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Purpose: With the rise of smartphone devices to monitor health status remotely, it is
tempting to conclude that sampling more often will provide a more sensitive means
of detecting changes in health status earlier over time, when interventions may
improve outcomes.

Methods: The answer to this question is derived in the context of a model where
observations are generated from a linear-trend model with independent as well as
autocorrelated autoregressive-moving average, or ARMA(1,1), errors.

Results: The results imply a cautionary message that an increase in the sampling
frequency may not always lead to a faster detection of trend changes. The benefit of
rapid successive observations depends on how observations, taken closely together in
time, are correlated.

Conclusions: Shortening the observation period by half can be accomplished by
increasing the number of independent observations to maintain the same power for
detecting change over time. However, a strategy to detect progression of disease
sooner by taking numerous closely spaced measurements over a shortened interval is
limited by the degree of autocorrelation among adjacent observations. We provide a
statistical model of disease progression that allows for autocorrelation among
successive measurements, and obtain the power of detecting a linear change of
specified magnitude when equal-spaced observations are taken over a given time
interval.

Translational Relevance: New emerging technology for home monitoring of visual
function will provide a means to monitor sensory status more frequently. The model
proposed here takes into account how successive measurements are correlated, which
impacts the number of measurements needed to detect a significant change in status.

Introduction

In medical surveillance, patient characteristics are
assessed at consecutive clinic visits with the intent to
detect medically relevant trend changes among
consecutive observations. In the absence of disease,
measurements tend to fluctuate around a stable level,
but often deteriorate progressively once the disease
has set in. Because of cost considerations and burden
of travel for patients, assessments for common eye
conditions that progress, such as glaucoma, are
frequently carried out at 6-month intervals. Other
conditions, such as macular degeneration, may be
monitored monthly, once intravitreal injections of

anti-vascular endothelial growth factor are adminis-
tered for treatment of the wet variety of macular
degeneration. The objective is to detect a medically
meaningful trend change within as short of a time
period as possible so that adjustments in treatment
can be made to prevent further damage.

The development of inexpensive smartphone mon-
itoring systems that can be used by the patient at
home raises the question of whether a medically
relevant trend change could be detected sooner if
observations are taken more frequently, and perhaps
over a shorter time period.1,2 As an illustration,
assume that the clinician takes observations of visual
function or structure every 6 months wishing to detect
a trend change of a certain magnitude within 3 years
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(that is, n¼ 7 observations). This is a strategy used by
many clinicians, for conditions such as glaucoma that
can slowly progress if not treated optimally. The
sampling frequency is limited by the resources
available to accommodate more follow-up visits per
year and the burden placed on patients who are asked
to return more frequently for follow-up measure-
ments. Of course, it would seem to be more beneficial
to increase the sampling frequency and take observa-
tions every 3 months, every month, every week, and
so on, if it would help detect a trend earlier or with
more certainty, when a treatment intervention may
lead to preservation of vision. Increasing the sampling
frequency to improve the ability to detect a change
over a given sampling period would certainly bring
benefits, as long as the observations we collect are
statistically independent, with little correlation be-
tween measurements at adjacent time intervals.

A second competing strategy could take the same
number of observations, but over just the first half of
the observation interval (e.g., during the first 18
months of the 3-year interval), hence reducing the
time between successive visits by half. Better yet, if
measurements could be collected on a portable device
at home with an increase in sampling frequency, then
could the observation period over which a relevant
change could be detected be shortened even further?
The question arises whether this second strategy
would provide similar power of detecting a meaning-
ful change over a shorter time period. Furthermore, if
there is little cost to taking observations, the sampling
frequency over this new shorter observation interval
could be increased even further; in theory, patients
could take daily or evenly hourly measurements on
their state of health. Would this be better? If this were
the case then one could, by taking numerous
observations in rapid succession, detect a relevant
change even sooner.

In this note, we discuss the advantages and
disadvantages of such an approach, and we address
the question whether home-based surveillance meth-
ods currently being developed to sample more
frequently can lead to detection of medically relevant
trend changes over a shorter time period.

