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Switch-like behaviours in biochemical networks are
of fundamental significance in biological signal
processing, and exist as two distinct types: ultra-
sensitivity and bistability. Here we propose two
new models of a reversible covalent-modification
cycle with positive autoregulation (PAR), a motif
structure that is thought to be capable of both
ultrasensitivity and bistability in different parameter
regimes. These new models appeal to a modelling
framework that we call complex-complete, which
accounts fully for the molecular complexities of
the underlying signalling mechanisms. Each of the
two new models encodes a specific molecular
mechanism for PAR. We demonstrate that the
modelling simplifications for PAR models that have
been used in previous work, which rely on Michaelian
approximations, are unable to accurately recapitulate
the qualitative signalling responses supported by our
detailed models. Strikingly, we show that complex-
complete PAR models are capable of new qualitative
responses such as one-way switches and a ‘prozone’
effect, depending on the specific PAR-encoding
mechanism, which are not supported by Michaelian
simplifications. Our results highlight the critical
importance of accurately representing the molecular
details of biochemical signalling mechanisms, and
strongly suggest that the Michaelian approximation is
inadequate for predictive models of enzyme-mediated
chemical reactions with added regulations such
as PAR.
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1. Introduction
The capacity for collections of biochemical reactions to respond in a switch-like, or all-or-none,
manner is of fundamental significance in biological signal processing, and has been widely
observed in many different signalling contexts [1–3]. Biochemical switch-like responses can exist
as two distinct types [4,5]: ultrasensitivity, which is a steeply sigmoidal, monostable, dose–
response profile; and bistability, a commonly observed form of multistationarity, which constrains
the system to exist in one of two possible stable steady states for a given level of stimulus
(figure 1).

Ultrasensitivity has been implicated in functionally important switching mechanisms across
a wide variety of biological contexts, ranging from cell signalling pathways [6,7], budding in
yeast [8,9], maturation of xenopus oocytes [10,11] and embryonic differentiation [12]. More
recently, ultrasensitivity has been recognized as an essential component in many robust
perfect adaptation (RPA) mechanisms [13–15]. RPA is the ability of a system to asymptotically
track a fixed ‘set-point’ following persistent perturbations to its interacting elements. This
keystone signalling response is thought to be an essential characteristic of all evolvable and
self-regulating biosystems [14,15], and has been ubiquitously observed across all levels of
biological organization, from chemotaxis in single-celled organisms [16–27], to complex sensory
systems [28–38]. Importantly, the dysregulation of RPA is believed to be linked to disorders such
as cancer progression, drug addiction, chronic pain and metabolic syndrome [39–44].

While the history of mathematical approaches to the study of ultrasensitivity-generating
mechanisms may be traced back to the work of AV Hill [45] on cooperative binding in
haemoglobin, the seminal work of Goldbeter & Koshland [46] on zero-order ultrasensitivity
has exerted a profound influence on our modern understanding of ultrasensitivity. Indeed, it
was Goldbeter & Koshland [46] who formally defined an ultrasensitive response as ‘an output
response that is more sensitive to change in stimulus than the hyperbolic (Michaelis–Menten)
equation’. Their landmark findings demonstrated that enzyme-mediated covalent-modification
cycles (such as phosphorylation/dephosphorylation cycles, or methylation/demethylation
cycles, for instance) are capable of generating sensitivities comparable with cooperative enzymes
with high Hill coefficients when the interconverting enzymes operate in their ‘zero-order’ regions
(i.e. in the region of saturation with respect to their protein substrates). Importantly, this was the
first known example of unlimited ultrasensitivity: unlike the response of cooperative enzymes,
where the steepness of the dose–response profile was limited, the zero-order mechanism allowed
steepness to be increased indefinitely by ‘tuning’ certain parameter groups. More recently,
a number of additional ultrasensitivity-generating mechanisms have been identified [47,48],
including inhibitor-generated ultrasensivity and substrate competition [48–51], cooperative
binding [52,53], positive feedback [3,6,54], multisite phosphorylation [9,12,55] and negative
feedback [8,48]. Some mathematical models also support the idea that cascade structures can
further amplify ultrasensitivity if some degree of ultrasensitivity already exists at the level of
individual tiers in the cascade [11]. The extent to which this latter factor might contribute to
ultrasensitivity in large-scale signalling networks, in signal transduction and metabolism for
instance, is still poorly understood [56–58].

In contrast to ultrasensitivity, bistability gives rise to a discontinuous switching mechanism.
Bistability is widely believed to play a vital functional role in gene regulatory networks [59–63],
cell differentiation [64,65], cell-cycle regulation [66,67], lineage commitment during development
[2], exit from quiescence in mammalian cells [68] and biochemical and working memory [69,70].
Moreover, a bistable switch can exist as a one-way (irreversible) switch, or a two-way (toggle)
switch. Toggle switches are reversible but exhibit hysteresis, whereby once the switch has been
‘tripped’ by a suitable increase in stimulus, propelling the system to its upper steady state, a
much larger decrease in input stimulus is required to bring the system back down to its lower
steady state, a functionally important response in the context of fluctuating inputs [2,69,71]. One-
way switches, on the other hand, can never return the system to its lower steady state once
the switch has been tripped. The aberrant formation of such one-way switches is thought to
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Figure 1. Distinctive qualitative features of ultrasensitive and bistable dose–response profiles. Ultrasensitivity (blue curve)
corresponds to a monostable, yet steeply sigmoidal, steady state dose–response profile. By contrast, bistability (orange curve)
arises when two stable steady states (separated by an unstable steady state) exist for some range of inputs (indicated by the
shaded orange region). (Online version in colour.)

play a particularly pernicious role in cancer signalling dysregulation, by driving the constitutive
activation of oncoproteins [5,72,73]. Mathematically, bistability is thought to arise from a variety
of underlying mechanisms, including: positive autoregulation (PAR) and positive feedback,
where a molecule either directly or indirectly promotes its own creation [54,59,60,62,68,69,74,75];
cooperative binding, where the binding of one molecule enhances the binding of subsequent
molecules [66,76]; antagonism, where one molecule benefits at the loss of another [65,77]; and
double negative feedback, a cycle in which two interacting molecules mutually inhibit each
other [54].

