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Abstract: Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using
image information and is a key component for autonomous vehicles and robotics. This paper
proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig
with optical flow analysis. An objective function fitted with a set of feature points is created by
establishing the mathematical relationship between optical flow, depth and camera ego-motion
parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly,
the six motion parameters are computed by minimizing the objective function, using the iterative
Levenberg–Marquard method. One of key points for visual odometry is that the feature points
selected for the computation should contain inliers as much as possible. In this work, the feature
points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT)
algorithm. A circle matching is followed to remove the outliers caused by the mismatching of
the KLT algorithm. A space position constraint is imposed to filter out the moving points from the
point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is
employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining
points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach
presented here is tested on real traffic videos and the results prove the robustness and precision of
the method.

Keywords: visual odometry; ego-motion; stereovision; optical flow; RANSAC algorithm; space
position constraint

1. Introduction

Vehicle ego-motion estimation is a prerequisite for applications such as autonomous navigation
and obstacle detection, and therefore acts as a key component for autonomous vehicles and robotics [1].
Conventionally, vehicle ego-motion is measured using a combination of wheeled odometry and
inertial sensing. However, this approach has limitations: wheeled odometry is unreliable in slippery
terrain and inertial sensors are prone to drift due to error accumulation over a long driving distance,
resulting in inaccurate motion estimation. Visual odometry (VO) estimates the ego-motion of an agent
(e.g., vehicle and robot) using the input of a single or multiple cameras attached to it [2]. Compared to
conventional wheeled odometry, visual odometry promises some advantages in terms of cost,
accuracy and reliability. This paper presents a robust vehicle ego-motion estimation approach for
urban environments which integrates stereovision with optical flow.
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1.1. Related Work

Visual odometry has been studied for both monocular and stereo cameras. Nister et al. [3]
presented one of the first visual odometry using a monocular camera. They used five consecutively
matched points to generate an eigenmatrix, and accordingly solved for translational and rotational
parameters with a scale factor. A major issue in monocular VO is the scale ambiguity. In monocular VO,
feature points need to be observed in at least three different frames. The transformation between the
first two consecutive frames in monocular vision is not fully known (scale is unknown) and is usually
set to a predefined value. Ke and Kanade [4] virtually rotate the camera to the downward-looking pose
to eliminate the ambiguity between rotational and translational ego-motion parameters and improve
the Hessian matrix condition in the direct motion estimation process.

In comparison, stereovision enforces a baseline distance between the two cameras and can
triangulate the feature positions with left and right frames to obtain their 3-dimensional (3D)
coordinates, thereby resolving the scale ambiguity problem and leading to more accurate results.
A solid foundation of a stereovision based visual odometry was provided in [5]. The presented
algorithm is for estimating the robot's position by tracking landmarks in a scene. It proved that
a stereovision system provides better estimation results than a monocular system. Since then,
many stereo-vision based methods have been developed. The two cruxes of these methods are the way
of establishing the objective function, and that the feature points selected for the calculation should
contain inliers as much as possible. The approach presented in [6] estimated the motion parameters
based on dual number quaternions, and the objective function to be minimized was expressed in 3D
space. Ni et al. [7] computed poses using 3D space point correspondences. The transformation between
the frames was then estimated by minimizing the 3D Euclidean distance between the corresponding
3D points and the solution was solved by an optimization procedure. The main disadvantage of
reconstructing the 3D points and formulating the problem as 3D to 3D pose estimation is the sensitivity
to stereo reconstruction errors. Some methods estimate the 6 degrees of freedom (6-DoF) motion and
the extrinsic parameters of the camera rig in image plane through trifocal tensor [8] or quadrifocal
tensor [9] approaches, which help to eliminate reconstruction errors.