Materials, Methods, and Results

Trend Model with Independent
Observations

In order to shed light on such questions, one needs
a statistical model. We let time vary over the unit-time

interval [0, 1] and let n equally spaced measurements
be generated from the model

yi ¼ aþ bti þ ei ¼ Ti þ ei for i ¼ 1; 2; . . . ; n ð1Þ
with ti ¼ (i – 1)/(n – 1). Equation l describes a
stationary linear-trend model. The trend component
Tt ¼ a þ bt expresses the time progression of the
measurement and et is a measurement error with mean
0 and variance r2. In this section we assume that the
errors et are independent. This is reasonable provided
there is no instrument carry-over from one measure-
ment to the other and the linear trend is indeed
deterministic. In the following section, we allow for
autocorrelations among the errors. Autocorrelation in
the errors can arise from instrument carry-over, but
also because the progression of many anthropometric
signals is not purely deterministic, but also affected by
stochastic perturbations.

Our main interest is in detecting a change in the
trend progression b. What is the power of detecting a
specified slope change with just n ¼ 7 observations
equally spaced on the unit-time interval? How does
the power change if we take more than seven
observations over the same unit-time interval? And
what are the consequences of reducing the observa-
tion period in half (or to any other fraction of the
unit-time interval) and taking seven (or more)
observations over the reduced time interval? We start
with the obvious: By restricting attention to only the
first half of the time interval, we do not obtain
observations from the second half of the interval. We
lose the opportunity to learn whether there are
changes to the trend during the second half of the
interval. Trends are typically not stable, and an
approach that looks at only part of the time interval
certainly limits one’s ability to check for changing
trends. Assuming that changes in the trend are
constant over time is certainly a very strong assump-
tion.

However, for the purpose of this paper, we assume
that the slope is constant across the unit-time interval.
We investigate the effects of reducing the observation
interval, but increasing the sampling frequency. We
derive an expression for the statistical power of
detecting a change in the slope, from baseline value
bBase to the new value bBase þ b

*
, for known

significance level a (usually, 0.05) and error standard
deviation r.

We write the regression model in Equation 1 in its
mean-corrected form, Yi¼ �Yþb(ti� �t )þ ei with ti¼ (i
– 1)/(n – 1) for i ¼ 1,2,. . .n, and �t ¼ 1/2. We consider
the test of H0 : b ¼ bBase against H1 : b ¼ bBase þ b

*
,
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with b
*

. 0. The standard error of the least squares
estimate b̂ is given by

rb̂ ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ti � �tð Þ2
q ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ 1ð Þ=12 n� 1ð Þ
p ;

see Abraham and Ledolter3 for the standard error;
the last expression follows from straightforward
algebra. The critical limit for the hypothesis test is
CL ¼ bBase � zarb̂, where za is the percentile of the
standard normal distribution; for significance level a
¼ 0.05, za¼�1.645. The power of the test is given by

Power ¼ P b̂ � CLjb ¼ bBase þ b�
h i

¼ P Z �
bBase � zarb̂ � ðbBase þ b�Þ

rb̂

" #

¼ P Z � �za �
b�
rb̂

" #
¼ U za þ

b�
rb̂

 !

¼ U za þ
b�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þ
12 n� 1ð Þ

s !
; ð2Þ

where U(.) is the cumulative distribution function of
the standard normal distribution.

Reducing the observation interval and taking n
equally spaced observations on the interval [0, P , 1]
changes the power to

Power ¼ U za þ P
b�
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ 1ð Þ
12 n� 1ð Þ

s !
ð3Þ

The ratio b
*
/r is a critical parameter; the power

decreases if smaller changes need to be detected. For a
¼ 0.05, P ¼ 1 (using the full time interval, such as 3
years), b

*
/r¼ 2.5, and n¼7, the power is 0.712. Given

measurement variability r¼ 0.4, seven equally spaced
observations over the full 3-year time interval allow us
to detect an increase of one unit; detecting a smaller
change, such as a half unit change over three years,
with just seven observations is almost impossible
(power 0.294). If we took n¼ 15 observations over the
full time period, the power of detecting an increase of
one unit is larger (0.910), and we are fairly certain to
detect a change of that magnitude. This is expected, as
more observations are always better than fewer.