Although emergent network behaviours such as bistability and ultrasensitivity, and the related
phenomenon of RPA, have been the focus of many mathematical models, the detailed molecular
mechanisms that might support these functions in ‘real’, highly complex signalling interactions
are yet to be understood. Indeed, a frontier research problem in biochemical signalling is the
question of how specialized signal processing functions such as ultrasensitivity are implemented
at the microscale of complex networks, through the highly intricate interactions of collections
of proteins [15]. Mathematical models of biochemical signal processing to date have typically
been highly simplified—either by neglecting many of the proteins known to be involved, and
frequently by simplifying the mathematical nature of their interactions—most notably through
the (often indiscriminate) use of the Michaelis–Menten equation, involving the quasi-steady-state
assumption (QSSA) on intermediate protein–protein complexes.

The Michaelis–Menten rate law has a long history in the mathematical modelling of enzyme–
substrate interactions, having originally been proposed through the seminal studies of Henri
[78], Michaelis & Menten [79] and Briggs & Haldane [80] in the early decades of the twentieth
century. Its limitations to the study of even simple enzyme–substrate interactions are now well
known [81,82], and a variety of alternative theoretical methods, mostly employing alternative
QSSAs, have been developed to yield modelling simplifications that are applicable to a broader
range of parameter regimes than the standard Michaelis–Menten equation, with its ‘standard’
QSSA (see [81] for a detailed review). Nevertheless, the more complicated enzyme–substrate
interactions that readily arise in biological networks, involving multisite chemical modifications,
positive or negative autoregulation of substrate molecules, and other molecular intricacies,
are currently beyond the reach of most modelling simplifications involving alternative QSSAs
[14,15]. Indeed, even small such collections of relatively simple enzyme-mediated reactions can
involve the formation of a number of transient, intermediate molecular states and protein–protein
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Figure 2. Amathematical framework for the modelling of a single covalent-modification cycle. (a) A schematic of a reversible
covalent-modification cycle in which a protein substrate (W) is chemically modified by an enzyme, E1, into an active form (W∗).
The active form is, in turn, converted back to its unmodified form through the action of a second, independent, enzyme, E2.
(b) A ‘complex-free’ mechanism, in which enzyme concentrations are incorporated into the biochemical rate constants (k1, k2),
canbeusedas thebasis of a simplifiedmass-actionmodel of the cycle. (c) A reactionmechanism that explicitly includes transient
enzyme-substrate complexes (C1, C2) can be used as the basis of either a complex-completemass action model, or a Michaelian
model.

complexes, and can quickly give rise to complicated mathematical descriptions when all such
states are explicitly accounted for. Such intricate enzyme–substrate interactions often continue to
be modelled using Michaelian approximations [13,15], although the mathematical consequences
of doing so have not been examined in detail to date to our knowledge.

In the present paper, we consider the mathematical modelling of covalent-modification cycles
with a set of added regulations known as PAR. We are motivated in large part by the influential
RPA study by Ma et al. [13], which employs Michaelian models of PAR to suggest that positively
autoregulated covalent-modification cycles are supportive of ultrasensitivity, and hence RPA, in
very specific parameter regimes. But to what extent might ultrasensitivity, and ultimately RPA,
truly prevail if the detailed intermolecular mechanisms of PAR, when all associated intermediate
protein–protein complexes, are explicitly accounted for in the model? Are the Michaelian models
able to fully recapitulate the qualitative responses of more detailed models that account explicitly
for molecular mechanisms? And is the relationship between qualitative response and parameter
regime reliable in the Michaelian framework?

We attempt to offer important new insights into these questions by proposing several new,
simple, yet detailed, mathematical models of covalent-modification cycles incorporating PAR.
We appeal to a mathematical framework we call complex-complete wherein the molecular details
of each specific PAR mechanism will be considered explicitly, and all intermediate protein–protein
complexes accounted for. We will consider the capacity of each such model to exhibit bistability
and ultrasensitivity, through model simulations over a wide range of parameters, and compare
these outcomes with the behaviour supported by the well-established Michaelian model of PAR
[13].

As a backdrop to these novel complex-complete models of PAR, we first briefly review the two
main classes of simplified frameworks for the mathematical modelling of covalent-modification
cycles: simplified mass-action models and Michaelian models (figure 2).

(a) Modelling frameworks for covalent-modification cycles
Consider the basic structure of a covalent-modification cycle (figure 2a), where an enzyme, E1,
binds to a substrate, W, and converts it to a chemically modified form, W∗(t). A second enzyme,
E2, can then bind to the chemically modified protein, W∗, and convert it back to its original,
unmodified, form, W.

Simplified mass-action models exclude intermediate protein–protein complexes (figure 2b). A
simplified mass-action model of a covalent-modification cycle thus produces a single ordinary
differential equation (ODE) for the concentration of the output, W∗(t), as in equation (1.1),

dW∗

dt
= k1E1(Wtot − W∗) − k2E2W∗, (1.1)
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with
Wtot = W + W∗, (1.2)

as a conservation relation, where Wtot, assumed fixed, denotes the total concentration of substrate
protein present in either form. Thus, equation (1.2) yields the concentration of the unmodified
protein, W(t), once W∗(t) has been obtained from equation (1.1).

