of the spontaneous activity and then on the analysis of the evoked response.

3.1. Spontaneous Activity—LFP Analysis

We performed experiments using rat cortical cultures plated on MEA. We first eval-
uated the effect of CCh administration by analyzing the LFPs in absence of electrical
stimulation (i.e., Basal, CCh1 and CCh2 phases), according to the protocol depicted in
Figure 2a and described in the Methods section.
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tive experiment: local field potential (LFP) signals obtained after band-passing the raw data in the
range 1–300 Hz. Different components of the LFP: delta frequency signal (∆, 1–4 Hz), theta frequency
signal (Θ, 5–9 Hz), and beta frequency signal (B, 10–30 Hz). CCh treatment induced suppression of
all low-frequency waves compared to the control condition in one representative experiment (right
panel). (c) Time course of the power spectral density ratio (CCh over basal) computed in delta, theta,
and beta power. (d) Box plot comparison of the PSD of each band showing a marked decrease in the
delta and theta bands (n = 9 MEAs recorded, p = 10−5). We did not find any difference in the PSD
in the beta bands. The bold lines and shaded regions in (c) correspond to the mean ± SEM. In each
box plot, the small red square indicates the mean, the central red line illustrates the median, and the
box limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles.
Statistical analysis was conducted using the Mann–Whitney comparison test; ** p < 0.01.
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As reported in Figure 2b (left and center panels), the amplitude of delta, theta, and, to some
extent, beta oscillations appeared strongly decreased upon CCh treatment (red profiles).
We decided to not include the results on gamma bands since we did not find any difference
upon CCh administration in our previous work [27]. Thus, we evaluated how the power
spectral density (PSD) changed during the CCh administration. Spontaneous activity
was characterized by very slow oscillations in the LFP; indeed, most of the power was
concentrated in the delta frequency band (Figure 2b, blue line). Application of CCh to the
cultures resulted in a marked decrease in the low-frequency power of the LFP, especially in
the delta and theta ranges (Figure 2b, red line). The normalized powers in those frequency
bands showed a significant decrease with respect to the basal phase, as indicated by the
difference with respect to the dashed line in Figure 2c. In comparing the variation during
the first 30 min upon CCh administration (CCh1) and the last 20 min (CCh2), we found a
significant decrease in delta and theta power in both phases (Figure 2d, first and second
panel p = 10−5). Beta waves showed a decrease in the power but we did not find any
statistically significant difference (Figure 2d, third panel).

3.2. Spontaneous Activity—MUA Analysis

According to the protocol depicted in Figure 3a, we then evaluated the effect of CCh
administration by analyzing the MUA in the absence of electrical stimulation (i.e., basal,
CCh1, and CCh2 phases). In the baseline phase, the activity was characterized by synchro-
nized multi-unit burst activity, as shown in the raster plot of one representative experiment
(Figure 3b, left panel). After the administration of CCh, these activity patterns were strongly
altered with a fragmentation of burst structures as depicted in Figure 3b, right panel.

No significant differences in the level of activity expressed by MFR (mean firing rate,
spikes/s) were observed during the application of the experimental protocol (Figure 3c).
However, CCh application resulted in an increase (p = 10−5) in the number of isolated
spikes (i.e., higher IBR, percentage of spikes outside the bursts, Figure 3d) and a decrease
(p = 10−5) in the burstiness index (BI, Figure 3e) with respect to the basal phase, indicating
a loss of bursting activity followed by a loss of synchronicity.

We evaluated the network activity correlation using the STTC method. As shown
in Figure 3f, during the basal phase (blue box) the STTC was high since the activity was
strongly correlated. After administration of CCh, there was a progressive and significant
decrease in the STTC values, indicating desynchronization of the activity (p = 0.00276
between basal and CCh1, p = 10−4 between basal and CCh2). Indeed, the obtained results
are consistent with those previously obtained [27] in which electrical stimulation was not
part of the protocol.