Next, let us assume that we want to make a
decision within the first half of the observation period
of 3 years, and do so with the same number of
observations (n ¼ 7), which now are equally spaced
over the first 1.5 years. Using P ¼ 0.5, Equation 3

results in power 0.294. As expected, this power is
smaller than the one we get when spreading the seven
observations over the whole 3 years, as it is equivalent
to the power of detecting half of the change, (0.5)b

*
,

over the full time interval (Equation 3). Of course, one
can increase this unacceptable low power by adding
more observations and sampling more often. For
example, with n¼15 observations equally spaced over
the first 1.5 years, the power is 0.440. Figure 1 shows
that we need 36 observations to achieve the same
power (0.712) that we obtain with seven observations
equally spaced over 3 years.

What about reducing the interval even further, to
just 3/10 of the original 3 years (P ¼ 0.3), but
increasing the number of observations over this short
time period even more? The results in Figure 1 show
that we need 102 independent observations to attain
the same power (0.712) that we obtain with n ¼ 7
observations spaced evenly over 3 years. It takes more
independent observations to compensate for the

Figure 1. Independent observations. Reduction of the testing
period to 70%, 60%, 50% (18 months), 40%, and 30% (~12
months) of the original 36-month (3-year) period. In order to
obtain the same power that is achieved with seven observations
over the full 36-month time interval (0.712, as indicated by the red
line), 17 observations are needed if the sampling period is reduced
to 70% of the full 36 months, 24 observations are needed if the
sampling period is reduced to 60% of the full 36 months, 36
observations are needed if the sampling takes place over only the
first 18 months (reduction of the sampling period to 50% of the full
36 months), and 102 observations are needed if sampling is
restricted to the first 12 months (reduction the sampling period to
30% of the full 36 months).
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reduced observation interval, but the same power can
always be achieved by increasing the sample frequen-
cy.

Increasing the sampling frequency certainly
strengthens the reliability of a trend estimate, but
also increases the danger of spurious observations.
Identification and removal of outlier observations
from a trend estimate will minimize the risk of
responding to measurements when no response is
needed. In current in-clinic evaluations of visual
function that are sampled every 6 months, the
clinician looks at every single observation, and with
more and more observations there is a tendency to
make treatment changes on the basis of the unusual
recent results even when no changes are warranted.
Often interventions are made when an observation
exceeds its 2- or 3-sigma bounds. While the chance of
being outside the 2-sigma limits is 5% for a single
observation, the chance that we observe one of say 20
(independent) observations outside the 2- sigma limits
is quite high (38%, using the binomial distribution).

The following simulation study illustrates this issue
in the regression context when we test whether a
meaningful change has occurred over a 3-year period.
For our simulations, we assume that the mean of the
observations changes linearly from baseline 0 to the
value kr after a period of 3 years, for both k¼ 1 and k
¼ 2. Independent normal observations with standard
deviation r are generated every 6 months. Two
different estimation and testing strategies are com-
pared. Strategy 1 uses (only) the seven observations
that are available at the end of the 3-year period to
test whether the slope of the linear regression through
the origin has increased (using significance level 0.05).
Strategy 2 starts the testing after the first four
observations have been collected (i.e., after having
observed the measurement at 18 months) and repeats
the test with each successive observation, for a total of
four tests. It concludes a change in the slope when one
or more of these tests reject the no-change hypothesis.

We conduct 10,000 simulations for the null
hypothesis when no change has occurred, with the
proportion of rejections representing the error of a
false rejection of a true null. We do the same for the

alternative, with the proportion of rejections repre-
senting the power of the detection procedure. The
results are given in the Table. Without adjustments
for multiple testing, repeated tests carried out on
frequent readily available measurements will increase
the false rejection (in our simulation from 5% to 14%),
leading clinicians to make treatment changes when no
changes are warranted. Adjustments for multiple
testing are essential as more and more data can be
sampled frequently and become more readily avail-
able in a home testing scenario.

Materials, Methods, and Results

Linear Trend Model with Autocorrelated
Observations

The trend model in Equation 1 assumes a
deterministic linear trend and independent measure-
ment errors. Independent measurement errors are
reasonable as instrument carry-over from one mea-
surement error to the next is unlikely. However, the
progression of the anthropometric signal Tt¼ aþbt is
often not purely deterministic but also affected by
stochastic perturbations rt that lead to persistent
slow-moving deviations from the deterministic linear
trend, analogous to a slow moving wave. Persistence
implies that a signal at time t above the trend line
tends to be followed by signals that are above the
trend line as well. In other words, signals tend to stay
above (or below) the trend line for several periods in a
row. Such persistence can be modeled with a first-
order autoregressive model, rt¼ (1/(1 – uB)) nt¼ ntþ
unt�1þu2nt�2þ . . .. Here, B is the backshift operator,
u is the autoregressive parameter (which, for statis-
tical stationarity, has to be between�1 and 1), and nt
are independent mean zero random variables with
variance r2

