
fgene-12-669328 April 14, 2021 Time: 15:9 # 1

ORIGINAL RESEARCH
published: 20 April 2021

doi: 10.3389/fgene.2021.669328

Edited by:
Quan Zou,

University of Electronic Science
and Technology of China, China

Reviewed by:
Wei Chen,

North China University of Science
and Technology, China

Yongqiang Xing,
Inner Mongolia University of Science

and Technology, China

*Correspondence:
Gai-Fang Dong

donggf@imau.edu.cn
Jing Gao

gaojing@imau.edu.cn
Yong-Chun Zuo

yczuo@imu.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 18 February 2021
Accepted: 23 March 2021

Published: 20 April 2021

Citation:
Dong G-F, Zheng L, Huang S-H,

Gao J and Zuo Y-C (2021) Amino
Acid Reduction Can Help to Improve

the Identification of Antimicrobial
Peptides and Their Functional

Activities. Front. Genet. 12:669328.
doi: 10.3389/fgene.2021.669328

Amino Acid Reduction Can Help to
Improve the Identification of
Antimicrobial Peptides and Their
Functional Activities
Gai-Fang Dong1*†, Lei Zheng2†, Sheng-Hui Huang2, Jing Gao1* and Yong-Chun Zuo2*

1 Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal
Husbandry, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China, 2 The
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner
Mongolia University, Hohhot, China

Antimicrobial peptides (AMPs) are considered as potential substitutes of antibiotics in
the field of new anti-infective drug design. There have been several machine learning
algorithms and web servers in identifying AMPs and their functional activities. However,
there is still room for improvement in prediction algorithms and feature extraction
methods. The reduced amino acid (RAA) alphabet effectively solved the problems of
simplifying protein complexity and recognizing the structure conservative region. This
article goes into details about evaluating the performances of more than 5,000 amino
acid reduced descriptors generated from 74 types of amino acid reduced alphabet
in the first stage and the second stage to construct an excellent two-stage classifier,
Identification of Antimicrobial Peptides by Reduced Amino Acid Cluster (iAMP-RAAC),
for identifying AMPs and their functional activities, respectively. The results show that
the first stage AMP classifier is able to achieve the accuracy of 97.21 and 97.11%
for the training data set and independent test dataset. In the second stage, our
classifier still shows good performance. At least three of the four metrics, sensitivity (SN),
specificity (SP), accuracy (ACC), and Matthews correlation coefficient (MCC), exceed
the calculation results in the literature. Further, the ANOVA with incremental feature
selection (IFS) is used for feature selection to further improve prediction performance.
The prediction performance is further improved after the feature selection of each stage.
At last, a user-friendly web server, iAMP-RAAC, is established at http://bioinfor.imu.edu.
cn/iampraac.

Keywords: antimicrobial peptide, identification, reduced amino acid alphabet, two-stage classifier, supporting
vector machine

INTRODUCTION

Antimicrobial peptides (AMPs) are a kind of special polypeptide substance which exists in living
organisms (Bahar and Ren, 2013; Khamis et al., 2015; Lv et al., 2021a). It has a wide range of
biological functions, such as broad antibacterial spectrum, high antibacterial activity and difficult to
produce drug resistance (O’Brien-Simpson et al., 2018; Shoombuatong et al., 2018; Qin et al., 2019).
In particular, it has almost no toxic effect on normal cells of higher animals, and can specifically
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inhibit the growth of certain target tumor cells. In addition,
AMPs have multiple advantages such as the diversity of protein
molecular quaternary structure and physicochemical properties.
Therefore, AMPs have become research focus in the fields of
animal and human medicine (Hancock and Sahl, 2006; Popovic
et al., 2012; O’Brien-Simpson et al., 2018; Lv et al., 2021a),
nutrition, food science, and immunology. The utilization of
biological AMPs is expected to become an ideal way to solve the
problem of drug-resistant bacteria.

