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Abstract: Intermuscular bones (IBs) are only found in the muscles of fish. Bone morphogenetic protein
2 (bmp2) is considered to be the most active single osteogenesis factor. It promotes cell proliferation
and differentiation during bone repair, as well as inducing the formation of bones and cartilages
in vivo. However, detailed investigations of this family in fish are incredibly limited. Here, we have
used a variety of published and unpublished bmp2 sequences for teleosts and cartilage fish in order
to explore and expand our understanding of bmp2 genes in fish. Our results confirmed that teleost
genomes contain two or more bmp2 genes, and the diversity of bmp2 genes in vertebrates appears
to be as a result of a combination of whole genome duplication (WGD) and gene loss. Differences
were also observed in tissue distribution and relative transcription abundance of the bmp2s through
a transcriptomic analysis. Our data also indicated that bmp2b may play an important role in the
formation of IBs in teleosts. In addition, protein sequence alignments and 3D structural predictions of
bmp2a and bmp2b supported their similar roles in fishes. To summarize, our existing work provided
novel insights into the bmp2 family genes in fishes through a mixture of comparative genomic and
transcriptomic analysis.
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1. Introduction

Most aquaculture freshwater fish, in particular the cyprinidae species, contain a specific amount
of IBs which are hard-boned spicules that can be found in the muscle tissue on both sides of the
vertebrae [1]. IBs are only present in the myosepta of lower teleosts, and these are viewed as ossified
myoseptal tendons which develop directly from mesenchymal condensation [2]. Previous studies have
discovered that the appearance of intermuscular bones (IBs) can enhance the power of herbivorous
fish to a certain extent, which means that these fish can better adapt to the environment and evade
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natural predators [3–5]. The presence of IBs influences the farming and processing of teleosts, to some
degree, as well as decreasing the economic value and edibleness of the species, due to the fact that they
are difficult to remove [6]. While observing the potential value of the eradication of IBs, researchers
initiated the research of IBs in fish in the early 1960s [7]. Until now, almost all current research has only
focused on the IBs’ morphology in species of fish [8–10]. A very small amount of detailed research
has been conducted and little information is known in relation to the molecular mechanism for the
development of IBs.

Bone morphogenetic proteins (bmps) are active proteins which were extracted from adult bone
tissue by Urist in 1965. Apart from bmp1, other bmps are members of the changing growth factor-beta
(TGF-β) superfamily, which promote the formation of cartilage and bone tissue [11,12]. It was originally
believed that bmps only play a role in the formation of bone and cartilage in vertebrates, but now
it is believed that bmps play biological roles in various cell types [13]. In addition to inducing the
formation of bone and cartilage, bmps are also involved in regulating the development of teeth,
kidneys, skin, hair, muscles, hematopoiesis, and neurons, as well as maintaining iron metabolism and
vascular homeostasis in the body [14,15]. Bmp2 is considered to be the most active single factor of
osteogenesis [16]. Bmp2 has been widely studied in the bmp family since 1988, and it has played an
important role in bone induction, and become a therapeutic agent for the restoration of bones and
teeth [17,18]. Most data indicate that bmp2 is associated with the initial growth of various organs and
tissues of vertebrates, and that it is also involved in the early development of the skeletal system and
the formation of various organs [19,20]. Most current research into the bmp2 gene focuses on its role in
bone fragmentation and repair. The role of the bmp2 gene is still unclear in relation to the formation of
IBs in teleosts.

In recent years, the study of bmp2 has been extended to fish models in bone biology, in particular
the zebrafish (Danio rerio). Mowbray defined the mRNA expression patterns in the ears of developing
zebrafish as bmp2b, and provided supporting evidence that bmps play a vital role in a vertebrate’s
ear development [21]. Spatiotemporal expression patterns of bmp2 in zebrafish and Senegalese
sole (Solea senegalensis) revealed that all isoforms are stated in calcified tissues, but at a variety of
levels [22,23]. Also, bmp2a and bmp2b have been recognized as being part of zebrafish fin regeneration
or development [24,25]. Zebrafish swirl mutant which is triggered by alterations in the bmp2b gene [26]
indicates that bmp2b is vital during the early dorsoventral patterning. The studies of components of
bmp2 genes in other species of fish relating to bone biology are inadequate, and most studies relate
to the copy number of bmp2 genes. The bmp2 family is present in different members of different
species. Most tetrapods harbor a single bmp2 gene, while two bmp2 genes are reportedly presented in
teleosts [27]. Previous studies have shown that the bmp2b gene has the highest expression level in the
muscles of common carp (Cyprinus carpio) [28]. Furthermore, the bmp2a gene is highly expressed in
calcified bone tissue of the gilthead seabream (Sparus aurata) [29] and in the ovaries of African clawed
frogs (Xenopus laevis) [30].