By contrast, Michaelis–Menten kinetics do take into account the existence of intermediate
complexes in the system (figure 2c), but their explicit consideration is avoided through the
application of the QSSA. By the QSSA, complex association (ai) and dissociation (di) processes
are assumed to occur on a significantly faster timescale than the catalysis (ki) reaction. Moreover,
the steady-state concentrations of the complexes (there being two enzyme-substrate complexes,
C1 and C2, in a single covalent-modification cycle), having rapidly been reached, are assumed to
be negligible in comparison with the total protein concentration (i.e. Wtot = W∗ + W + C1 + C2 ≈
W∗ + W). We thereby obtain a single equation for W∗(t) (equation (1.3)), which features parameter
groups known as Michaelis constants, K1 = (d1 + k1)/a1 and K2 = (d2 + k2)/a2,

dW∗

dt
= k1E1tot(Wtot − W∗)

K1 + Wtot − W∗ − k2E2totW∗

K2 + W∗ . (1.3)

To equation (1.3), we can add the following three conservation relations:

Wtot ≈ W + W∗,

E1tot = E1 + C1 ≈ E1

and E2tot = E2 + C2 ≈ E2.

⎫⎪⎪⎬
⎪⎪⎭

(1.4)

The first of these determines the concentration of W(t) once W∗(t) has been established from
(1.3), assuming the total protein abundance, Wtot, to be a constant. Because the two intermediate
complexes, C1 and C2, are assumed to be of negligible concentration in the Michaelian framework,
the total enzyme concentrations, E1tot and E2tot (also assumed to be constants), are approximated
by the concentrations of the corresponding free enzymes, E1 and E2, as indicated in the final two
conservation relations in (1.4).

In contradistinction to the two simplification strategies noted above, we refer to models that
consider all signalling events and intermediate molecules explicitly, thereby providing a detailed
representation of the signalling mechanisms, as complex-complete mass-action models. The complex-
complete mass-action model ‘induced’ by the chemical reaction network in figure 2c can be
expressed as a system of four ODEs (1.5) and three conservation equations (1.6),

dW
dt

= d1C1 + k2C2 − a1WE1,

dW∗

dt
= d2C2 + k1C1 − a2W∗E2,

dC1

dt
= a1WE1 − d1C1 − k1C1,

dC2

dt
= a2W∗E2 − d2C2 − k2C2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.5)

and
Wtot = W + W∗ + C1 + C2,

E1tot = E1 + C1,

E2tot = E2 + C2.

⎫⎪⎪⎬
⎪⎪⎭

(1.6)

A detailed description of the process by which polynomial dynamical systems are induced by
chemical reaction networks, under mass-action kinetics, is given in [83].

As mathematical models grow in size and complexity, simplified mass-action and Michaelian
descriptions of the various components of the system can significantly reduce the number of
variables and parameters to be considered. On the other hand, these benefits come at the
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expense of neglecting signalling events which could potentially alter the qualitative nature
of the system’s response in significant ways [15,77,84]. Importantly, Goldbeter & Koshland’s
seminal work on zero-order ultrasensitivity [46] has suggested that the Michaelian model of a
covalent-modification cycle, equation (1.3), provides a good approximation to the ultrasensitive
behaviour of the complex-complete mass-action model provided that E1tot, E2tot � Wtot, a
parametric condition unlikely to obtain in many signal transduction networks, or other highly
complex bionetworks in nature [14]. Moreover, if additional regulations such as autoregulatory
interactions are present in the system, with an inevitable increase in the number of intermediate
protein–protein complexes, it is unclear if simplified Michaelian descriptions of the system would
be capable of recapitulating the qualitative behaviours of the corresponding complex-complete
models for any parameter regime.

Although the larger number of variables and parameters often necessitates numerical, rather
than analytical, approaches, these models allow the complexity of the system to speak for
itself, and can be used to verify the extent to which simplified models of signalling motifs
can recapitulate the behaviours of more detailed, accurate and mechanistic mathematical
descriptions.

We now proceed to compare three different models of a covalent-modification cycle with
PAR—the well-established Michaelian model studied by Ma et al. [13], along with two novel
complex-complete mass-action models.

(b) A Michaelian model of positive autoregulation
In order to generate ultrasensitivity (and hence RPA when suitably embedded into an appropriate
network topology) via PAR of a covalent-modification cycle, Ma et al. [13] used an equation of the
following form:

dW∗

dt
= k1E1W∗(Wtot − W∗)

K1 + (Wtot − W∗)
− k2E2W∗

K2 + W∗ . (1.7)

We refer to this model hereafter as PAR-MM. Here it is assumed that the rate of increase of W∗
occurs in direct proportion to E1W∗ (rather than just E1, as is the case for the Michaelian model
without added regulations), thereby enabling the output molecule to enhance its own production.
It is clear from the form of equation (1.7) that if K1 � Wtot − W∗ and K2 � W∗, then at steady state,
0 ≈ W∗(k1E1 − k2E2/K2). Thus, the system can exhibit unlimited ultrasensitivity as this parametric
limit is approached, with a near-vertical dose–response occurring at E1tot ≈ E1 = (k2/k1K2)E2.