The identification of experimental method for biological
peptides is time-consuming and expensive, while computational
method can assist in the AMPs prediction and their antibacterial
activities classification. In the past decade, some machine learning
methods (Lata et al., 2007, 2010; Chen et al., 2016; Akbar et al.,
2017; Manavalan et al., 2017, 2018; Kabir et al., 2018; Yang et al.,
2021) have been developed to recognize AMPs, such as k nearest
neighbor method, random forest (Manavalan et al., 2018; Chung
et al., 2019), and support vector machine (SVM) (Hajisharifi et al.,
2014; Li and Wang, 2016; Meher et al., 2017; Zhang et al., 2021).
In recent years, the recognition of AMPs is not limited to the
problem of whether they are AMPs. Scientist begins to focus on

recognition of antimicrobial activities (Xiao et al., 2013; Lin and
Xu, 2016; Wang et al., 2017; Chung et al., 2019). Xiao used an
improved fuzzy k-nearest neighbor method to determine which
functional type this peptide belongs to (Xiao et al., 2013). Xu et al.
adopted the oversampling method to improve the classification
accuracy based on same dataset (Lin and Xu, 2016). In the past
3 years, models based on deep learning are gradually developed
(Veltri et al., 2018; Fang et al., 2019; Zeng et al., 2019) for AMPs
prediction, and better results have been achieved.

A good prediction method must be combined with an
effective feature extraction scheme to achieve better prediction
results. At present, there are many popular feature extraction
schemes, including amino acid composition (AAC) (Li and
Wang, 2016; Meher et al., 2017; Chung et al., 2019; Lv et al.,
2019a,b), pseudo amino acid composition (PseAAC) (Shen and
Chou, 2008; Khosraviana et al., 2013; Hajisharifi et al., 2014;
Zare et al., 2015), physicochemical properties (Melo et al.,
2011; Shua et al., 2013; Agrawal et al., 2018; Bhadra et al.,
2018; Chung et al., 2019; Schaduangrat et al., 2019; Lv et al.,
2020a; Zhang et al., 2020), binary position map (Chung et al.,
2019), position specific scoring matrix (PSSM) (An et al., 2019;

FIGURE 1 | The overall framework of our classifier. Training data set from DS1 or seven training data sets from DS2 are computed separately through amino acid
reduction, dipeptide feature extraction, supporting vector machine model training and 10-fold cross-validation model evaluation. Then, the best feature file with the
highest accuracy and the corresponding reduction type and cluster are determined. Next, the best features after feature selection or features from the best feature
file are used for model training. Finally, on the one hand, the independent test set is used for testing performances of model; on the other hand, the web server is
constructed with the trained model to provide two-stage prediction service.
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Kong and Zhang, 2019; Wang et al., 2019; Zhou et al., 2019; Zhu
et al., 2019), gene ontology method (GO) (Camon et al., 2003;
Wan et al., 2013; Zhou et al., 2017; Cheng et al., 2018), reduced
amino acid (RAA) (Zuo et al., 2015, 2019; Zheng et al., 2019). For
example, Lee introduced the concept of n-gram (Chung et al.,
2019), calculated the features in n-gram using binary location
map, and used the feature selection method for multi feature
fusion, which has achieved good results in the classification
practice of seven kinds of AMPs. Nalini Schaduangrat used the
feature extraction method of amphiphilic pseudo amino acids
composition (Schaduangrat et al., 2019) Am-PseAAC to predict
anti-cancer peptides, and achieved a total accuracy of 95.61%.

The simplified amino acid alphabet is to reduce the alphabet
of 20 natural amino acids to 2–19 groups by using different
amino acid reduction methods (Zuo et al., 2017; Zheng et al.,
2020). It not only includes physicochemical difference, such as
hydrophilicity, hydrophobicity, polarity, charge, etc., but also
contains a series of mathematical methods to simplify the
natural amino acid alphabet, such as the number of residue
types (Pape et al., 2010), the distances between amino acids
(Wang and Wang, 1999), the perspective of evolution (Nanni and
Lumini, 2008). Markov process, corresponding instantaneous
replacement rate matrix (Kosiol et al., 2004), the conditional
probability deviation from the random background (Liu et al.,
2002),etc. Using a simplified alphabet can reduce the complexity
of protein sequences while retaining the key information encoded
in the sequences.