Many stereo-based methods combine stereo with optical flow to establish an objective function
fitted with a set of feature points, and accordingly solve for the motion parameters by minimizing
the objective function [10–15]. One of the key points for these methods is that the feature points
selected for computation should not contain outliers, which can be produced by moving objects,
mismatching or other factors. Geiger et al. [10] projected feature points from the previous frame into
3D via triangulation using the calibration parameters of the stereo camera rig, and then re-projected
them into the original image. The camera ego-motion was computed by minimizing the sum of
re-projection errors. They also placed a standard Kalman filter to refine the results. Talukder et al. [11]
initially estimated the motion parameters using all image points, rejected outlier points based on
initially estimated motion parameters, and re-estimated the motion parameters with the iterative least
mean-square error (LMSE) estimation, using filtered feature points. Kitt et al. [12] performed the
Longuet–Higgins equations with a sparse set of feature points with given optical flow and disparity to
reject feature points lying on independently moving objects in an iterative manner. Kreso et al. [13]
removed outliers with a permissive threshold on the re-projection error with respect to the ground truth
motion. Fanfani et al. [14] proposed a stereo visual odometry framework based on motion structure
analysis. The approach combines the key-point tracking and matching mechanism with the effective
key-frame selection strategy to improve the estimation robustness. The approach introduced in [15]
was a stereo-based Parallel Tracking and Mapping (S–PTAM) method for map navigation. The process
of the method was composed of two parts: tracking the features and creating a map. The extracted
feature descriptors are matched against descriptors of the points stored in the map. The matches are
then used to refine the estimated camera pose using an iterative least squares minimization method to
minimize re-projection errors.
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Urban traffic situations present difficulties for visual odometry since there are many moving
objects in a scene. The point set obtained by the above methods unavoidably contains many moving
points when a large area of image is composed of moving objects. To achieve true static feature
points, Reference [16,17] proposed that only feature points on the ground surface were selected
for ego-motion estimation. However, the methods are comparatively poor in adaptability to the
environment because a plenty number of effective ground feature points are hard to be extracted in
some situations. He et al. [18] utilized visual-inertial sensors to cope with complex environmental
dynamics. The robustness of motion estimation was improved since they proposed a visual sanity
check mechanism by comparing visually estimated rotation with measured rotation by a gyroscope.
However, this method incorporates the gyroscope and thus is not a purely vision-based approach.
To overcome these issues, this paper proposes a novel method for estimating the 6-DoF ego-motion in
urban environments by integrating optical flow with stereovision.

1.2. Overview of the Approach

In this work, stereovision and the sparse optical flow tracking method are combined to estimate
the motion state of a moving camera. An objective function is created by establishing the mathematical
relationship between the optical flow caused by a camera’s motion, the depth and the ego-motion
parameters. The motion parameters of the camera are computed by minimizing the objective function
using an iterative optimization method.

Figure 1 gives an overview of the approach in a tracking cycle. Firstly, the feature points and
their optical flow are detected by using the Kanade–Lucas–Tomasi (KLT) algorithm [19]. The depth
information of the feature points is obtained from the stereovision method detailed in our previous
work [20]. To remove the outliers caused by KLT mismatching between the consecutive frames and
stereo mismatching between left and right images, a circle matching is followed with. Since the circle
matching is only conducted in the first frame of a tracking cycle, the block in the flowchart is marked
with a dashed frame. The feature points selected by the KLT algorithm may contain a great deal of
moving points, and must be filtered out for the minimization computation. To do so, a space position
constraint (SPC) is imposed to discriminate between static points and moving points. Afterwards,
the Random Sample Consensus (RANSAC) algorithm [21] is employed to further refine the feature
point set, i.e., to eliminate the effects of outliers. The remaining feature points are fitted in the objective
function and the Levenberg–Marquard (LM) algorithm [22] is used to solve for the six ego-motion
parameters by minimizing the objective function.
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After the calculation of the ego-motion parameters of the first frame, the remaining points
are tracked in the subsequent frames. In theory, solving for six variables requires a minimum of
three known static feature points for computation. In this study, the minimum number of the points
involved in the computation is set to be 100 to ensure the computation accuracy. It will start the next
round of tracking if the feature points drop below this value as the tracking proceeds. The SPC and
RANSAC algorithm are applied in every frame. The combination of the tracking, SPC and RANSAC
algorithm increases the proportion of the inliers frame by frame and also reduces computation cost.

In this work, the stereo matching is employed to measure 3D position (X, Y, Z) of feature points
which are used by the objective function and SPC. In addition, the stereo matching is also used in the
circle matching process.

2. Proposed Method

2.1. 3-Dimensional Motion Model and Objective Function

The camera’s 3-dimensional motion and planar imaging model is represented in Figure 2.
The origin of the world coordinate system (X, Y, Z) is located at the center of image coordinates
(x, y), and the Z-axis is directed along the optical axis of the camera. The translational velocity of the

camera is
⇀
V =

(
Vx Vy Vz

)
, and the rotational velocity

⇀
W =

(
Wx Wy Wz

)
.
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Assuming a point P (X, Y, Z) in space relatively moves to point P′ (X, Y, Z) due to the camera’s
movement, the relation between the point motion and camera motion is as below:

dP
dt

= −(
⇀
V +

⇀
W× P) (1)