In figure 3, we examine how the Michaelis constants of PAR-MM are the key drivers of both
bistability and (unlimited) ultrasensitivity in this model. In particular, for an initial choice of
K1 = 10−1 and K2 = 10 (figure 3a,d), the rate of increase in W* (orange/black lines), as given
by the first term in equation (1.7), intersects the rate of decrease (blue line) in multiple places,
indicating the existence of multiple steady states (bistability, in this case) for some values of
E1. As we increase the value of K2 and decrease K1, we observe a narrowing in the range of
values of E1 for which bistability obtains (figure 3b,e). This occurs as the negative rate of change
approaches the same form as the positive rate of change. For K1 � Wtot − W∗ and K2 � W∗, the
two curves approach an exact match, and complete overlap, for E1 = (k2/k1K2)E2 (figure 3c,f ).
Under these conditions, every non-zero value of W∗ is compatible with a steady state at E1 =
(k2/k1K2)E2, a scenario that corresponds to unlimited ultrasensivity (i.e. a vertical dose–response
curve at the noted value of E1). Note that in the Michaelian model of PAR by Ma et al. [13],
being identical in form to PAR-MM, there is no consideration of how the output molecule W∗
might upregulate its own production through its interactions with other molecules, and thus
no accounting for any particular autoregulatory mechanism. As a consequence, there is no way
to determine how well this model might reflect PAR mechanisms in ‘real’ biochemical reaction
networks. In order to consider the role of the mechanism in PAR, we propose two possible chemical
reaction mechanisms: a direct positive autoregulatory mechanism (hereafter, PAR-d), and an
indirect mechanism (hereafter, PAR-i).
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of the rate of change in W∗ from equation (1.7), for three different parameter sets. In each case, the negative component
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K1 = 10−5 and K2 = 105. (Online version in colour.)
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Figure 4. PAR-d System. (a) Schematic of the PAR-d mechanism. (b) Chemical reaction network corresponding to the PAR-
d mechanism, comprising three groups of reactions: (i) E1 binding reversibly to W, forming a complex C1, and catalysing the
production ofW∗ fromW; (ii) E2 binding reversibly toW∗, forming a complex C2, and catalysing the production ofW fromW∗;
and (iii)W∗ binding reversibly toW, forming a complex C3, and catalysing the conversion ofW toW∗.

(c) A novel model of direct positive autoregulation
In order to implement a direct PAR mechanism, we supplement the basic covalent-modification
cycle (figure 2c) to include a third set of reactions whereby the output, W∗, binds in trans to the
unmodified protein W, thereby catalysing the conversion of the latter to W∗. In the process of
doing so, an intermediate protein–protein complex comprising both W and W∗ is formed. We
represent this process schematically in figure 4a and by the chemical reaction network in figure 4b.

This chemical reaction network, through the law of mass-action, induces the following system
of ordinary differential equations:

dW
dt

= d1C1 + d3C3 + k2C2 − a1WE1 − a3WW∗, (1.8)

dW∗

dt
= d2C2 + d3C3 + k1C1 + 2k3C3 − a2W∗E2 − a3WW∗, (1.9)
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reaction groups: (i) E1 binding reversibly toW, forming a complex C1, and catalysing the production ofW∗ fromW; (ii) E2 binding
reversibly toW∗ forming a complex C2, and catalysing the production ofW fromW∗; (iii)W∗ binding reversibly with E1 to form
a complex C3; and (iv) C3 (containing enzyme E1) binding reversibly withW, forming a complex C4, catalysing the conversion of
W toW∗.

dE1

dt
= d1C1 + k1C1 − a1WE1, (1.10)

dE2

dt
= d2C2 + k2C2 − a2W∗E2, (1.11)

dC1

dt
= a1WE1 − d1C1 − k1C1, (1.12)

dC2

dt
= a2W∗E2 − d2C2 − k2C2 (1.13)

and
dC3

dt
= a3WW∗ − d3C3 − k3C3. (1.14)

The summation of equations (1.8) through (1.14) yields a conservation equation for the substrate
protein,

Wtot = W + W∗ + C1 + C2 + 2C3.

Likewise, summation of equations (1.10), and (1.12), and of equations (1.11), and (1.13), yield
conservation equations for the two enzymes:

E1tot = E1 + C1

and
E2tot = E2 + C2.

(d) A novel model of indirect positive autoregulation
For the indirect implementation of PAR, we introduce two new reaction groups to the reversible
covalent-modification cycle. First, we add a reaction in which the output, W∗, can bind reversibly
with the enzyme, E1, forming the transient complex C3. Then, in a second reaction group, the
complex C3 can bind reversibly to W, forming another complex C4, which catalyses the conversion
of W to W∗. In this way, the binding of W∗ to E1 (producing C3) alters the efficiency of the
enzyme E1 through an allosteric interaction. Thus, in contrast to PAR-d, where W∗ catalyses its
own production from the unmodified form W, W∗ now enhances its own production through an
indirect mechanism, through its interactions with E1. We illustrate the PAR-i mechanism by the
schematic in figure 5a, and produce a corresponding chemical reaction network in figure 5b.

By the law of mass-action, we obtain a system of ordinary differential equations from the
chemical reaction network in figure 5b:

dW
dt

= d1C1 + k2C2 + d4C4 − a1WE1 − a4WC3, (1.15)

dW∗

dt
= k1C1 + d2C2 + d3C3 + k4C4 − a2W∗E2 − a3W∗E1, (1.16)
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dE1

dt
= d1C1 + k1C1 + d3C3 − a1WE1 − a3W∗E1, (1.17)

dE2

dt
= d2C2 + k2C2 − a2W∗E2, (1.18)

dC1

dt
= a1WE1 − d1C1 − k1C1, (1.19)

dC2

dt
= a2W∗E2 − d2C2 − k2C2, (1.20)

dC3

dt
= a3W∗E1 + d4C4 + k4C4 − d3C3 − a4WC3 (1.21)

and
dC4

dt
= a4WC3 − d4C4 − k4C4, (1.22)

The summation of equations (1.15), (1.16), (1.19), (1.20), (1.21) and (1.22) gives a conservation
equation for the substrate protein,

Wtot = W + W∗ + C1 + C2 + C3 + 2C4.

Similarly, the summation of equations (1.17), (1.19), (1.21) and (1.22), and of equations (1.18)
and (1.20), yield conservation equations for the two interconverting enzymes:

E1tot = E1 + C1 + C3 + C4

and
E2tot = E2 + C2.

2. Results
Our overarching goal is to determine the extent to which bistability (as a one-way switch and/or
as a toggle switch) and ultrasensitivity are obtained in our complex-complete models of PAR
(PAR-d and PAR-i), and to establish the similarities and differences in the predictions of these
detailed models in comparison with the simpler Michaelian model of PAR (PAR-MM).