Therefore, in this paper, in order to improve the prediction
performance of AMPs and their functional activities, there are
5,032 RAA descriptors are generated and computed based on
RAACBook (Zheng et al., 2019). Furthermore, the amino acid
reduction classifier for identifying AMPs and their activities
is constructed. Finally, a freely accessed two-stage web server,
named iAMP-RAAC, is build. In the first stage, whether an input
sequence is an AMP is calculated, and its functional activity type
is further predicted in the second stage. The results show that our
classifier achieves good prediction performance both in the first
stage and the second stage.

MATERIALS AND METHODS

In order to clarify clearly the research ideas used in this paper,
we draw the flow chart of our two-stage classifier as Figure 1.
The details of the flowchart are described step by step in this
chapter sections.

Benchmark Dataset
The number of peptides with experimentally confirmed
antimicrobial activities is very small. Thus, selecting proper
negative samples for training is a challenge of building
the benchmark dataset. To solve this challenge, a distance
based method was proposed to select negative samples for
constructing a high quality benchmark dataset by Chen
(Chen et al., 2018). By using this method, the representative
negative samples could be obtained by calculating the
Euclidean distance.

In this work, for the comparison convenience, we use dataset
the same as that in literature (Chung et al., 2019). It has two
sets of data. DS1 is used in the first stage classifier, which is
composed of training set and independent test set. The specific
construction method is as follows: firstly, 6,766 positive sequences
were downloaded from various data sources (Tyagi et al., 2013,
2015; Mehta et al., 2014; Qureshi et al., 2014; Lee et al., 2015; Fan
et al., 2016; Wang et al., 2016; Manavalan et al., 2017; Agrawal
et al., 2018); secondly, the sequences of lengths ranging from 5 to
255 were collected from AmPEP and UniProt, and the unnatural
amino acids B, J, O, U, X, and Z were filtered; thirdly, the CD-HIT
(Li and Godzik, 2006) and CD-HIT-2D (Li and Godzik, 2006)
were used successively to delete the homologous sequences in the
positive and negative data sets with a threshold of 50% identity;
finally, 70% of the sequences in the positive and negative data set
were used as the training set, including 1,686 positive and 16,428
negative samples respectively, and the other 30% of the sequences
were taken as independent test sets, including 723 positive and
7,041 negative samples respectively.

DS2 is the data set of the second stage classifier. It consists
of 7 training sets and 7 independent test sets corresponding to 7

TABLE 1 | The Number of AMPs of seven AMP functional activities on training set
and testing set for DS1 and DS2.

Activities Positive samples
(training/testing)

Negative samples
(training/testing)

Anti-parasitic 140/60 700/1,914

Anti-viral 1,400/601 2,451/1,374

Anti-cancer 219/94 1,095/1,881

Targeting
mammals

215/93 1,075/1,882

Anti-fungal 1,912/820 1,261/1,155

TGPB 1,930/828 1,624/1,147

TGNB 1,931/828 1,635/1,147

“TGPB” means Targeting Gram-positive bacteria; “TGNB” means Targeting Gram-
negative bacteria.

TABLE 2 | Reduction descriptors when reduced type is 1 and cluster size
are 2–19.

Cluster
Size

Reduced amino acid cluster Sequence after
reduction

2 LVIMCAGSTPFYW-EDNQKRH LEEELLLLLELELLELEL

3 LASGVTIPMC-EKRDNQH-FYW LEEELLFLLELELLELEL

4 LVIMC-AGSTP-FYW-EDNQKRH AEEEALFLAEAEAAEAEL

5 LVIMC-AGSTP-FYW-EDNQ-KRH AEEKALFLAEAKAAKAKL

6 LVIM-AGST-PHC-FYW-EDNQ-KR AEEKPLFLPEPKPPPPKL

8 LVIMC-AG-ST-P-FYW-EDNQ-KR-H AEEKPLFLPEPKPPHPKL

10 LVIM-C-A-G-ST-P-FYW-EDNQ-KR-H GEEKPLFLPEPKPPHPKL

12 LVIM-C-A-G-ST-P-FY-W-EQ-DN-KR-H GDDKPLFLPEPKPPHPKL

15 LVIM-C-A-G-S-T-P-FY-W-E-D-N-Q-
KR-H

GNNKPLFLPQPKPPHPKL

18 LM-VI-C-A-G-S-T-P-F-Y-W-E-D-N-Q-
K-R-H

GNNRPVYVPQPRPPHPRV

20 L-V-I-M-C-A-G-S-T-P-F-Y-W-E-D-N-Q-
K-R-H

GNNRPVYIPQPRPPHPRI
(original sequence)
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TABLE 3 | Performance comparisons of iAMP-RAAC and the other three methods
on training set in DS1 based on 10-fold cross-validation.