The cost product of the point P (X, Y, Z) and the camera’s rotational velocity vector can be
represented as:

⇀
W× P =

∣∣∣∣∣∣∣
i j k

Wx Wy Wz

X Y Z

∣∣∣∣∣∣∣ =
(
WyZ−WzY

)
i + (WzX−WxZ) j +

(
WxY−WyX

)
k (2)

where (i j k) denotes the unit vector in the direction of the X, Y, Z axis, × refers to the cross-product.
Thus, Equation (2) can be rewritten as:

⇀
W× P =

 WyZ−WzY
WzX−WxZ
WxY−WyX

 (3)
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The three dimensional velocity
(

dX
dt

dY
dt

dZ
dt

)
of the point can be obtained as below:

dX/dt = −
(
Vx + WyZ−WzY

)
dY/dt = −

(
Vy + WzX−WxZ

)
dZ/dt = −

(
Vz + WxY−WyX

) (4)

For an ideal pinhole camera model, the image point p(x, y) of the world point P(X, Y, Z) projected
in the image plane can be expressed as:

x = f
X
Z

, y = f
Y
Z

(5)

where f denotes the focal length of the stereo camera. The optical flow
⇀
v =

[
vx vy

]T of P (X, Y, Z) can
be obtained by estimating the derivatives along the x-axis and y-axis in 2D image coordinates.

vx = dx
dt = 1

Z

(
f dX

dt − x dZ
dt

)
vy =

dy
dt = 1

Z

(
f dY

dt − y dZ
dt

) (6)

Integrating Equations (4) to (6) yields the following:

[
vx

vy

]
= −

[
f
Z 0 − x

Z − xy
f

f2+x2

f −y

0 f
Z − y

Z − f2+y2

f
xy
f x

]


Vx

Vy

Vz

Wx

Wy

Wz


=
[

MV
Z MW

]  ⇀
V
⇀
W

 (7)

where MV =

[
−f 0 x
0 −f y

]
, MW =

[ xy
f − f2+x2

f y
f2+y2

f − xy
f −x

]
.

Equation (7) indicates the relationship between optical flow caused by the camera’s ego-motion,
depth and six parameters of the camera motion. It is evident that the optical flow and the depth of
a minimum of three image points must be known to solve for the six unknown variables, i.e., six camera
motion parameters. In this study, the KLT algorithm is used to detect the feature points and to measure
their optical flows. The depth is obtained from the stereovision method as reported in our previous
work [20]. In Reference [20], a stereovision-based method has been proposed for stereo-matching
between left and right images, object segmentation according to position and 3D reconstruction for
acquisition of world coordinates. In the stereovision system, the world coordinates are set to be
coincided with the coordinates of the left camera.

An objective function is built as:

E =
k

∑
i=1
ωi‖

⇀
u −⇀

v‖2 (8)

where k is the number of the image points, and ωi is the weight of the point i determined in the
following section,

⇀
v =

[
vx vy

]T is the theoretic optical flow in Equation (7), and
⇀
u =

[
ux uy

]T is

the optical flow measured by the KLT algorithm. The camera’s motion parameters
⇀
V and

⇀
W can be

solved by minimizing Equation (8). The LM algorithm [22] is used to solve the minimization problem.
The algorithm is a numerical method to estimate a set of parameters by minimizing an objective
function and iteratively refining the parameters. At the first iteration, the LM algorithm works as
a gradient method. As it gets near the optimal point, it gradually switches to the Newton-based
approach. Good parameter initialization results in a fast and reliable model convergence. In this work,
three feature points are initially selected from the point set and put into Equation (8). The computed
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parameters are taken as the initial value of the LM algorithm. Subsequently, the parameters measured
in the current frame are used to initialize the next frame.

2.2. KLT Algorithm and Circle Matching

The KLT algorithm [19] is used to select appropriate image points to solve for the minimization
problem and to measure their optical flows. The algorithm extracts the Shi–Tomasi corners from
an image by computing eigenvalues and selecting the pixels whose minimum eigenvalue is above
a certain value. Upon detection of the feature points, the well-known Lucas–Kanade algorithm is
used to measure the optical flows of those points. The KLT algorithm also tracks those points. It takes
a feature point and its neighborhood as the feature window, and uses the sum of squared difference
(SSD) between the frames in the window as the tracking criteria.