Moreover, we validated the result also with respect to the SPIKE synchronization mea-
sure [44] and we found that spike synchrony was significantly higher in the basal condition
(p = 0.001, two-way ANOVA with factor drug treatment, synchrony (basal) = 0.271 ± 0.027,
synchrony (CCh) = 0.227 ± 0.026, Figure S1).
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Figure 3. Comparison of the network parameters during basal and CCh administration. (a) Experimental
protocol adopted in the experiments. The spontaneous phase (i.e., without electrical stimulation), which was
analyzed here, is highlighted. Cortical cultures were recorded for 30′ under basal conditions followed by
1 h of recording after the addition of 20 µM CCh. CCh was evaluated at two different time intervals:
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the first 30′ (CCh1) and the last 20′ (CCh2). (b) Raster plots showing 20 s of spontaneous activity
(left) and after CCh administration (right) for a representative experiment (each small dot represents
a spike, each row an electrode). In the basal condition (blue dots), the activity shows synchronized
firing patterns that are completely abolished after the CCh treatment. (c) MFR of cultures under basal
conditions and during CCh stimulation (n = 9). Time-dependent profile (left) and box plot of MFR
(right) during CCh treatment. In the group of experiments analyzed here, the MFR of cultures did
not change with respect to the basal phase after drug administration (dotted line in the left panel).
(d) IBR of cultures during basal and CCh stimulation (n = 9). Time-dependent profile (left) and
box plot of IBR (right) during CCh treatment. In the analyzed group of experiments, the IBR of the
cultures significantly increased (p = 10−5) after drug administration compared to the basal phase
(dotted line in the figure). (e) BI of cultures under basal conditions and during CCh stimulation
(n = 9). Time-dependent profile (left) and box plot of BI (right) during CCh treatment (red boxes).
In the analyzed group of experiments, the BI of cultures upon drug administration significantly
changed (p = 10−5) with respect to the basal phase (dotted line in the figure). (f) STTC values of
cultures under basal conditions and during CCh stimulation (n = 9). Time-dependent profile (left)
and box plot of the STTC values (right) during the basal phase (blue box) and during CCh treatment
(red boxes) at two different time intervals: the first 30′ (CCh1) and the last 20′ (CCh2). In the analyzed
group of experiments, the STTCs of the cultures increased significantly after drug administration
compared to the basal phase (p = 0.00276 between basal and CCh1, p = 10−4 between basal and
CCh2). The bold lines and shaded regions (c–f) correspond to the mean ± SEM. The gray shaded
area denotes a 10 min pause in the recording after CCh addition to prevent experimental bias due
to drug release into the medium. For each box plot (c–f), the small square indicates the mean,
the central line illustrates the median, and the box limits indicate the 25th and 75th percentiles.
Whiskers represent the 5th and the 95th percentiles. Statistical analysis was conducted using the
Mann–Whitney comparison test; ** p < 0.01.

3.3. Complexity in Spontaneous Activity

We computed the neural complexity (NC) of the MUA activity. The data were split into
segments of 5 min and the NC was computed on each block. We found that NC increased
in all experiments, though the increase was only significant in six out of nine experiments
(Figure 4a, left panel). By performing a group analysis, we obtained that NC was statistically
higher in CCh than in the basal condition (~130% increase Figure 4a, right panel).

Interestingly, the coefficient of variation of the mean firing rate (CV(MFR), Figure 4b,
left panel) computed across the MFR of the electrodes also displayed a significant increase in
most experiments (eight out of nine). The group analysis indicated that also in the case of
CV(MFR), a significant statistical difference was obtained between CCh-modulated and basal
activity (Figure 4b, right panel). Indeed, we have previously shown that CCh destabilizes
the network’s activity, resulting in a desynchronization of the spiking activity and with an
increased variability in the MFR among the electrodes [27]. Coherently, the significant increase
in CV(MFR) correlates with the increases in NC in the presence of CCh.
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Figure 4. Complexity measures of spontaneous activity. (a) Left panel: The neural complexity (NC) during CCh is
significantly higher than in the basal condition, in 6 out of the 9 experiments (* p < 0.05, t-test). Mean and SEM are estimated
in sessions of 5 min. Right panel: NC is significantly higher during CCh at the population level (p = 0.013, two-way ANOVA
with factor drug treatment). (b) Left panel: The coefficient of variation (CV) of the channel mean firing rates is significantly
higher in CCh with respect to the basal condition in all experiments (* p < 0.01, t-test). Right panel: CV(MFR) is significantly
higher during CCh at the population level (p = 10−4, two-way ANOVA with factor drug treatment). In the boxplots, the
white line corresponds to the mean of the distribution, the lower/upper sides of the box to the first/third quartiles, and the
lower/upper whiskers to the 5th/95th percentiles. Black dots in the right panels are outliers, falling below the 5th percentile
or above the 95th percentile.