Method SN (%) SP (%) ACC of
BFS/ACC of

AFS

MCC (%) Number of
features for
BFS/number
of features

for AFS

iAMP-
RAAC

84.30 98.94 97.21%/
97.23%

82.84 361/336

AMPfun
(Chung
et al.,
2019)

94.88 95.11 95.09%/− 77.06 9,367/2,452

SVM 94.33 94.29 94.3%/− 74.47 −/−

DT 83.40 98.26 96.87%/− 81.47 −/−

“−” means that there is no value in the corresponding item; “BFS” means Before
Feature Selection and “AFS” means After Feature Selection. N(BFS) means number
of features BFS; N(AFS) means number of features AFS.

different AMPs activities respectively, as shown in Table 1. Firstly,
positive sample sequences were downloaded from multiple AMP
databases (Chung et al., 2019). If a sequence has some activity,

then put it in the positive set of that activity; at the same time
put it in negative sets of other activities. The data sets of 7 AMPs
activities were constructed in the same way. Then, 70% of the
7 data sets were randomly selected as training set and 30% as
independent test set. Finally, CD-HIT-2D (Li and Godzik, 2006)
was used to remove homologous and redundant sequences with
a threshold of 50% identity.

Feature Extraction
The RAACBook (Zheng et al., 2019) provides 74 kinds of amino
acid reduction types. Each type can produce up to 18 different
reduction clusters between 2 and 19. For the training datasets in
DS1 and DS2, 629 amino acid reduced descriptors were generated
after removing the repetitive ones in the first stage, and 4,403
(629 × 7) amino acid reduced descriptors were generated after
removing the repetitive ones in the second stage. So, there are
a total of 5,032 amino acid reduced descriptors in our classifier.
The input sequences are computed by the amino acid reduction
descriptors and dipeptide composition successively. For example,
for the AMP sequence:

> ap00006 GNNRPVYIPQPRPPHPRI

FIGURE 2 | Heat map of ACC values with reduced types from 1 to 20 and cluster size of 2 to 19 on training dataset in DS1. In general, the color gradient from green
to red indicates the increasing trend of the values of ACC, and the areas with “None” indicate that there are no such reduction descriptors at the intersections of the
corresponding reduction types and cluster sizes.
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Supposing the reduction type 1, i.e., BLOSUM50 matrix, it
could generate 10 different amino acid reduction descriptors.
The 10 cluster sizes, the clusters and sequences after reduction
are shown in Table 2. If cluster size equals to 2, then the other
amino acid will be replaced by the first amino acid “L” or “E” in
“LVIMCAGSTPFYW” or “EDNQKRH”. The methods of other
cluster sizes for reducing process are similar.

Dipeptide composition is widely used in protein feature
extraction, and its calculation method is as Formula (1). N is the
length of an input sequence, pi or pj is a kind of amino acid from
20 natural amino acids, and Num(pi pj) represents the number of
string pi pj.

Com
(
pipj

)
=

Num(pipj)
N−1

(1)

Model Construction
This paper constructed a two-stage classifier, iAMP-RAAC. In the
first stage, a binary classification model was constructed, and in
the second stage, 7 binary classification models corresponding 7
antimicrobial activities were constructed. So we have a total of
eight models. SVM is an outstanding model in machine learning
algorithms, so in our study, we adopt this model for training
and evaluation of the 8 models. In order to achieve competitive
performance, we use gauss kernel function and grid search

FIGURE 3 | Feature selection process when reduction type is 5 and cluster
size is 19 in the first stage on training set in DS1. The horizontal axis
represents the number of features, and the vertical axis represents the value of
ACC. The number of selected features and the value of corresponding ACC
are marked on the curve.