Although expression patterns of bmp2 genes have been reported in a few boned fishes, a
comprehensive and comparative genomic and transcriptomic survey of these family genes in various
species of fish has not yet been undertaken. In this study, we extracted fish bmp2 genes (and their
encoding sequences) from several published genome sequences, in order to allow us to investigate
the presence or absence of species-specific bmp2 isotypes and their sequence differences throughout
various species. Comprehensive analysis was conducted for bmp2 genes in fish, including the analysis
of molecular structures, gene copy numbers, and phylogenetic relationships. Furthermore, the tissue
distribution of these genes was determined. Our results lay a solid foundation for further functional
studies of bmp2 genes in fish.
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2. Results

2.1. Variation of bmp2 Copy Number in Different Fish Species for a Phylogenetic Analysis

This study analyzed the bmp2a and bmp2b sequences (including gene sequence information and
protein sequence information) of 37 different vertebrates, including 28 species of fish. Table 1 displays
information of the bmp2 gene copy number which was obtained from the genome of 28 species of fish
and one species of amphibian using bioinformatics. Table S1 shows the publicly-reported sequence
information of bmp2a and bmp2b from 16 species of vertebrate (including eight species of fish and eight
species of mammal).

Table 1. The copy number of bmp2 genes from the fishes sequenced by our lab or collaborators.

Class Common Name Species Name bmp2a bmp2b

Actinopterygii Snakehead fish Channa argus 0 1
Large yellow croaker Larimichthys crocea 0 1
Giant-fin mudskipper Periophthalmus magnuspinnatus 0 1

Black porgy Acanthopagrus schlegelii 0 1
Cave-restricted golden-line fish (Sa) Sinocyclocheilus anshuiensis 2 2

Semi-cave-dwelling golden-line fish (Sr) Sinocyclocheilus rhinocerous 2 2
Surface-dwelling golden-line fish (Sg) Sinocyclocheilus grahami 2 1

Kanglang fish Anabarilius sgrahami 1 1
Catfish Silurus asotus 1 1

Channel catfish ictalurus punctatus 1 1
Lined_seahorse Hippocampus erectus 0 1

Longjaw grenadier anchovy Coilia macrognathos 1 0
Spotted gar Lepisosteus oculatus 0 1

Golden arowana Scleropages formosus 0 1
Bluntnose black bream Megalobrama amblycephala 1 1

Atlantic herring Clupea harengus 1 1
Hilsa shad Tenualosa ilisha 2 1

Mexican tetra mexicanus 1 1
Zebrafish Danio rerio 1 1

Japanese medaka Oryzias latipes 1 1
Nile tilapia Oreochromis niloticus 1 1

Gilthead seabream Sparus aurata 1 1
Tongue sole Cynoglossus semilaevis 1 1

Japanese flounder Paralichthys olivaceus 1 1
Atlantic salmo Salmo salar 2 2
Fugu rubripes Takifugu rubripes 1 1

Sarcopterygii Coelacanth Latimeria chalumnae 0 1
Holocephali Australian ghostshark Callorhinchus milii 1 1
Mammalis Platypus Ornithorhynchus anatinus 1 1

We performed gene copy number analysis of the bmp2 gene in fish genomes. Based on the results
of our analysis, the copy number of the bmp2 genes from different species has a certain variation.
There is only one bmp2 gene in the tetrapod genome (Homo sapiens, Mus musculus, Ornithorhynchus
anatinus, and Pan troglodytes), whereas there are two or more in the teleost genome. There are two bmp2
genes (bmp2a and bmp2b) in the genome of diploid teleosts, such as Nile tilapia (Oreochromis niloticus)
and bluntnose black bream (Megalobrama amblycephala), yet there are exceptions as there are four
bmp2 genes in the Atlantic salmon (Salmo salar) genome (two bmp2a and two bmp2b). We discovered
multiple copies in tetraploid teleosts, including surface-dwelling golden-line fish (Sinocyclocheilus
grahami, Sg), semi-cave-dwelling golden-line fish (Sinocyclocheilus rhinocerous, Sr), and cave-restricted
golden-line fish (Sinocyclocheilus anshuiensis, Sa). Golden-line fish have three or four bmp2 copies. In
addition, we analyzed the copy number of bmp2 genes in some ancient fish and discovered that only
one copy of the bmp2b gene was present in the spotted gar (Lepisosteus oculatus) and golden arowana
(Scleropages formosus).