With this goal in mind, we commenced our study with a preliminary exploratory parameter
search in which we classified the qualitative nature of the dose–response profiles for both the
PAR-d and PAR-i motifs for approximately 1000 random parameter sets, each parameter taking
values in the range (10−6, 106). It was striking to observe that ultrasensitive or bistable profiles
were only obtained when K1/Wtot, K2/Wtot � 1, that is, for parameter regimes corresponding
to ultrasensitivity in the Goldbeter–Koshland model without PAR. Indeed, where K1/Wtot and
K2/Wtot assumed larger values (say K1/Wtot, K2/Wtot > 1), the dose–response profiles for both
PAR-d and PAR-i models were invariably characterized by either low conversion to W∗ (i.e. a
maximal steady state W∗ much lower than Wtot) and/or a subsensitive dose–response profile.

As an illustrative example, we depict in figure 6 representative dose–response profiles for
our PAR-d and PAR-i models using K1/Wtot, K2/Wtot > 1, depicting typical subsensitive and
low-conversion dose–response profiles that characterize this parameter regime. As shown,
subsensitive responses were of two distinct types: gently sloping ‘graded’ responses, or a rapid
conversion (switch) to maximal output at or near the origin, with weak dependence on input
variations thereafter.

Moreover, our preliminary parameter searches made clear that the parameter choices that
‘drive’ the qualitative nature of the responses in the complex-complete models of PAR were
vastly more complex and subtle than for PAR-MM. In this connection, we note that for PAR-MM
the essential drivers of the model’s qualitative response are the Michaelis constants, K1 and K2.
Indeed, by increasing K2 and decreasing K1, the model gives rise to a narrowing bistable region
(figure 3d,e), and in the limit as K2 → ∞ and K1 → 0, unlimited ultrasensitivity obtains (figure 3f ).
Thus, the qualitative nature of the system’s response is completely determined by the choice of
K1 and K2.
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Figure 6. Representative dose–responses of PAR-d and PAR-i for K1/Wtot, K2/Wtot > 1. Parameters: (all plots) Wtot =
100, E2tot = 20. (a) switch at origin: a1 = a2 = a3 = 0.01, d1 = k1 = d2 = k2 = 10, d3 = k3 = 1; graded: a1 = a2 = 0.1,
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(b) switch at origin: a1 = a2 = 0.01, d1 = k1 = d2 = a3 = 10, k2 = d4 = k4 = 1, d3 = 0.1, a4 = 100; graded: a1 = a2 =
a4 = 0.01, d1 = k1 = d2 = k2 = d3 = 10, a3 = 0.1, d4 = k4 = 10; low conversion: a1 = d1 = k1 = a2 = d2 = a4 = d4 =
k4 = 1, k2 = d3 = 10, a3 = 0.1. Solid circles indicate stable steady states; open circles indicate unstable steady states. (Online
version in colour.)
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For the complex-complete models PAR-d and PAR-i, by contrast, it is intriguing to observe
that the capacity for ultrasensitivity or bistability is not determined by the Michaelis constants
alone, as we demonstrate in figure 7. In fact it is readily apparent that for both PAR-d
(figure 7a–d) and PAR-i (figure 7e–h), a full range of behaviours including ultrasensitivity,
subsensitivity (not shown) and bistability, may all be obtained with a single choice of Michaelis
constants K1, K2 and K3 (as well as K4 in the case of PAR-i).

Having thus established a coarse-grained view of the requisite conditions for ultrasensitivity
and bistability in our complex-complete models of PAR, we proceeded to examine the qualitative
influence of each individual rate constant (ai, di, ki), the total protein abundances (Wtot and E2tot,
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considered constants) as well as key parameter groups—the Michaelis constants (K1, K2, K3),
and the dissociation constant (Kd, appearing only in PAR-i)—under the parametric conditions
K1/Wtot, K2/Wtot ≤ 0.1, for both PAR-d and PAR-i. Each parameter, or parameter group, was then
varied in turn over the range (10−10, 1010) for a collection of fixed values for all other parameters.
Linear stability analysis was then used to classify the stability of all steady states.

(a) PAR-d exhibits both one-way and two-way switches, in addition to ultrasensitivity
Our extensive computational simulations reveal that the existence of bistability in the dose–
response of PAR-d differs from that in PAR-MM in a number of fundamental ways. First, unlike
PAR-MM, which only admits two-way (toggle) switches in its bistable regime, PAR-d also has
the potential for one-way (irreversible) switches. In figure 7a–d, we see that altering a single
parameter in the PAR-d model can shift its response from monostable ultrasensitivity, to a bistable
two-way switch, through to a bistable one-way switch. Furthermore, as we noted above, the
capacity for bistability in PAR-d is not determined by the Michaelis constants alone; in fact, for
each of the three individual rate constants, ai, di, ki, that comprise a Michaelis constant, Ki, we
discovered that it is the catalytic constant, ki, specifically, that controls the qualitative response of
the system and the shape of its dose–response profile.

We explore this finding further in figure 8, where we examine the various possible
combinations of holding a Michaelis constant fixed, along with one of its component rate
constants, while varying the two remaining rate constants. In figure 8a, we hold K1 and k1
constant, while increasing d1 and a1 in a proportion that maintains the constant K1. The profiles
that are generated with these changes are all identical. By contrast, when we alter k1 and a1
(figure 8b) and k1 and d1 (figure 8c) we observe clear differences amongst the profiles. We also
observe that across figure 8b,c, dose–response profiles associated with the matching values of K1
and k1 are the same irrespective of the values of a1 and d1. These same behaviours can be observed
in the second (figure 8d–f ) and third (figure 8g–i) reactions.