strategy for getting the best super parameters. The searching
ranges of super parameter gamma, C are shown as formula (2).{

2−n ≤ gamma ≤ 2n

2−n ≤ C ≤ 2n
(2)

Performance Evaluation
We use sensitivity (SN), specificity (SP), accuracy (ACC),
Matthews correlation coefficient (MCC) to measure the quality
of the classifier for DS1 and DS2 (Amanat et al., 2020; Chen et al.,
2020; Ikram et al., 2020; Ilyas et al., 2020; Kong et al., 2020; Liang
and Zhang, 2020; Lv et al., 2020b, 2021b). The calculation formula
is as formula (3).

SN = TP
TP+TN

SP = TN
TN+FP

ACC = TP+TN
TP+TN+FP+FN

MCC = (TP∗TN)−(FP∗FN)
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(3)

Where TP, true positives, represents the number of positive
samples correctly predicted.TN, true negatives, indicates the
number of correctly predicted negative samples. FP, false
positives, represents the number of positive samples predicted
incorrectly. FN, false negatives, indicates the number of negative
samples predicted incorrectly (Patil and Chouhan, 2019; Long
et al., 2020; Lv et al., 2020c, 2021c; Smolarczyk et al., 2020;
Tahir and Idris, 2020; Tripathi et al., 2020; Wang et al., 2020;
Zhu et al., 2020).

Feature Selection
Protein prediction is very similar to text classification. The
commonly used feature selection methods in text classification,
such as ANOVA and Chi-Square Test, have the defect of
favoring low-frequency words. But dipeptide feature extraction
method makes up for this defect. So, in this paper, ANOVA
and incremental feature selection (IFS) were employed to extract
useful features to improve prediction performance (Feng et al.,
2019). Firstly, ANOVA was used to compute the variance values
of all features; secondly, sort the features according to the values
of ANOVA; finally, the best n features are determined by adding
features step by step according to a preset step size.

Model Validation
Among the three validation methods of jackknife validation,
k-fold cross validation and independent test set validation,
jackknife is recognized as the most objective and rigorous cross
validation method, because its calculation results are always
unique. However, in order to compare with the results of

TABLE 4 | Performance comparisons of iAMP-RAAC and the other method on independent test set in DS1.

Method SN (%) SP (%) ACC (%) MCC (%) AUC (%) Number of Features

iAMP-RAAC 88.44 97.91 97.11 82.24 98.47 361

AMPfun – – – – 98.94 2,452

“–” means that there is no value in the corresponding item.
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FIGURE 4 | Result of feature selections for seven AMP functional activities. The horizontal axis represents the number of features, and the vertical axis represents the
value of ACC. The number of selected features and the value of corresponding ACC are marked on the curve.
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literature, this paper uses 10-fold cross validation to train model
and uses independent test set to evaluate model.

Webserver Development
An interface friendly webserver was developed with classifier
iAMP-RAAC embedded. People can freely access the website and
compute an/inquiring peptide(s). The address of the webserver is
http://bioinfor.imu.edu.cn/iampraac.

RESULTS AND DISCUSSION

Performance Evaluation for AMPs and
Non-AMPs
We firstly evaluate the four predictors that trained based on
the training set in DS1 by 10-fold cross-validation and list the
results in Table 3. It can be seen that iAMP-RAAC obtains the

maximum SP, ACC, and MCC of 98.94, 97.21, and 82.84% with
361 features respectively, while AMPfun got the ACC of 95.09%
with 9,367 features. There are two reasons for the improvement
of performance. On one hand, the application of Gaussian kernel
function of SVM and the search strategy of hyper parameter
makes model find best parameters (Gamma = 2, C = 2); on the
other hand, the amino acid sequence with appropriate reduction
contains more refined and useful features. Thus, the ACC of
iAMP-RAAC exceeds 2.12% of that by AMPfun, conversely, the
number of features is only 3.85% of that by AMPfun.