Following with the KLT detection, a circle matching approach has been adopted to ensure that the
feature points are matched correctly between consecutive frames. The process of the circle matching
is in the order of a→ b→ c→ d→ a as shown in Figure 3. The correspondence between a–b and
c–d is established by the KLT algorithm while the correspondence between b–c and d–a is established
by the stereo-matching detailed in [20]. A matching is accepted only if the ending feature point is
consistent with the starting feature point. The KLT algorithm is normally applied in a monocular
imaging sequence. The circle matching mechanism proposed here makes full use of two pairs of image
sequences captured from a stereovision rig.
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2.3. Space Position Constraint

To obtain correct motion parameters from Equation (8), all feature points used should ideally
be selected from the static points such as background and ground. However, the KLT does not
discriminate between static points and moving points. Urban traffic scenarios present many moving
actors such as vehicles and pedestrians, therefore, the points selected by the KLT contain a great deal
of moving points. In consideration of the fact that the movement of a moving point will significantly
differ from the one of a static point, a space position constraint is imposed to discriminate them so that
moving points will be filtered out.

The motion of the camera from frame f to f + 1 can be represented by the following 4× 4 matrix:

Mf(cam) =

[
Rf

⇀
Vf

0 1

]
(9)

where
⇀
Vf is the translation vector, Rf is the rotation matrix given by the Rodriguez’s formula:

Rf = I + [r]× sinθ+ [r]2× (1− cosθ) (10)

where θ = ||
⇀

Wf||, and
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[r]× =
1
θ

 0 −WZ(f) WY(f)
WZ(f) 0 −WX(f)
−WY(f) WX(f) 0

 (11)

Assuming that the position of a point P in frame f is
⇀
Pf =

[
Xf Yf Zf 1

]T
, and the position in

frame f + 1 is
⇀

Pf+1 =
[

Xf+1 Yf+1 Zf+1 1
]T

, the transform from
⇀
Pf to

⇀
Pf+1 due to the camera

motion can be expressed as below if P is an static point:

⇀
Pf+1 = Mf

⇀
Pf (12)

where Mf is the motion matrix from frame f to frame f + 1 of the point P, which can be obtained by
inverting the matrix Mf(cam). Based on the motion smoothness assumption (the frame rate is high

enough), the position of point P at frame f + 1 can be predicted as
⇀

Pf+1pre = Mf−1
⇀
Pf, where Mf−1 was

determined in frame f − 1. It must be noted that the predicted position depends on the camera’s
ego-motion and is nothing to do with object’s motion. On other hand, the position of point P at frame

f + 1,
⇀

Pf+1mea can be measured by the stereovision-based method [20]. The difference between the
measured position and the predicted position is:

⇀
cf =

⇀
Pf+1mea −

⇀
Pf+1pre (13)

For a static point,
⇀
cf should be zero if both measured position and predicted position have

no errors. For a moving point,
⇀
cf tends to be large due to its own movement. The maximum

acceptable difference between the measured position and the predicted position is given as
⇀
e =

[
∆Xmax ∆Ymax ∆Zmax 1

]T
. If the absolute value of any component of

⇀
cf is larger than

⇀
e , then the point is discarded. Otherwise the point is assigned a weight as following:

ω = 1− ||
⇀
cf||

2

||
⇀
e ||

2 (14)

which is used in Equation (8).
Because the position of a feature point in frame f + 1 is predicated from the motion parameters in

frame f − 1 (
⇀

Pf+1pre = Mf−1
⇀
Pf) and the motion parameters in frame f − 1 may be slightly different

from the one in frame f due to the camera’s acceleration, the basis of setting
⇀
e is the maximum possible

position difference of static points caused by the camera’s acceleration between the consecutive frames.

In this study,
⇀
e is set to

[
0.04 0.04 0.08 1

]T
to ensure a static point will not be wrongly discarded.

It should be noted that the above setting of
⇀
e does not consider the effect of the error. Actually,

the accuracy of the triangulated 3D points decreases with the distance. Consequently, the farther
feature points may be wrongly discarded. Thus, a more proper setting of

⇀
e should take errors into

consideration by modeling the relationship between the errors and the distance. This will be our
future work.

In theory (without errors),
⇀
cf is actually nothing to do with the distance of a point and only

depends on its own movement. In consideration of the fact that that the errors are relatively small
compared to the position change of a moving point, this method should not significantly degrade
performance for farther points. Our experiments have also verified this.