n. The first-order autoregressive model for
rt implies autocorrelations Cor(rt,rt�k) ¼ uk and

variance r2
r ¼

r2
n

1�u2. Persistence is achieved when the

autoregressive parameter u is positive and close to 1.
The autoregressive model becomes the (nonstation-
ary) random walk when u ¼ 1. A random walk can

Table. Results of the Simulation Study: False Rejection Probabilities and Power of the Two Strategies.

Strategy 1 Strategy 2

False Rejection Power False Rejection Power

k ¼ 2 0.053 0.811 0.142 0.839
k ¼ 1 0.049 0.296 0.140 0.388

Single test (Strategy 1) vs. repeated tests on successive observations (Strategy 2).
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take very long persistent excursions from the deter-
ministic trend line. For a detailed discussion of time
series models (including the backshift operator
notation, stationarity and nonstationarity, and auto-
regressive and moving average models) we refer the
reader to Abraham and Ledolter4 and Box et al.5

Incorporating anthropometric persistence into the
trend model leads to the following more realistic
model of change, Yt¼ aþ btþ rtþ et. Subtracting the
deterministic linear trend from the measurements,
leads to trend deviations:

~Yt ¼ Yt � aþ btð Þ ¼ rt þ et ¼
1

1� uBð Þ nt þ et ð4Þ

The model for the trend deviations can be written
as (1 – uB)Ỹt ¼ nt þ (1 – uB)et, and is known as the
autoregressive-moving average, or ARMA(1,1), mod-
el: there is just one lagged autoregressive term and the
autocorrelations of the moving average component
on the right-hand side of the model are zero after lag
1. It is straightforward to show that the standard
deviation and the autocorrelations of the deviations
from the linear trend model Ỹt¼Yt – (aþbt) are rỸ¼
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
r þ r2

e

p
, q1¼ u 1

1þ 1�u2ð Þ r2
e=r

2
nð Þ ¼ u 1

1þ r2
e=r

2
rð Þ , and

qk¼ (q1) uk�1 for k � 1. For r2
e ¼ 0 (when there is no

measurement error), the ARIMA(1,1) model simpli-
fies to the first-order autoregressive model with
variance r2

r and autocorrelations qk ¼ uk�1.
Persistence is modeled through the autoregressive

parameter, and let us assume u¼ 0.8. The ratio r2
e

�
r2
r

compares the variance of the independent measure-
ment errors with the variance of the persistent
stochastic trend movements. We assume variance
ratio r2

e

�
r2
r ¼ 3 as the stochastic trend component

should not deviate too much from the deterministic
linear trend and most of the variability should come
from the measurement noise. With these choices of
parameters the autocorrelations of Ỹt ¼ Yt – (a þ bt)
are q1¼ 0.8/(1þ 3)¼ 0.2 and qk¼ (0.2)(0.8)k�1 for k �
1. While the lag 1 autocorrelation is moderate in size
(q1 ¼ 0.2), there is a persistent slow decay in the
autocorrelations from lag 1 onward.

We have provided motivation why the ARMA(1,1)
is a useful error model for trend regressions. There is
also evidence in the literature6,7 that errors in
regressions of anthropometric time series data on
deterministic functions of age follow ARMA(1,1)
models. Carrico et al.7 show that, in a regression of
young-adult blood pressure on linear and quadratic
functions of age, body mass index, and height,

ARMA(1,1) errors are preferable to AR(1) and errors
with compound symmetry.