Figure 2 and Supplementary Figure 1 show all ACC values
from cluster size 2 to 19 in range of amino acid reduction type 1
to type 20. When reduced type is 5 and cluster size is 19, classifier
gets the best accuracy of 97.21%. Here, a fact needs to be state that
we have calculated all the 629 descriptors of 74 types separately
and they are 1–20, 21–40, 41–60, and 61–74, respectively. Since
the highest ACC appears in type 5 and cluster size 19, only the

TABLE 5 | Performance comparisons of iAMP-RAAC and RF (Chung et al., 2019) on training set in DS2 in the seven different AMP functional activities based on 10-fold
cross-validation.

Activity Method SN (%) SP (%) ACC (%) MCC (%)

Anti-parasitic iAMP-RAAC 50.00 96.43 88.69 54.65

RF 75.26 83.66 82.02 49.55

Anti-viral iAMP-RAAC 88.21 94.70 92.34 83.41

RF 91.09 93.24 92.47 83.82

Anti-cancer iAMP-RAAC 52.12 97.99 90.34 61.19

RF 76.73 78.88 78.55 45.07

Targeting mammals iAMP-RAAC 69.72 96.93 92.40 71.20

RF 86.77 88.93 88.53 66.20

Anti-fungal iAMP-RAAC 91.27 78.58 86.23 71.04

RF 85.73 85.53 85.65 70.50

TGPB iAMP-RAAC 89.90 88.61 89.31 78.51

RF 88.52 88.48 88.51 76.87

TGNB iAMP-RAAC 90.58 87.83 89.32 78.50

RF 88.05 88.15 88.09 76.06

TABLE 6 | Performance comparisons of iAMP-RAAC and other methods on independent test set in DS2 in the seven different AMP functional activities.

Activity Method SN (%) SP (%) ACC (%) MCC (%)

Anti-parasitic iAMP-RAAC 14.10 97.91 91.29 18.88

AMPfun 61.67 77.32 76.85 15.70

Anti-viral iAMP-RAAC 76.64 95.05 88.51 74.58

AMPfun 90.85 84.06 86.13 70.75

iAMPpred (Xiao et al., 2013) 31.28 39.59 37.06 -26.82

AVPpred (Thakur et al., 2012) 24.09 88.57 69.01 16.43

Anti-cancer iAMP-RAAC 30.48 97.93 91.54 39.07

AMPfun 77.66 70.60 70.94 22.08

MLACP (Manavalan et al., 2017) 72.34 75.12 74.99 22.72

Targeting mammals iAMP-RAAC 25.66 98.00 89.72 35.56

AMPfun 78.49 80.45 80.35 29.98

Anti-fungal iAMP-RAAC 63.61 91.21 74.73 54.57

AMPfun 85.61 66.75 74.58 51.86

iAMPpred (Xiao et al., 2013) 66.10 72.12 69.62 37.96

TGPB iAMP-RAAC 67.03 90.09 77.16 57.45

AMPfun 88.77 63.73 74.23 52.54

TGNB iAMP-RAAC 68.28 89.37 77.92 58.21

AMPfun 85.75 65.74 74.13 51.16

Frontiers in Genetics | www.frontiersin.org 7 April 2021 | Volume 12 | Article 669328

http://bioinfor.imu.edu.cn/iampraac
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-669328 April 14, 2021 Time: 15:9 # 8

Dong et al. Identification of Antimicrobial Peptides

heat map and histogram of type 1 to 20 are shown. It can be
seen that the expression of histogram and heat map are consistent
and when the cluster size is more than 10, the classification
performance will be significantly improved. This may be because
if the size of the cluster is too small, it is hard to express all the
information of the sequence.

We want to know whether the prediction performance will be
further improved after feature selection based on the current best
performance (Reduction type = 5, Cluster size = 19). Figure 3
shows the feature selection process when cluster size is 19 and
reduced type is 5. We can see that the accuracy of iAMP-RAAC
is improved from 97.21 to 97.23%, and the number of features is
reduced from 361 to 336. Although AMPfun reduced the number
of features from 9,367 to 2,452 after feature selection, compared
with iAMP-RAAC, the latter is only 13.70% of the former. This
result proves that combination of ANOVA and IFS is an effective
method to filter useful features.