3.4. Evoked Activity—LFP Analysis

By considering the phases of electrical stimulation (Figure 5a), we found that CCh treat-
ment also caused strong suppression of the power of the LFP-evoked response, as shown
in the evoked LFP signal of the top 20 channels of one representative experiment un-
der the basal condition (blue lines) and after CCh administration (Figure 5b, left panel).
The top 20 channels were selected on the basis of their firing rates in the spontaneous phase
(i.e., the 20 channels with the highest firing rate in basal condition). CCh caused a decrease
in the amplitude without any apparent changes in shape, as shown in the power spectral
density evaluation computed for all channels (Figure 5b, right panel).
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Figure 5. LFP analysis of the evoked response. (a) Experimental protocol adopted for the experiments. The electrical
stimulation phases analyzed here are highlighted. Cortical cultures were stimulated for 10 min at two different sites under
basal conditions and after CCh treatment. (b) Left panel: Mean evoked responses of the top 20 channels in one representative
experiment during basal conditions and after CCh administration. Right panel: Comparison of the mean PSD of the two
different experimental phases: the bold lines and shaded regions correspond to the mean ± SEM.

3.5. Evoked Activity—MUA Analysis

Next, we analyzed the MUA changes due to the effect of electrical stimulation by com-
paring the PSTH area at baseline with that observed after CCh administration (Figure 6a).
Figure 6b depicts the network PSTH observed in one representative experiment during the
basal (blue line) and CCh (dark red line) phases for both stimulation sites (S1 in Figure 6b1
and S2 in Figure 6b2). More than 50% of the channels of all the recorded MEAs showed a
decrease in the PSTH area compared to the basal condition (Figure 6(c1,c2)). Quantification
of PSTH change was carried out according to the threshold TH20, as reported in the Meth-
ods. We did not find any difference in the PSTH area between the two stimulation sessions,
indicating that this reduction did not depend on the order of stimulation. The histogram of
the percentage of variation of the PSTH area for each active electrode showed a negative
median value for both stimulation sites (Figure 6(d1,d2)).
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Figure 6. PSTH area analysis. (a) Experimental protocol adopted for the experiments. The stimulation phase analyzed
here is highlighted. Cortical cultures were stimulated for 10 min at two different sites under basal conditions and after
CCh treatment. (b) Network PSTH measured in one representative experiment during both stimulation sessions under
basal conditions (blue lines) and after CCh treatment (dark red lines). (c) The PSTH area of all the experiments for both
stimulation sessions showed a higher percentage of channels that decreased relative to the basal level. The variation in
each channel was considered significant if it was greater than 20% of the threshold computed by measuring the variation
during the stability phases. Orange dots indicate channels that decreased with respect to the basal conditions, green dots
indicate channels that increased, and black channels are the ones that did not change. (d) The histogram of the percentage
of variation for both stimulation sessions showed a mean value centered at −27 for stimulus 1 and at −23 for stimulus 2.