Our new model:

Yi ¼ �Yþ b ti � �tð Þ þ ei
with ti ¼ i� 1ð Þ= n� 1ð Þ for i ¼ 1; 2; :::; n
and �t ¼ 1=2

ð5Þ

assumes that the errors e follow an ARMA(1,1)
model, implying an n 3 n error covariance matrix V
with elements vij¼r2 for i¼ j and vij¼r2q1u

ji�jj�1 for i
„ j. The generalized least squares (GLS) estimator of
b in the model in Equation 5 is given by b̂GLS ¼
(XTV�1X )�1XTV�1(Y � �Y ). Here V is the n 3 n
covariance matrix specified above, X ¼ (t1 � �t,t2 �
�t,. . .,tn� �t )T is the n 3 1 column vector of times, and
Y � �Y ¼ (Y1 � �Y,Y2 � �Y,. . .,Yn � �Y )T is the n 3 1
column vector of mean-corrected observations. The
superscript T denotes the transpose. The GLS
estimator is the most efficient estimator among all
linear unbiased estimators, with the smallest sample

variance r2
b̂GLS

¼ (XTV�1X )�1.3 Substituting this
standard error into Equations 2 and 3 leads to the
power

Power ¼ U za þ P
b�
r

rb̂GLS

� �
ð6Þ

We return to our example with z0.05¼�1.645, b
*
¼

1, r¼ 0.4 and an observation interval that is reduced
from the original 3 years (P , 1), but now assume
that the error is characterized by the ARMA(1,1)
model with weekly autoregressive coefficient uW¼ 0.8
and variance ratio r2

e

�
r2
r ¼ 3. The n observations on

the reduced unit-time interval [0, P , 1] are spaced
156P/(n � 1) weeks apart. Hence, the autoregressive
coefficient between successive observations is
(uW)156P/(n�1). This value, r ¼ 0.4 and the variance
ratio r2

e

�
r2
r ¼ 3 are used for the calculation of the

covariance matrix V of the n observations equally
spaced over the interval [0, P , 1].

With the original 3-year observation interval (P ¼
1) and n¼ 7 observations, the power calculated from
Equation 6 with uW ¼ 0.8 is still 0.712, the same
power we obtain when there is independence. This is
because observations are 26 weeks apart (156P/(n – 1)
¼ 156(1)/6¼ 26), u26

W ’ 0, and V is a diagonal matrix
with zero autocorrelations. The power is affected only
for much larger weekly autoregressive coefficient very
close to 1.

Figure 2 shows results for the ARMA(1,1) model
with weekly autoregressive coefficient uW ¼ 0.8,r ¼
0.4 and variance ratio r2

e

�
r2
r ¼ 3. In order to obtain
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the same power that is achieved with seven observa-
tions over the full 36-month time interval (0.712), 20
observations are now needed if the sampling period is
reduced to 70% of the full 36 months. This is larger
than the 17 observations that are needed in the
independent case. Thirty-seven observations are
needed if sampling is reduced to 60% of the full 36
months, which is larger than the 24 observations in
the independent case. For an observation window
that is cut in half we find that it takes more
(correlated) observations to compensate for the
shortened observation interval. Now 159 observations
are needed to attain the same power, instead of the 36
independent observations.

When reducing the time interval to 40% (or even
less) of the original time interval, the increase in the
number of correlated observations that are needed
becomes very large and cannot compensate for the
shortened observation interval, as adjacent observa-
tions over the reduced interval are now so close
together that their autocorrelations approach 1. This

implies that there is no benefit to taking such extra
observations. For an observation interval reduced to
30%, we limit ourselves to (156)(0.3) ¼ 46.8 weeks.
With n ¼ 100, for illustration, adjacent observations
are 0.46 weeks apart and (uW)0.46 ¼ (0.8)0.46 ¼ 0.90.
Off-diagonal elements in the covariance matrix V are
large, which indicates that there is little benefit to
collecting observations that are so close together in
time.

A Comment on the Choice of Parameters in
Figure 2

Persistence parameter u ¼ 0.8 and variance ratio
r2

e

�
r2
r ¼ 3 imply a moderate initial autocorrelation q1

¼u/4¼ 0.20 with subsequent slow decay. For smaller
variance ratios, when trend changes dominate inde-
pendent measurement errors, our calculations show
that increases in the number of required samples are
even larger than the ones reported in Figure 2. Larger
variance ratios decrease the autocorrelations. For
r2

e

�
r2
r ¼ 9, the autocorrelations start their exponential

decay from q1¼ u/10¼ 0.08, and the increases in the
number of required samples become smaller. We need
18 samples when the sampling period is reduced to
70% of the initial interval (20 samples are required
when r2

e

�
r2
r ¼ 4, and 17 samples are required when

observations are independent), 28 samples when the
sampling period is reduced to 60% (37 samples when
r2