In addition, we found that both diploid and polyploid fishes contain at least one copy of the bmp2b
gene. Interestingly, we discovered that some marine fish species lost their bmp2a genes, including the
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large yellow croaker (Larimichthys crocea) and black porgy (Acanthopagrus schlegelii). This could have
been due to gene loss during evolution or the inability to excavate the bmp2b gene from these species
due to genome assembly problems.

We constructed a phylogenetic tree, using all the acquired protein sequences of the bmp2 genes,
as displayed in Figure 1. Our results showed that all genes were clustered into three main branches.
The bmp2a genes of all fish and the bmp2 genes of tetrapods clustered into a large branch. However,
this large branch formed two small branches, namely the bmp2a gene branch of the teleosts and the
bmp2 genes branch of the tetrapods. All bmp2b genes of the teleosts were clustered into a branch. The
phylogenetic tree of the bmp2 gene family was constructed using phylogenetic analysis in order to
determine the specific subtype and evolutionary status of the bmp2 genes of certain species.
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Figure 1. Clustering of bmp2 genes. The phylogenetic analysis was performed by RAxML8.0.17.
Numbers on branches are bootstrap values. Scale bar indicates the rate of amino acid substitution per
residue. Although the MEGA tree is not shown here, it possesses the same tree topology. Different
bmp2 subfamilies are displayed with various colors: blue, teleost bmp2a; green, tetrapod bmp2; and
pink, teleost bmp2b.

2.2. Synteny Data

We used the zebrafish bmp2a and bmp2b gene sequences as reference points, and then selected
multiple upstream and downstream genes. The protein sequences of these genes were downloaded
and compared to the genomes of other species in order to find the two genes on the genomes and the
location of the upstream and downstream genes. The specific results are shown in the right-hand side
of Figure 2. From the results of the collinear analysis, it can be noted that even though certain species
have some gene loss, the distribution of bmp2a and bmp2b genes in the teleost genome is generally
conserved. For the most part, the hao1 gene and the tmx4 gene are present upstream of the bmp2a
gene in the genome of teleosts, and the drv1 gene, the napba gene, the mcm8 gene, and the crlsl gene
are present downstream of the bmp2a gene in the teleost genome. The upstream and downstream
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genes of the bmp2b gene are highly conserved in the teleost genome. The Gpcpd1 gene, trmt6 gene, and
fermt1 gene exist upstream of the bmp2b gene in the teleost genome. TAAR12j genes, TAAR12e genes,
TAAR12g genes, TAAR12f genes, TAAR12a genes, TAAR12b genes, TAAR12c genes, and TAAR10 gene
exist in the downstream of bmp2b genes in the teleost genome. We found that the distribution of the
bmp2 genes on the mammalian genome is different to the distribution of the bmp2a genes in teleosts.
Significant gene loss was discovered in the upstream and downstream of the mammalian bmp2 gene.
A significant amount of gene loss was discovered upstream and downstream of the bmp2a and bmp2b
genes of the Australian ghostshark (Callorhinchus milii). The collinear analysis also confirmed that the
bmp2a and bmp2b genes we extracted were reliable.
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Figure 2. Phylogenetic trees and synteny of bmp2a (A) and bmp2b (B). These maximum likelihood (ML)
trees (on the left-hand side of each figure) were constructed by FastTree v2.1.7. Bootstrap values are
shown on branches. The right-hand figures are synteny of the two bmp2 genes.