3.6. Complexity in Evoked Activity

PCI was computed for the both the S1 and S2 stimuli (Figure 7a) on the spiking activity.
At the population level, we found that PCI increased after CCh administration (p = 0.023,
percentage increase = 22%, Figure 7b). We noted that experiment 1 was quite peculiar with
respect to the other experiments, as the large PCI increase was paired with a corresponding
large decrease in the source entropy. The significant activations (Figure 7c,d) under CCh
were reduced and visibly did not display more complex spatial–temporal patterns with
respect to the basal condition. As a comparison, consider experiment 9 (Figure 7e,f) in
which the source entropy stayed almost the same (basal 0.92, CCh 0.93) and PCI increased
(basal 0.22, CCh 0.35). In the latter case, the significant activations were slightly more sparse
in space and time, which could explain the PCI increase. Based on the considerations,
we hypothesized that experiment 1 was an outlier, and once this was excluded, the PCI
dropped to 11% and was no longer different from the basal condition (p = 0.067).
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Figure 7. Complexity measure of evoked activity. (a) The curves connect the mean PCI obtained by
averaging across the PCI values of the two stimuli for each experiment. The squares are relative to the
PCI values of the single stimuli. (b) The perturbational complexity index (PCI) increases significantly
in carbachol by 22% (p = 0.023, two-way ANOVA with factor drug treatment). (c,d) The binary matrix
of significant sources relative to exp1, in basal (c) and CCh (d) conditions. The CCh administration
caused a decrease in source entropy (0.55 basal, 0.21 CCh). (e,f) In exp9, the binary matrices
of significant sources have comparable source entropies across conditions (0.92 basal, 0.93 CCh).
The dots in the panels (c–f) correspond to the significant spatial-temporal activations.

In order to verify the result, without depending on the type of signal (i.e., MUA) used
for the computation of PCI, we also calculated it for the band-pass filtered 1–300 Hz data.
We kept all parameters of the bootstraps statistics the same and we found no significant
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changes between the PCI values (p = 0.68 two-way ANOVA test with factor drug treatment,
PCILFP (basal) = 0.207 ± 0.013, PCILFP (CCh) = 0.214 ± 0.011, Figure S2).

4. Discussion

Brain complexity has been quantified in human studies, both during resting state [46]
and under perturbation [20]. It has been also explored in cortical brain slices, at the
microscale level, where the anatomical circuitry of the tissue of origin is preserved [25].

Here, for the first time, we investigate complexity in a simplified experimental model
in vitro, in which neurons spontaneously establish connections and create random-like
networks without reproducing a specific anatomical structure and its related connectivity.
Clearly, one cannot compare the values of complexity found in slices, let alone in cell
cultures, with those validated in humans, in part because they are obtained with different
techniques at different scales [48]. Instead, our goal here was to understand whether
complexity computed in cortical cultures, both during spontaneous and evoked activ-
ity, could be manipulated in ways that mimic the effects of activating systems in more
structured brains.

In our study, we administered carbachol (CCh), which was able to modulate sleep-like
properties in vitro [25,27,29]. During sleep, in both humans and rodents, network activity
is synchronized across brain areas, while during wakefulness it is desynchronized [49–52].
Consistent with this behavior, the administration of CCh caused desynchronization of the
spiking activity and suppression of the low-frequency oscillations, which are dominant
during sleep [27,53–56]. In this regard, the spectral exponent recently introduced in human
EEG recordings [57] shows that the fit of the decay of the broadband EEG spectrum can
distinguish between the conscious and the unconscious state (the slope becomes steeper
in the latter case). Interestingly, in Figure 2b, the decay of the spectrum is flatter in the
CCh condition than in the basal one, reflecting a departure from the sleep-like state of
the cultures.

At first, we analyzed the spontaneous regime in control and CCh conditions. We found that
neural complexity (NC) [14] significantly increased upon treatment with CCh. The distribution
of firing rates in the network widened under CCh (i.e., higher coefficient of variation),
suggesting that the increase in NC could be determined by the higher ‘noise’ under
conditions of increased excitability of individual neurons. To corroborate this hypothesis,
the overall population activity was functionally less aggregated under CCh, as confirmed
by the weakened correlation strengths. Indeed, in a system of non-interacting elements
(i.e., where strong lateral connections are missing) measures of entropy can show very high
values, although the system under analysis lacks a complex causal structure [15].