In fact, it is clear that the catalytic constants (ki) play a unique and important role in tuning
the shape of the system’s dose–response profiles. In figures 7a–d and 8, the parameters are altered
to increase the catalytic constant in question without also altering the corresponding Michaelis
constant. On the other hand, by increasing k1 on its own, and hence increasing K1 simultaneously,
the system changes from monostable ultrasensitivity, to bistability, and then back to monostable
ultrasensitivity (figure 9), an unusual and unexpected behaviour not afforded by the simple
Michaelian model. Remarkably, the monostable regions of these profiles continue to increase in
sensitivity, as this complex phenomenon unfolds, despite the inclusion of the bistable region. This
behaviour is tied uniquely and specifically to the first catalytic constant, k1.

Moreover, while PAR-d can exhibit ultrasensitivity, as demonstrated in figures 8 and 9, the
steepness of this near-vertical region of the dose–response cannot be increased indefinitely, in
marked contradistinction to the Michaelian model, which supports unlimited ultrasensitivity. As
shown in figure 9, increasing k1 can increase the sensitivity of the dose–response profile, but the
steepness that can be achieved is limited. In addition, the location of the ultrasensitive portion
of the curve is consistently moved to the left, towards the origin, which also constrains the
development of ultrasensitivity due to this particular parameter change. In figure 10a, decreasing
K1 with fixed k1 highlights the limit in ultrasensitivity that is approached as K1 is reduced.

Altering the other parameters of the PAR-d model (K2, K3 and Wtot), in an attempt to increase
sensitivity, ultimately culminates in the onset of bistability. Unlike the situation illustrated in
figure 9, where the system switches from monostable to bistable and back to monostable for a
monotone increase in a single parameter, bistability now persists once it is triggered at a critical
value of the parameter in question. In particular, in figure 10b, we observe that decreasing K2
increases the sensitivity in the lower half of the substrate profile, without greatly affecting the
sensitivity in the upper half. This ultimately leads to bistability as the lower half is shifted too
far to the right. Further decreases in K2 do not lead to the creation of a one-way switch, as we
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Figure 8. Varying rate constants in PAR-d. Pairs of independent rate constants are altered whilst holding the corresponding
values of K1, K2 and K3 fixed. Parameters:Wtot = 100 and E2tot = 20. (a)–(c): a1 = a2 = d3 = k3 = 1, d1 = k1 = d2 = k2 =
5, a3 = 0.01; (d)–(f ): a1 = d1 = k1 = a2 = d2 = k2 = d3 = k3 = 1, a3 = 0.01; (g)–(i): a1 = d1 = k1 = a2 = d2 = k2 =
1, a3 = 0.007, d3 = k3 = 5. Varied rate constants are identified in the figure legends. Solid circles indicate stable steady states;
open circles indicate unstable steady states. (Online version in colour.)

illustrate by the profiles for K2 = 0.4 and K2 = 0.2, which can be observed to overlap without
significant change.

For the parameters K3 (figure 11a) and Wtot (figure 11b), on the other hand, continued
monotone alterations in these parameters transform the two-way switch into a one-way switch.
By either decreasing K3 or increasing Wtot, the upper portion of the dose–response profile is
shifted rapidly to the left, much more rapidly than the shifting of the lower portion, which leads
to an overlap, creating bistability. This trend continues and ultimately leads to the creation of a
one-way switch as the upper portion of the curve moves to the left past the location of the vertical
axis.

(b) PAR-i exhibits ultrasensitivity and two-way (not one-way) switches, and admits a
‘prozone’ effect

Unlike the Michaelian model, wherein the two Michaelis constants are the drivers of bistability,
or the PAR-d model, where a number of parameters drive bistability as discussed in the previous
section, our extensive numerical simulations reveal that the catalytic constant k4 is the only
parameter in the PAR-i model that drives bistability (figure 7e–h).
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The relationship between bistability and the parameter regime in the PAR-i model is quite
subtle. In particular, while increasing the value of k4 is able to convert a sensitive but monostable
profile into a bistable one, it is striking to observe that many other parameters can predispose the
system to bistability, enabling the bifurcation to occur at a lower value of k4. In figure 12, for
instance, we show that for a given value of k4, we are able to switch between ultrasensitivity and
bistability by increasing the sensitivity of the system via a reduction in the Michaelis constants.
In particular, decreasing the values of K2 and K4 increases the sensitivity of the underlying
ultrasensitive monostable profile, allowing bistability to be triggered for smaller values
of k4. Interestingly, when K1 is decreased, the system is ‘pushed back’ towards monostability.
Nevertheless, Michaelis constants are not considered drivers of bistability in the sense that, for
sufficiently low values of k4, they are unable to achieve bistability on their own.
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In common with the behaviour of PAR-d, we found that the catalytic constant, ki, is the only
component rate constant in each Michaelis constant, Ki, that exerts a qualitative influence on
the shape of the system’s dose–response profile. Moreover, in figure 13b, for instance, we see
that decreasing k2 increases the sensitivity of the profile, and may thereby predispose the system
to bistability. Increasing the total abundance of protein substrate, Wtot, similarly increases the
sensitivity of the profile, and may likewise predispose the system to bistability (not shown). On
the other hand, increasing k1 increases sensitivity while also promoting monostability (figure 13a).
In fact, we consistently found throughout our simulations that there is a very strong relationship
between the values of k1 and k4, and the shape of the dose–response curve. In particular, for
k1 = k4, this system is unable to achieve bistability, regardless of how the other parameters are
altered.