2.3. Sequence Alignment and Three-Dimensional (3D) Structure Prediction of Zebrafish bmp2a Gene and
bmp2b Gene

We predicted that the domains of the zebrafish bmp2a gene and bmp2b gene consisted of three
parts, both of which contained the TGFb_propeptide domain and the TGFB domain. Bmp2a also
contains a low complexity region, and bmp2b contains a signal peptide. TGFb_propeptide represents
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the propeptide region of TGF-β forming Latency associated peptide (LAP). TGF-β is concealed as a
potential complex, and is comprised of two parts: TGF-β dimer and TGF-β binding protein (LTBP).
Following translational processing, TGF-β is concealed as a complex consisting of TGF-β dimer and
TGF-β binding protein (LTBP) which are non-covalently bound to LAP. The potential TGF-β can be
targeted to the extracellular matrix by LTBP. LAP dimers typically bind to LTBP with disulfide bonds.
TGFB belongs to the transmuting growth factor-beta (TGF-β) family. TGFB is a multi-functional
peptide which controls the proliferation, differentiation, and other functions of several cell types.

Both the bmp2a gene and bmp2b gene of the zebrafish contain a common receptor protein with an
aserine/threonine kinase activation site in the spatial structure (see Figure 3). The serine/threonine
kinase activation site residues on bmp2a are located at amino acid positions (286, 288, 291, 293, 310, 313,
315, 317, 351, 353, 356, 378, and 383). The serine/threonine kinase activation site residues on bmp2b are
located at amino acid positions (311, 313, 316, 318, 335, 338, 340, 342, 376, 378, 381, 384, 403, and 408).
Both bmp2a and bmp2b in zebrafish have a receptor protein with the serine/threonine kinase activation
site, which suggests that this site may be significant for maintaining the function of the zebrafish bmp2
gene family.
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(B) the domain of zebrafish bmp2b, (C) alignment of bmp2a and bmp2b protein sequences of zebrafish,
(D) predicted 3D models of bmp2a and bmp2b of zebrafish, and (E) predicted 3D models of bmp2b
of zebrafish.
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2.4. Structural Analysis of bmp2a and bmp2b

Through the structural analysis of the bmp2a gene and bmp2b gene (see Figure 4), it was discovered
that both the bmp2a gene and bmp2b gene of teleosts contain two exons, and the exons and introns are
arranged in a very conserved gene. The model is consistent, and this suggests that bmp2a and bmp2b
genes could have acquainted functions.
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Figure 4. Exon–intron structures of bmp2a (A) and bmp2b (B). Boxes in red and yellow represent the
exons, while gray lines represent the introns.

We downloaded the three-dimensional structure information of human bmp2 protein from the
Protein Data Bank (PDB) database as a template for our analysis. The sequence alignment results and
three-dimensional structure analysis results are displayed in Figure 5. We focused on amino acid sites
which were thoroughly linked to the function and structure of bmp2 proteins. It was discovered that
certain amino acids around the 2HP ligand binding site were conserved in bmp2a and bmp2b genes. For
example, the two proteins of all species were isoleucine (Ile) residues, proline (Val) residues, alanine
(Ala) residues, and proline (Pro) residues at positions 304, 305, 306, and 307 (relative to the bmp2a
protein of zebrafish, see Figure 5). These amino acid residues can maintain the stability of the 2HP
ligand. Bmp2a protein and bmp2b protein were also conserved at the DIO ligand binding site. For
example, two proteins residues are tryptophan (Trp) residues, cysteine (Cys) residues, and tyrosine
(Tyr) residues at positions 301, 303, and 363. However, it was very different at positions 37, 60, and
124. The sites are proline (Pro) at position 37 in most mammals, while the bmp2a is leucine(Leu)in
other teleosts, and the bmp2b is phenylalanine(Phe) in most teleosts. The sites are aspartic acid (Asp)
at position 60 in most mammals, while the bmp2a is serine (Ser) in other teleosts, and the bmp2b is
glutamine (Glu) in most teleosts. At position 124, mammalian bmp2 and teleost bmp2a are arginine
(Arg), while teleost bmp2b is glutamine (Glu). These key sites of bmp2 may be involved in the evolution
of bmp2 in mammals and teleosts.
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Figure 5. Alignment of bmp2 protein sequences. These sequences were aligned with human bmp2 by
multiple sequence alignment based on fast Fourier transform (MAFFT) and colorized using TEXshade.
The secondary structural elements, alpha helix (α) and beta strand (β), are marked. The color code
for the conservation track ranges from red (the most conserved) to yellow (the least conserved) as
per TEXshade.