e

�
r2
r ¼ 4 and 24 samples when independent), and 49

samples when the sampling period is reduced to 50%
(159 samples when r2

e

�
r2
r ¼ 4 and 36 samples when

independent). The increase depends on the parameters
in the ARMA(1,1) model. If prior data are available,
we recommend to calculate maximum likelihood
estimates of all parameters in the linear-trend model
with ARMA(1,1) errors. The estimates allow us to
obtain (1) the resulting increase in the required sample
size, and (2) the correct standard error of the trend
estimate b. This is important, as standard errors
derived under independence are incorrect if errors are
autocorrelated. For positive autocorrelation standard
errors assuming independence are too small, which
leads to spurious significance.8,9

Discussion

The paper by Crabb and Garway-Heath10 is
related to this discussion. They investigate, through
simulations, whether it is better to collect more
observations at the beginning and at the end of the
observation period (‘‘wait and see’’ approach) than to

Figure 2. ARMA(1,1) correlation between subsequent errors with

weekly autoregressive coefficient uw ¼ 0.8 and variance ratio

r2
e

�
r2

r ¼ 3. Reduction of the testing period to 70%, 60%, 50% (18

months), 40%, and 30% (~12 months) of the original 36-months

(3-year) period. In order to obtain the same power that is achieved

with seven observations over the full 36-month time interval

(0.712, as indicated by the red line in Fig. 1), 20 observations are

needed if the sampling period is reduced to 70% of the full 36

months, 37 observations are needed if sampling is reduced to 60%

of the full 36 months, 159 observations are needed if sampling is

reduced to 50% of the full 36 months. Many more observations are

needed for larger reductions of the original observation period.
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space the observations evenly throughout the obser-
vation window. Their finding that the power of
detecting a change is increased with the ‘‘wait and
see’’ strategy can be predicted from theory without
any simulations, as the standard error of a slope
estimate rb̂ becomes smaller when the settings of the
regression predictor are located at the boundary of
the experimental region; see Materials, Methods, and
Results. Our paper derives results theoretically and
also allows for correlation among adjacent observa-
tions.

An important reason against shortening the
observation period is that such approach will miss
changes in the trend that occur within the interval
that is not being monitored. But even if the trend
stays the same, a strategy of increased sampling of
correlated measurements over a shortened interval
may not generate the same amount of information as
does the traditional approach of obtaining measure-
ments every 6 months. Because of autocorrelation
among adjacent observations, the benefit of taking
numerous closely spaced measurements may be
exaggerated. For autocorrelated observations, an
increase in the sampling frequency may not compen-
sate for a shortened observation interval. However, if
the autocorrelation is observed to be low for a certain
type of measurement (e.g., the pupil light reflex), there
may be significant benefits for increasing the sampling
frequency over a shortened observation interval.

For biological measurements, especially those used
in clinical medicine, where a trend analysis may be
critical to understanding whether a treatment inter-
vention is recommended, it is important to consider
how correlated adjacent measurements are to one
another in order to design the optimal sampling
interval for the problem being monitored. One
strategy would be to determine the autocorrelations
empirically by taking measurements across subjects at
different time intervals, allowing us to check the
ARMA(1,1) model assumption in Equation 5. Know-
ing the autocorrelation value, the desired amount of
change that one wants to detect, and the power and
level of statistical significance desired will inform
potential developers on an optimal sampling strategy
that will take advantage of telemedical devices.

Our paper assumes that the variability of all
observations is the same and the variance of
measurements taken at home will be the same as in
a supervised clinic environment. This would, of
course, depend on the type of measurement being
evaluated. Behavioral tests of vision, such as visual
field sensitivity are influenced by the cognitive ability

of the subject, distractions that may be present, and
the effort being put forth on the day of testing and
may not be the same at home compared with a
monitored clinical setting. On the other hand,
objective measurements of vision, such as the pupil
light reflex or evoked potentials from the visual
system may be more ideally suited toward at-home
testing in an unsupervised, but familiar environment.
Better yet, an automated, real-time, built in video-
based monitoring of a patient’s behavior during home
testing may provide a type of behavior supervision
that would optimize behavioral tests of visual
function. For independent observations, the standard
error of an average is obtained by dividing the
standard deviation of a single measurement by the
square root of the number of observations. Hence,
with doubling the standard deviation of individual
measurements, the sample size of the less-precise
group must be increased by a factor of 4 in order to
obtain the same precision and power. Therefore,
objective readouts of visual function that have low
repeat measurement variability would be prime
candidates for at-home frequent testing over time to
detect the status of ocular diseases.