Unlike the PAR-d model, but in common with the Michaelian model, PAR-i can only exhibit
two-way (reversible) bistable switches, not one-way switches. As we showed in figure 7e–h,
continued increases in the key parameter k4 do not culminate in a one-way switch. This is to
be expected, of course, because when E1tot = 0 for this particular PAR mechanism, there is no
possibility of a ‘forward’ reaction in which W∗ is created, and thus no opportunity for a non-zero
steady state in W∗.
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A further notable distinction between PAR-i and both the Michaelian and PAR-d models is the
eventual decrease in system output with continued increases in input (E1tot), effectively a type of
‘prozone’ effect [85]. The prozone effect was originally observed in the context of immunological
reactions, but has been observed more recently in cellular signalling networks, most notably in
the processing of biochemical signals via scaffold proteins [85]. By analysing the abundances of
intermediate complexes in this scenario, we find that after the maximum conversion from W to
W∗ is achieved (peak in W∗ profile), and E1tot continues to be increased, the third complex, C3,
continues to be produced without being consumed in the fourth reaction (due to insufficient W).
This phenomenon is unique to the PAR-i model, and can be controlled by altering the value of
Kd = d3/a3. Indeed, we find that by increasing Kd, we can mitigate this loss in maximum output
(figure 14). Of course, inhibiting the formation of this complex in this manner also reduces the
PAR contribution to the covalent-modification cycle.

(c) Unlimited ultrasensitivity is difficult to achieve in complex-complete PAR models
Although ultrasensitive profiles could be obtained for both the PAR-d and the PAR-i models,
it is important to consider whether or not the models support unlimited ultrasensitivity. In
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other words, can the slope of the highly sensitive (near-vertical) region of the dose–response
profile be made arbitrarily steep in some parameter limit? Unlimited ultrasensitivity is of central
importance to the implementation of RPA, and was incorporated into the influential RPA study
by Ma et al. [13] using the Michaelian model (PAR-MM) discussed in the present work. Because
PAR-MM is capable of achieving unlimited ultrasensitivity in the parameter limit K1 → 0 and
K2 → ∞ (K1 � Wtot − W∗ and K2 � W∗), we examined the performance of our PAR-d and PAR-i
models in this specific parameter regime. As we illustrate in figure 15, we are unable to achieve
unlimited ultrasensitivity using these conditions for any choice of the remaining parameters in
the model. In fact, for both the PAR-d and PAR-i models, as the limits K1 → 0 and K2 → ∞ are
approached, the system exhibits a steep linear increase in W∗ with E1tot close to the origin.

Our extensive numerical simulations revealed that the only parametric condition that yields
unlimited ultrasensitivity in the PAR-d model is a3 → 0 (K3 → ∞), along with either K1 → 0 and
K2 → 0 (figure 16a) or Wtot � E2tot, E1tot (figure 16b). We note that the first of these conditions
(a3 → 0) corresponds to the limit in which the PAR-d mechanism approaches the Goldbeter–
Koshland model [46], i.e. a simple covalent-modification cycle without PAR. In addition, the
second set of conditions (K1 → 0 and K2 → 0 or Wtot � E2tot, E1tot) corresponds to the parameter
regime in which Goldbeter & Koshland [46] achieved unlimited ultrasensitivity via the zero-
order mechanism. In other words, PAR-d can only exhibit unlimited ultrasensitivity once the
PAR contribution is removed. PAR-d, in its essence, appears to be incapable of unlimited
ultrasensitivity.

As for our PAR-i model, unlimited ultrasensivity was possible under very specific conditions.
First, in common with PAR-d, unlimited ultrasensitivity may be realized in the parameter limit
by which the Goldbeter–Koshland model [46] is recovered from the PAR-i model. This gives rise
to dose–response profiles that are identical to figure 16. But in addition to this, PAR-i is also
able to engender unlimited ultrasensitivity in an additional set of conditions, where PAR remains
present in the model. Specifically, we consistently found that provided k1 ≈ k2 ≈ k4, unlimited
ultrasensitivity may arise in the limit as K1 → 0 and K2 → 0 (figure 17a), and/or in the limit as
Wtot → ∞ (figure 17b).

Thus, unlimited ultrasensitivity is difficult to achieve in our complex-complete models of
PAR, in the sense that it requires that either (i) the positive autoregulatory mechanism be
removed completely, through the vanishing of a relevant parameter; or (ii) in the case of PAR-i, a



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210069

...........................................................

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 5 10 15 20
input (E1tot)

25 30 35 40 5 10 15 20
input (E1tot)

25 30 35 40

ou
tp

ut
 (

W
*)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

ou
tp

ut
 (

W
*)

K1 = K2 = 2 Wtot = 102

Wtot = 103

Wtot = 104

K1 = K2 = 2  ×  10–1

K1 = K2 = 2  ×  10–2

K1 = K2 = 2  ×  10–3

(a) (b)

Figure 16. Unlimited ultrasensitivity in PAR-d parameters: Wtot = 100, E2tot = 20, a1 = d1 = k1 = a2 = d2 = k2 = d3 =
k3 = 1, a3 = 10−10. (a) a1 = a2 = 1 (blue), a1 = a2 = 10 (red), a1 = a2 = 102 (yellow); a1 = a2 = 104 (purple); (b)Wtot =
102 (blue), Wtot = 103 (red), Wtot = 104 (yellow). Almost identical profiles can be achieved in PAR-i by setting a3 = 10−10,
d3 = 10 and a4 = d4 = k4 = 1 to remove the effect of PAR (not shown). (Online version in colour.)
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Figure 17. Unlimited ultrasensitivity in PAR-i. Parameters: (both plots) E2tot = 20, d1 = k1 = d2 = k2 = a4 = d4 = k4 =
1, a3 = 0.1, d3 = 10; (a) Wtot = 100; a1 = a2 = 1 (blue), a1 = a2 = 10 (red), a1 = a2 = 102 (yellow) and a1 = a2 = 103

(purple); (b) a1 = a2 = 1;Wtot = 102 (blue),Wtot = 103 (red),Wtot = 104 (yellow). (Online version in colour.)

very specific parameter selection (k1 ≈ k2 ≈ k4) be in place, in addition to other ultrasensitivity-
promoting parameter limits. Given that biochemical systems are generally unable to exercise
control over the numerical values of their parameters, we therefore do not expect unlimited
ultrasensitivity to be achievable in practice for either complex-complete PAR mechanism.