We compare the performance of iAMP-RAAC and AMPfun
on independent test set. As seen in Table 4, AMPfun acquired
AUC of 98.94% by 2,452 features, while iAMP-RAAC gets that of
98.47% by only 361 features. Although AMPfun didn’t calculate
SN, SP, ACC and MCC, we find that the evaluation metric values
on independent test set are lower than that on training set for
most datasets in general. Because the SP, ACC and MCC of iAMP-
RAAC on the independent test set are higher than those on
the training set of AMPfun, therefore, we believe metric values
of iAMP-RAAC performs better than that of AMPfun on the
independent test set.

Performance Evaluation of AMPs With
Various Functional Activities
In order to investigate the classification performance of seven
different antimicrobial functional activity classifiers on the
training set in DS2, we evaluate RF and iAMP-RAAC. As shown
in Table 5, except anti-viral, each ACC and MCC of iAMP-RAAC
exceed RF, especially ACC of anticancer peptides exceed 15% of
that of RF, and MCC of targeting mammals exceed 36% of that
of RF. Although the performances of SN for several activities are
lower than that of RF, iAMP-RAAC performs better than RF as a
whole. It may also imply that any model is not perfect and each
has its own advantages and disadvantages.

In order to illustrate the effectiveness of feature selection,
we make corresponding feature selections after obtaining the
optimal type and corresponding cluster size (as is shown in
Supplementary Table 1) of 7 antimicrobial activities. As seen
in Figure 4, compared with Table 5, the accuracy of anticancer
peptides increases from 90.34 to 90.49%, and the number of
features decreases from 225 to 182. It is similar with antifungal
peptides, Gram-negative bacteria, targeting mammals, and anti-
parasitic peptides. Overall, although the improvement is small,
the feature selection process guarantees the minimum number
of features and the maximum accuracy of each functional
activity of AMPs.

To validate robustness of our model, iAMP-RAAC is further
compared with other prediction tools on independent test
set, such as AMPfun, iAMPpred, AVPpred, and MLACP. The

performances of iAMP-RAAC and other methods with respect
to various functional activities on the independent test set are
displayed in Table 6. Overall, iAMP-RAAC achieves much higher
SP, ACC and MCC values for all functional activities than other
methods, for example, the values of SP for iAMP-RAAC almost all
exceed 90.00% except that of Targeting Gram-negative bacterial,
and are much higher than other methods. Our ACC values
are 15.44 and 20.60% higher than those of AMPfun for anti-
parasitic and anti-cancer peptides, while the values of SN are not
so good. This is consistent with the comparison results on the
training set in DS1.

Case Study
We obtained the data set of 1,028 anti-fungal peptides by
searching anti-fungal peptides in UniProt database as an example
to further illustrate the usability of our classifier. These 1,028
anti-fungal peptides took less than a minute to calculate at our
webserver, and 892 of them were correctly identified. However,
the AMPfun does not support uploading files composed of batch
sequences. It can only paste sequences in FASTA format into the
input box and the format is strict, so, it is difficult to calculate
results successfully. For iAMPpred, it takes about 1 m to predict
a sequence and can’t predict more than five sequences at a time,
so it may be not practical.

CONCLUSION

In this work, a two-stage classifier was constructed by pre-
processing the input sequences with 5,032 amino acid reduction
descriptors to complete the prediction of AMPs and their
functional activities. The hybrid of amino acid reduction can
significantly improve the prediction performance of the classifier.
Whether on training set or on independent test set, whether
AMPs or their functional activities, the prediction accuracy of
the classifiers exceed almost all those in the existing literature.
The feature selection process made it possible to obtain the
best prediction accuracy values by using the least number of
features. Further, by calculating all clusters of all reduction types,
the best amino acid reduction types and cluster sizes for AMPs
and their functional activities were obtained. According to the
biological significance of some specific reduction type and their
cluster found, biologists will be able to design new anti-infective
drugs with fine granularity to AMPs and some specific activity.
In the future, we will further analyse the importance features
to find the correlation between characteristics and activities. In
addition, the combination of amino acid reduction and graph
neural network or other deep learning methods (Dao et al., 2020;
Wang et al., 2021) is also considered to further improve the
prediction performances.
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