2.4. RANSAC Based Outlier Rejection

The RANSAC algorithm is employed to further refine the feature point set, i.e., to eliminate the
effects of outliers. The RANSAC algorithm [21] is an effective iterative tool to extract the optimal subset
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from a large data sample to improve the estimation accuracy. A subset S consisting of three points
is selected from the points set Q derived from the space position constraint and used to estimate
ego-motion parameters using the LM algorithm. The estimated ego-motion parameters are plugged

into Equation (7) to compute the optical flow
⇀
v of other points in Q. The points with ||

⇀
u −⇀

v||
2

less than a predefined threshold T are taken as inliers, which constitute a consensus set S* together
with the subset S. Repeating this step for M times will generate M consensus set. The six ego-motion
parameters are determined by the largest consensus set.

In this work, T is set to 1 pixel based on the experimental empirical value. The number of iterations
that is necessary to guarantee a correct solution can be computed as:

M =
log (1− p)

log
(
1− (1− ε)s) (15)

where s is the minimum number of data points needed for estimation, p is the required probability of
success and ε defines the assumed percentage of outliers in the data set.

3. Experiments and Results

Experiments have been conducted on the public image database KITTI (Karlsruhe Institute
Technology and Toyota Technological Institute) [23]. The KITTI database provides a benchmark
platform for evaluation and comparison of different ego-motion estimation approaches. Furthermore,
the image sequences are annotated with the ground truth of the ego-motion parameters and the depth.

Two typical urban traffic scenarios with moving objects, are selected as examples to evaluate the
approach. The image resolution is 1226 × 370 pixels. The first scenario involves one oncoming bus,
and the equipped vehicle moves in a longitudinal direction. In the second scenario, the vehicle is
turning right in a bend and the moving object is one car that drives from left to right.

Figure 4 shows the results of one tracking cycle (frames 2624–2632) within scenario 1 after the
circle matching process. The arrows represent the optical flow of the feature points. The green arrows
represent the points selected for computation, the red ones are the points rejected by the SPC, and the
yellow ones are the points rejected by the RANSAC algorithm. As shown in Figure 4a, all the moving
feature points on the bus have been rejected by the SPC in frame 2624. Table 1 lists the number of the
green points and the proportion of the inliers for the four frames. As seen in Table 1, the proportion of
the inliers is increasing with the effect of the SPC and RANSAC algorithm. The minimum number of
points used for the computation is 104, which is bigger than the threshold of 100.
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Table 1. Number of the green points and proportion of the inliers.

Frame 2624 Frame 2625 Frame 2628 Frame 2632

green points 282 200 168 104
proportion of the inliers 91.49% 93.50% 95.24% 95.19%

The ego-motion parameters of frame 2624 to frame 2632 are shown in Figure 5. The parameters
are expressed in meters per frame (for translation) and in degrees per frame (for rotation). The results
were obtained by the ground truth (GT), the proposed method (PM) and the proposed method without
the SPC (WSPC) respectively. It can be seen that the proposed method generates smoother curves than
the one without the SPC, and they are closer to the ground truth in the most frames.Sensors 2016, 16, 1704 9 of 13 
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Figure 5. The results of ego-motion parameter estimation in scenario 1. (a) Vx; (b) Vy; (c) Vz; (d) Wx;
(e) Wy; (f) Wz.

The ego-motion estimation error is expressed by the average translation error (ATE) and the
average rotational error (ARE) [23]. The comparison results of PM and WSPC for scenario 1 are shown
in Table 2. It can be seen that the PM method is much better than the WSPC method.

Table 2. Comparison of ego-motion estimation error in scenario 1.

PM WSPC

ATE 3.46% 8.51%
ARE 0.0028 deg/m 0.0037 deg/m

Figure 6 shows the results of one tracking cycle (frames 69–89) within scenario 2 after the circle
matching process. As shown in Figure 6a, all the moving feature points on the car have been rejected
by the SPC although the equipped vehicle is making a turn. Table 3 lists the number of the green
points and the proportion of the inliers.
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Figure 6. The feature points tracking results in scenario 2. (a) Frame 69; (b) Frame 70; (c) Frame 79;
(d) Frame 89.

Table 3. Number of the green points and proportion of the inliers.

Frame 69 Frame 70 Frame 79 Frame 89

green points 1037 732 372 128
proportion of the inliers 92.57% 94.54% 95.16% 94.53%

The ego-motion parameters of frame 69 to frame 89 are shown in Figure 7. For most parameters,
the subsequent frames generate more accurate results than the former frames due to the tracking
strategy. The comparison of the ego-motion estimation error of PM and WSPC for scenario 2 is shown
in Table 4.
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4. Evaluation and Comparison

The proposed approach has been compared to the approaches presented in References [10,15].
Reference [10] is known as the VISO2-S method, and Reference [15] is highly ranked as S-PTAM
in the KITTI benchmark. The reasons for comparison with these works are: (1) they both are
stereovision-based approaches; (2) they both have similar attributes with our method, i.e., solving for
the ego-motion parameters by establishing an objective function and accordingly minimizing the
objective function using a set of selected feature points.