2.5. Transcriptional Level Studies of Various Tissues of Nile Tilapia and Bluntnose Black Bream

We chose two representative teleosts: the Nile tilapia and the bluntnose black bream. Eight tissues,
including IBs, spleen, heart, muscle, liver, brain, and fin were selected as research objects for the Nile
tilapia and bluntnose black bream. Using β-actin as an internal reference gene, the expression of bmp2
genes of Nile tilapia and bluntnose black bream in eight tissues which were ribs, intermuscular spines,
fins, brain, liver, muscle, heart and spleen was detected by quantitative real-time PCR (qRT-PCR). The
results indicated that the bmp2 genes were expressed in eight tissues of Nile tilapia and bluntnose black
bream, but the expression levels were all different (see Figure 6). Bmp2a had the highest expression
in the spleen, followed by IBs, ribs and fins, and muscle, brain, and liver, with the lowest expression
being in the heart of the bluntnose black bream. Bmp2b was highly expressed in the IBs, ribs, and fins,
and the expression in the liver, brain, and muscle was second. The expression in the heart and spleen
was the lowest in the bluntnose black bream. The expression of the bmp2 genes in various tissues of the
Nile tilapia was similar to that in the bluntnose black bream. Bmp2a had the highest expression in
muscle, IBs, rib, and fin, followed by spleen and brain, with the lowest expression in the liver and
heart of the Nile tilapia. Bmp2b was highly expressed in the muscle, liver, and the spleen, and second
in ribs, IBs, and fins. The expression was lowest in the brain and heart of the bluntnose black bream.
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Figure 6. Tissue distribution analysis of bmp2 of Nile tilapia and Bluntnose black bream were analyzed
by quantitative real-time PCR (qRT-PCR). Relative expression levels of bmp2a and bmp2b in the gill,
muscle, stomach, heart, brain, and hemolymph, with β-actin as an internal control. Letters R, I, F, B, L,
M, H, S stand for rib, intermuscular bones (IB), fin, brain, liver, muscle, heart, and spleen, respectively.
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3. Discussion

In this study, we researched several surfaces of bmp2 genes (with both bmp2a and bmp2b), and
gained novel insights into the structural variations and diversity of bmp2 in vertebrates from a genomics
point of view.

3.1. Possible Reasons for Copy Number Variations among Vertebrates

We analyzed variations of copy numbers of the bmp2a and bmp2b genes in different vertebrates
and concluded that the main causes of variations were genome-wide replication and gene deletion.
As we are aware from the relevant literature and studies, the general forefather of early vertebrates
experienced two rounds of whole genome duplication (WGD) [31,32]. All teleosts are generally
considered to have experienced at least three whole genome duplication events [33,34], and some fish
even experience a fourth genome duplication [35]. Our results suggested that when tetrapods and
teleosts are isolated, tetrapods lose the bmp2b gene, and there is therefore a bmp2a gene in tetrapods.
Two bmp2 genes (bmp2a and bmp2b) are generally present in the genome of diploid teleosts, such as
the bluntnose black bream. Some fish which have undergone a fourth round of genome duplication,
such as the tetraploid golden-line fish and Atlantic salmon, contain two bmp2a genes and two bmp2b
genes in their genomes. The copy number of the bmp2a gene in tetraploid fish genomes is not 2:1,
compared to the copy number of the bmp2a genes contained in the diploid fish genome, which indicates
that the bmp2a genes have been lost in the genome of tetraploid fish. Therefore, we can conclude
that the important factors for copy number variation in the bmp2a and bmp2b genes are genome-wide
duplication and gene deletion. Based on our findings, we projected that the important factors for copy
number variations of bmp2 in vertebrates were caused by a combination of gene loss and WGD. The
number of copies between diploid and tetraploid does not always correspond to one-to-two, due to
the selective loss of genes.

In addition, our synteny analysis results showed that the bmp2a and bmp2b genes are restricted
in the same species with different chromosomes, whereas all bmp2a and bmp2b genes, across species
share a preserved suite of genes binding them on both sides, although some species may display gene
loss. Interestingly, we determined that the synteny genes were not conserved between teleosts and
tetrapods, indicating that the bmp2 family genes experienced rearrangement from teleosts to tetrapods.