Such dissociation between the complexity of observable dynamics and the actual
complexity of causal interaction was unequivocally confirmed by analyzing the population
responses to direct perturbations. We delivered electrical stimulation to our neuronal
cultures using a low-frequency stimulation regime (i.e., 0.2 Hz) to avoid inducing long-term
plasticity [34]. Indeed, no changes in the evoked response, in the level of synchronization,
or in the firing rate activity were observed, as also reported in the literature after several
sessions of stimulation [6,33,35]. Conversely, stimulation frequency >1 Hz can induce
different firing regimes [58], long-term potentiation, and depression [6,59].

Here, similarly to slice, rodent, and human experiments, the initial response was
smaller under the effect of activating neuromodulation; however, cortical cultures failed
to show the typical resurgence of complex recurrent interactions. The first effect, evident
from smaller PSTH, LFP, and spectral responses (Figures 5 and 6) reflects changes in re-
sponsiveness at the level of single neurons, whereby depolarization may dampen the initial
response due to decreased burstiness and a weaker driving force for depolarizing currents.
The second effect, instead, reflects network properties and reveals key differences between
dissociated cortical cultures and in vitro/in vivo models with preserved architectures.

Indeed, while in cortical slices and intact brains awakening or activating neuromodu-
lation invariably results in the emergence of a sequence of waves of activity with a complex
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spatial-temporal distribution, in the case of cell cultures, the shape of the MUA-related
and LFP responses to the stimulation was quite similar, even after the application of CCh.
In fact, we noticed a slight decrease in the response to perturbation in terms of oscillations
(i.e., LFP analysis). Accordingly, computing PCI in the cultures revealed only a moderate
increase in PCI (~20%) under CCh, considerably lower than the changes observed in slices
(~80%, [25]) and in the human brain (~100%, according to [21], where comparison between
NREM sleep to wakefulnessis reported). The present disconnection between the complexity
of spontaneous activity (NC) and the complexity of causal interactions (PCI) in neuronal
cultures bears a general relevance and deserves further investigation. For example, it suggests
that the enabling factor represented by activating neuromodulation may not be sufficient
if the network lacks the appropriate architecture (i.e., is segregated or random, instead of
grid-like) [16,17]. It also prompts a reflection on how different measures of complexity
(i.e., spontaneous vs. perturbational) capture different aspects of the system under study,
warranting caution when making inferences [15].

Along these lines, an interesting addition to our experimental design could be to
use a cocktail of drugs [25,54], instead of CCh alone, to better resemble the landscape of
frequency oscillations observed in the awake human brain. An even more intriguing per-
spective is linked to the possibility to artificially ‘drive’ the connectivity of the cells within
the cultured network. Indeed, cell cultures are not necessarily random networks [9,60],
and, thanks to their versatility, one can manipulate neuronal growth to obtain networks
with different topologies [61–63], even with a 3D architecture [64–66]. This peculiarity
allows us to design networks [67] characterized by recurrent connections and feedback
loops more akin to those found in the thalamo-cortical circuit. Finally, brain organoids
represent the most recent and promising experimental preparation to study brain complex-
ity across states. They feature spontaneous neural oscillations typical of in vivo systems,
that can be modulated with different type of drugs. During development, brain organoids
mimic the corticogenesis process, allowing for the formation of 3D networks resembling
those of the real brain. Importantly, given the progress in the field, some authors [68] also
raised ethical questions about the possibility that brain organoids could one day experience
a conscious state. Although, even if there are still known reproducibility issues across
different studies [69] and recording electrophysiology signals from 3D networks still faces
important issues and needs to be ameliorated [70], brain organoids will be a fundamen-
tal experimental preparation for many studies in the neuroscience field, including the
investigation of complexity.

In the above perspective, recordings and perturbations in cell cultures may provide
interesting insights on the minimum requirements (in terms of micro and meso-scale
connectivity and neuromodulatory milieu) that are jointly needed for the emergence of
the kind of complexity that is found to be relevant in humans across physiological and
pathological brain state transitions.
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