4.1. Robustness

One of the performance measures of a visual odometry is the proportion of the number of inliers
nin accounting for the number of feature points used for the computation np, which can be expressed
as the following:

Pin =
nin

np
× 100% (16)

If Pin is lower than 20%, ego-motion estimation may fail. In addition, the minimum value of
np must be bigger than a certain number to ensure the computation accuracy. In this study, we set
this number to 50. The robustness of an odometry can be evaluated by the ratio of the frames with
Pin > 20% and np > 50 to the total frames within an image sequence:

Ps =

(NPin >20% ∩ np>50

Nf

)
× 100% (17)

where NPin>20% ∩ np>50 is the number of frames with Pin > 20% and np > 50, and Nf is the total
number of frames. The comparison result using 11 KITTI videos is shown in Table 5.

Table 5. Comparison of robustness estimation.

VISO2-S [10] S-PTAM [15] Our Method

Ps 98.27% 98.74% 99.31%

It can be seen that the proposed method has the greatest robustness. This is mainly because our
method integrates the space position constraint together with the RANSAC algorithm into the tracking
process to increase the proportion of the inliers and makes sure that the number of feature points used
for the computation is bigger than 100.

4.2. Absolute Trajectory Error

The absolute trajectory error proposed by Sturm et al. [24] reflects the tracking accuracy,
and therefore is used for evaluation and comparison. It is calculated from the root mean squared error
(RMSE) of all frames within a trajectory. The comparison result is shown in Table 6. Compared to the
mean value of the 11 sequences, our method is better than the VISO2-S method and is slightly worse
than the S-PTAM method. It can be noted that our method shows the best performance on sequence 03
and 05, which was collected from urban traffic. All methods have a poor performance on sequence 01,
which was collected from a highway scenario with a high driving speed, resulting in a great difference
between consecutive frames. The last column of the table lists the average values omitting sequence 01.
It can be seen that our method performs best at this time.
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Table 6. Absolute trajectory error RMSE in m.

Sequence VISO2-S [10] S-PTAM [15] Our Method

00 29.54 7.66 13.47
01 66.39 203.37 227.51
02 34.41 19.81 11.35
03 1.72 10.13 1.08
04 0.83 1.03 0.96
05 21.62 2.72 1.73
06 11.21 4.10 3.04
07 4.36 1.78 5.84
08 47.84 4.93 9.48
09 89.65 7.15 5.89
10 49.71 1.96 3.16

mean 32.48 24.06 25.77
mean(w/o 01) 29.09 6.13 5.60

5. Conclusions

This paper presents a robust and precise approach for the measurement of 6-DoF ego-motion using
binocular cameras. The method integrates stereovision with optical flow to build an objective function
fitted with a set of feature points and accordingly solves for the ego-motion parameters by minimizing
the objective function. The approach presented here is tested on the KITTI benchmark database and
compared with other approaches. The experimental results demonstrate that the approach gives
a robustness of 99.31% on outlier removal. The mean of the absolute trajectory error is 25.77 m for
all eleven sequences provided by the KITTI. An improvement can be made on setting a more proper
threshold

⇀
e of the SPC by modeling the relationship between the position errors and the distance.

The proposed method follows a traditional procedure, i.e., solving for the ego-motion parameters
by establishing an objective function and accordingly minimizing the objective function using
a set of selected feature points. However, the contributions of this work can be found as follows:
(1) The objective function was built in a unique way. The objective function fitted with a set of feature
points is created in the image plane by establishing the mathematical relationship between optical
flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and
planar imaging model. It has significant advantages in avoiding stereo reconstruction errors over the
typical 3D to 3D formulation; (2) The combination of the space position constraint with the tracking
mechanism and the RANSAC algorithm effectively rejects outliers caused by moving objects and
therefore greatly improves the potion of inliers, which makes the approach especially useful in an urban
context; (3) The circle matching method fully makes use of two pairs of image sequences captured from
a stereovision rig and effectively removes mismatching points caused by the KLT feature detection
and stereo matching algorithms. In summary, the proposed approach improves the performance of
visual odometry and makes it suitable to be used in an urban environment.
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