3.2. Adaptive Evolution of bmp2s in Vertebrates

IBs are common and play a role in muscle support and power transmission in the muscles of lower
teleosts [36,37]. The reason for the formation of IBs in lower teleosts could be that they are induced
by differentiation from muscle fibroblasts, and muscle mesenchymal cells [38,39]. Additionally, the
preference for food among lower teleosts is an important biological phenomenon [40–42]. According
to our findings, we discovered that herbivorous fish (such as the bluntnose black bream which has
more IBs) have more bmp2 genes than carnivorous fish (such as the snakehead fish which has fewer
IBs). Previous studies have reported that the existence of IBs enhances the power of herbivorous
fish to a certain extent, which allows these fish to better adapt to their environment and to evade
natural predators [3–5]. According to our phylogenetic analysis and protein structure comparisons, we
observed that some marine fishes, including the large yellow croaker (Larimichthys crocea) and black
porgy (Acanthopagrus schlegelii), only have one bmp2 gene (bmp2a), and this could result in fewer IBs
among marine fish.

Through the analysis of the expression levels of bmp2a and bmp2b in various teleost tissues, we
discovered that bmp2b is expressed mostly in the IB, ribs, and fins of the Nile tilapia and bmp2a is
expressed mostly in the spleen, muscle, and heart of the Nile tilapia, which is consistent with previous
studies of zebrafish [22,24,43]. With the bluntnose black bream, bmp2b were highly expressed in the
IB, ribs and fins. Furthermore, a higher expression level of bmp2a was observed in the soft tissue of
the spleen, muscle, and heart of the bluntnose black bream. This is also consistent with the previous
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findings [27,44]. Our results suggested that bmp2b is preferentially expressed in fishbone-related tissue
(such as IB, fins, and ribs), while bmp2a is mainly expressed in peripheral tissues (such as spleen,
muscle, and heart). This could be because bmp2a genes and bmp2b genes play different roles in teleosts,
and bmp2b may play an important role in the formation of IBs.

3.3. The Relationship between the Structure and Function of bmp2

Generally speaking, the structure of a protein determines its function [45]. In order to explore
possible functional differences between the various subtypes of the bmp2 gene family (bmp2a and
bmp2b), we compared the amino acid sequences in the two proteins of multiple species. Through
analysis of the important active sites of the bmp2a and bmp2b protein sequences of multiple species,
we discovered that the bmp2a and bmp2b proteins in all species are conserved in amino acid around
the 2HP ligand binding site, and the three-dimensional structures of bmp2a and bmp2b are also quite
similar. It was also discovered that the spatial structure of zebrafish bmp2a and bmp2b contains a
common receptor protein with a serine/threonine kinase activation site, and this indicates that bmp2a
and bmp2b could have similar functions.

4. Methods and Materials

4.1. Acquisition of bmp2a and bmp2b for Nucleotide and Protein Sequences

A total of 37 different vertebrate species, containing nine mammals and 28 species of fish were
observed for this study. Data were obtained using two different methods. For the first method,
unreported bmp2a and bmp2b sequences from 20 species of fish, which were results from complete
genome data produced by us and our collaborators (Table 1) was used. For the second method,
published bmp2a and bmp2b sequences were downloaded from the public databases Ensembl and
GenBank (Table S1). Potential homology-based bmp2a and bmp2b genes were recovered in detail from
fish genomes through the use of tBLASTn [46] with an e-value of 10−5. The BLAST results were then
treated by Perl script in order to find the best hit for each alignment. Finally, GeneWise v2.2.0 [47] was
employed in order to predict the bmp2a and bmp2b genes from the best hits.

4.2. Phylogenetic Analysis and Sequence Alignment

For further phylogenetic analysis, we utilized protein and nucleotide protein sequences of all
collected bmp2a and bmp2b genes. To summarize, MAFFT software [48] was used in order to align
protein sequences of bmp2 and a maximum likelihood (ML) phylogenetic analysis was conducted,
using the RAxML8.0.17 [49,50]. In addition, ML phylogenetic trees of the bmp2a and bmp2b isotypes
were created, using their corresponding coding sequences by FastTree v2.1.7 [51]. We also downloaded
a protein model of human bmp2 from the public Protein Data Bank (PDB) in order to compare structural
differences among the fish bmp2a and bmp2b.

4.3. Analyses of Conserved Synteny and Gene Structures

In order to assess the conservation of bmp2a and bmp2b genes, we observed different genes, which
are present in the downstream and upstream regions of each bmp2a and bmp2b paralog. Associated
genomic data was also received from GenBank and our lab, as mentioned above. The zebrafish genome
was utilized as the reference standard for the discovery of any bmp2a and bmp2b downstream and
upstream regions. The genome assemblies of a variety of species of fish were investigated using the
BLAST software, and the best hit was chosen, using a Perl script. GeneWise v2.2.0 was applied in order
to forecast bmp2a and bmp2b gene structures.