3. Discussion and concluding remarks
The Michaelis–Menten equation, and variations thereon, has appeared almost ubiquitously in
mathematical descriptions of enzyme-mediated chemical reactions for more than 100 years
[81,82], often quite indiscriminately, with little or no consideration of whether it is able to
truly recapitulate the behaviour of the (potentially much more complicated) system being
modelled. In particular, it has been used in highly influential work [13] to suggest that PAR
of a covalent-modification cycle can generate unlimited ultrasensitivity, and as a consequence,
RPA when suitably embedded in certain network topologies. But the mathematical consequences
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of approximating complex and intricate molecular interactions (that could be present in added
regulations such as PAR) by a Michaelian rate law have not previously been rigorously examined.
Here we ask: Can a Michaelian description of such a system accurately represent the detailed
molecular mechanisms that must be present in a ‘real’ collection of interacting molecules,
which could, in principle, be quite intricate and complicated? And can it truly recapitulate
the range of qualitative behaviours afforded by more detailed mass-action descriptions that
account for all molecular interactions? Our answer, based on two detailed mass-action models
that carefully account for the specific molecular mechanisms through which PAR is actually
transacted, and explicitly account for all intermediate molecular species—a framework we call
‘complex-complete’—is a resounding no.

As noted elsewhere in this work, ultrasensitivity can contribute to the implementation of
RPA because the near-vertical region of the ultrasensitive dose–response can be transformed to
a near-horizontal (invariant) response to an external network stimulus, once the ultrasensitivity-
generating mechanism is embedded into a negative feedback loop [14,15]. Of course, in practice,
‘real’ biological systems may tolerate some imprecision in the adaptation mechanism, such that
some degree of embedded ultrasensitivity may be adequate. Nevertheless, the capacity of a
collection of embedded reactions to exhibit unlimited ultrasensitivity is functionally significant:
unlimited ultrasensitivity corresponds to the potential to ‘tune’ the steepness of the dose–
response, either through alterations to gene expression (protein abundance, such as Wtot in
this case) or through alterations in rate constants via mutation, to be as steep as needed for
the requisite adaptation response. Both the Goldbeter–Koshland model [46] and the Michaelian
model of PAR proposed by Ma et al. [13] (here, PAR-MM) are capable of unlimited ultrasensitivity
in this sense.

By contrast, our two complex-complete models of PAR—in which we consider the specific
mechanism by which PAR may be encoded, and explicitly incorporate all molecular details of
the mechanism into the mathematical model—exhibit limitations in the steepness of the slope
in the ultrasensitive region of the dose–response. In particular, parameter alterations that are
conducive to increased ultrasensitivity ultimately trigger the onset of bistability. In this sense, the
ultrasensitivity engendered by these more detailed models is far more fragile than is predicted
by the simplified Michaelian approximation (PAR-MM). In the context of RPA, then, whereas
simplified (Michaelian) models may predict that parameter perturbations simply reduce the
precision of adaptation (which may be functionally acceptable to the biological system as a
whole), our more detailed analysis suggests that the capacity for adaptation could actually be
lost altogether.

On the other hand, both our complex-complete models were capable of bistability, a qualitative
response that is also realized by the Michaelian simplification (PAR-MM). But whereas both the
PAR-MM model and our PAR-i model could only exhibit two-way (reversible) bistable switches,
our PAR-d model could also exhibit one-way (irreversible) switches. Clearly mechanism matters:
not only is the Michaelian model unable to fully recapitulate the qualitative responses of the more
detailed complex-complete models, but also the choice of specific PAR mechanism encoded by
the complex-complete framework also plays an important role. While the distinction between
one-way and two-way switches may be functionally unimportant for biological systems that
predominantly operate in a regime far removed from the thresholds at which bistable switches
are ‘tripped’, bistable switches are thought to play a central role in signalling phenomena such
as apoptosis and motility signalling [4,5], among others. In this context, the existence of a one-
way switch, rather than the two-way switch suggested by Michaelian and PAR-i models of PAR,
could have profound consequences, particularly in the development of therapeutic strategies. In
particular, a pharmacological agent that ablates the incoming signal to a one-way switch will not
be able to modulate downstream signalling once the switch has been ‘tripped’.

Thus, our study adds to a growing body of literature that suggests that more caution
should be exercised in the use of the Michaelis–Menten equation to model enzyme-mediated
reactions. Our study particularly emphasizes that the use of the Michaelis–Menten equation may
be inadequate for the functional elucidation of complex signalling networks, especially when
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additional regulations (such as autoregulation) are present. This is particularly important in our
current ‘big data’ era, as the systems biology community moves increasingly in the direction
of large-scale network models and ‘whole-cell modelling’ [86]. The sheer size and complexity
of these models, and the need to reconcile theory with experimental data, naturally introduce
enormous challenges in terms of model parameterization and parameter inference. While it
is expedient in this context to make mathematical representations of the system as simple as
possible, our study underscores the potential dangers of doing so.

We note in closing that complex-complete mass-action models, as we propose here, constitute
polynomial dynamical systems whose steady-state solutions form algebraic varieties. Significant
progress has been made in recent years in the application of Gröbner basis methods to the study
of these kinds of models (e.g. [87]). Nevertheless, because Gröbner bases can quickly become
large and expensive to compute as the underlying models become more complicated, numerical
simulations may still be required in many cases to support the analysis of mechanism-based
models of complex networks.

4. Methods
Numerical simulations and root-finding methods were all undertaken using standard packages
available in Matlab (ODE45, ODE23s, roots and fsolve). Total number of possible steady states
in the interval [0,Wtot] were checked by Gröbner basis calculations (and subsequent numerical
examination in Matlab) available in the open-source package Singular (https://www.singular.
uni-kl.de/).
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