Our paper shows that the shrinkage of the
observation period by half can be compensated by
increasing the number of independent observations so
that the powers of the two strategies are the same
(Fig. 1). The result is not surprising, as one knows
that even the smallest change over a short-time
window becomes significant if one increases the
number of observations. But the result is highly
dependent on how much autocorrelation exists
between successive measurements (Fig. 2). It also
requires the very strong assumption that the progres-
sion of the condition is constant. But in many types of
disease, it is unlikely that the progression of disease is
constant, and it is more plausible that progression
trends are stochastic. Progression changes as time
goes on, with some periods when the progression is
rather flat, and other periods when conditions change
quickly. Hence, it would be a misguided approach in
the case where progression may vary significantly
from one measurement surveillance period to the next
to focus on ever-smaller time windows and to
compensate with more frequent measurements over
these small windows. Clinicians know about mean-
ingful changes over a period of 3 years, but they know
much less about changes that can be expected over
brief periods in slowly progressive disorders, such as
glaucoma or multiple sclerosis. The promise of
personalized medicine with optimal monitoring of
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disease being enabled by frequent measurements with
a home-based system is within reach with new
technological advances of monitoring devices. How-
ever, the promise is more likely to become a reality if
the patient is monitored indefinitely during the course
of their disease to better understand patterns of
progressive change and when treatment interventions
are warranted for an individual patient.

Even if one could assume that trends are deter-
ministic – which is unlikely – a strategy of taking
more observations over shorter time windows has its
challenges, even if such observations are independent.
Our simulation results in the Table illustrate that
appropriate adjustments for multiple testing are
needed when analyzing and interpreting abundant
successive measurements, to prevent the increased risk
of diagnosing a change in the status of the disease
being studied when one really does not exist.

We show that a strategy to detect progression
sooner by taking closely spaced measurements over a
shortened interval is limited by the degree of
autocorrelation. We show this result by studying the
linear-trend model with ARMA(1,1) errors, but have
observed the same finding for first-order autoregres-
sive errors in the linear-trend model as well as in the
proportional linear-trend model with constant coeffi-
cient of variation. An important conclusion of our
study is that one should always check whether errors
are indeed independent and incorporate any serial
correlation when making inferences about the trend
parameters.

Accurate monitoring of progression is essential for
patient management. The standard model considered
in the literature combines a structural component that
postulates a linear time progression and a noise
component that specifies uncorrelated errors. Recent-
ly, several papers have started to question these
assumptions and have proposed more general models,
both for the structural time progression and for the
noise component.

In their analysis of longitudinal perimetry data
from glaucoma patients, Pathak et al.11 propose a
structural model for the progression that includes the
exponential of time and an autoregressive noise
component that allows for the temporal correlation
among adjacent observations. In their analysis of
longitudinal cardiac imaging data, George et al.12

consider several models for the temporal and the
spatial correlations that can be expected across time
and across different image locations. Lawton et al.13

consider a longitudinal model for disease progression
of multiple sclerosis patients. They argue quite

convincingly that the structural regression component
should not merely include linear time trends, but also
fractional polynomials of time t, such as log(t) and
sqrt(t). In addition, their models include parameters
for the autocorrelation among adjacent observations.
Taketani et al.14 study how to best predict for a given
glaucoma patient his/her response at a future visit.
Their model includes nonlinear components for the
time progression (quadratic, exponential, and logistic
terms of time), and they consider alternatives to the
standard least squares estimation by considering
robust statistical estimation methods. The study by
Chan et al.15 makes a convincing argument that
longitudinal studies (in their application, the move-
ment of a subject’s arm over time) must generalize the
noise component to allow for possible temporal
correlation. Allowing for autocorrelation helps avoid
a common mistake of adopting spurious results
regarding the structural progression component of
the model.3

Our paper reflects these new developments in
modeling longitudinal data as our model allows for
temporal correlation among the observations. We
recognize the importance of studying how time trends
change over time.
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