4.4. qRT-PCR Analysis of bmp2a and bmp2b for Nile Tilapia and Bluntnose Black Bream

In order to discover the distribution of tissues of bmp2 genes, we chose two representative fish.
The Nile tilapia with fewer IBs and the bluntnose black bream with more IBs were selected. Total RNA
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was isolated from rib, IB, heart, spleen, liver, brain, and fin of the adult bluntnose black bream and
Nile tilapia. With the use of an innovative method, the total RNA of IBs, ribs, and fins was isolated
(Chinese Patent No.201310673534) for bone-related tissues. After using the PrimeScript® RT reagent
kit, following DNase treatment, 1 µg total RNA was reverse-transcribed to single-strand cDNA (Takara,
Dalian). The transcriptional levels of bmp2a and bmp2b in various adult tissues were measured using a
quantitative real-time PCR (qRT-PCR) assay in a Roche LightCycler 480 (Roche, USA). qRT-PCR was
conducted using an AceQ® qPCR SYBR® Green Master Mix (Vazyme, Nanjing, China). The β-actin
was used as a control. PCR primers (Table S2) were utilized in order to intensify the blunt snout bream
bmp2a, bmp2b, and the β-actin. PCR reactions were performed for each reaction well containing 20 µL
PCR mixture, composed of 1 µL of each specific primer, 1 µL cDNA, 10 µL Green Master Mix (Table S2),
and 7 µL ddH2O. The reaction mixture was initially incubated at 95 ◦C for 3 min, followed by 40 cycles
of 72 ◦C for 20 s, 60 ◦C for 30 s, and 95 ◦C for 15 s, and, finally at 4 ◦C for 5 min. The comparative
expression ratio was normalized for the target genes with an internal reference β-actin gene and
expression levels of bmp2a and bmp2b. Final results were determined using the 2−∆∆Ct method [52].

4.5. Tertiary Structure and Function Prediction of Zebrafish bmp2 Protein

As mentioned earlier [53], I-TASSER was used to forecast the tertiary functions and structures of
bmp2a and bmp2b. Through C-score, the confidence of models is measured quantitatively, based on
the importance of the convergence parameters of the structure assembly simulations and threading
template alignments. Ordinarily, a C-score is in a range where a high value supports the corresponding
model with high confidence.

5. Conclusions

On the whole, we gained new insights into the fish bmp2 gene family by comparing genomics
and transcriptional studies. We acknowledged the presence of bmp2a and bmp2b in fish and noted
changes in gene copy numbers and the distribution of tissue between the species. We predicted that
the spatial structure of bmp2a and bmp2b in zebrafish would contain a common receptor protein
with a serine/threonine kinase activation site, indicating that the bmp2a and bmp2b genes have high
homology, which also implies that the site is likely to be a part of maintaining the function of the bmp2
gene family in zebrafish. Our results also provide strong evidence to support the findings that bmp2b
is expressed primarily in fishbone-related tissues (such as IB, fins, and ribs) and bmp2a is expressed
mostly in peripheral tissues (such as spleen, muscle, and heart), while bmp2b may play a significant
role in the formation of IBs in teleosts.

Supplementary Materials: The following are available online: http://www.mdpi.com/1422-0067/20/24/6137/s1.
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Abbreviations

TGF-β Transforming growth factor beta
LAP Latency associated peptide
MAFFT Multiple sequence alignment based on fast Fourier transform
hao1 Hydroxyacid oxidase 1
tmx4 Thioredoxin related transmembrane protein 4
Napba N-ethylmaleimide-sensitive factor attachment
crls1 Cardiolipin synthase 1
mcm8 Minichromosome maintenance 8
Gpcpd1 Glycerophosphocholine phosphodiesterase 1
trmt6 tRNA methyltransferase 6
fermt1 Fermitin family member 1
TAAR12j Trace amine associated receptor 12j
TAAR12e Trace amine associated receptor 12e
TAAR12g Trace amine associated receptor 12g
TAAR12f Trace amine associated receptor 12f
TAAR12a Trace amine associated receptor 12a
TAAR12b Trace amine associated receptor 12b
TAAR12c Trace amine associated receptor 12c
TAAR10 Trace amine-associated receptor 10
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