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BACKGROUND Existing risk assessment tools for heart failure (HF)
outcomes use structured databases with static, single-timepoint
clinical data and have limited accuracy.

OBJECTIVE The purpose of this study was to develop a comprehen-
sive approach for accurate prediction of 30-day unplanned readmis-
sion and all-cause mortality (ACM) that integrates clinical and
physiological data available in the electronic health record system.

METHODS Three predictive models for 30-day unplanned readmis-
sions or ACM were created using an extreme gradient boosting
approach: (1) index admission model; (2) index discharge model;
and (3) feature-aggregated model. Performance was assessed by
the area under the curve (AUC) metric and compared with that of
the HOSPITAL score, a widely used predictive model for hospital
readmission.

RESULTS A total of 3774 patients with a primary billing diagnosis
of HF were included (614 experienced the primary outcome), with
796 variables used in the admission and discharge models, and
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2032 in the feature-aggregated model. The index admission model
had AUC5 0.723, the index discharge model had AUC5 0.754, and
the feature-aggregated model had AUC 5 0.756 for prediction of
30-day unplanned readmission or ACM. For comparison, the HOSPI-
TAL score had AUC5 0.666 (admission model: P5 .093; discharge
model: P 5 .022; feature aggregated: P 5 .012).

CONCLUSION These models predict risk of HF hospitalizations and
ACM in patients admitted with HF and emphasize the importance of
incorporating large numbers of variables in machine learning
models to identify predictors for future investigation.
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Introduction
Heart failure (HF) is a chronic medical condition that creates
substantial economic burden for health care systems and is
among the most common causes of hospital admission in
the United States.1–3 Despite advances in medical and
percutaneous therapies, HF patients are vulnerable to
frequent hospital admissions, with a mean estimated cost of
$23,000 per hospitalization and total annual costs predicted
to rise to $70 billion by 2030.4–7 Multiple inpatient
hospitalizations are especially common after an initial HF
diagnosis, with 1 survey showing that up to 42% of
patients were hospitalized at least 4 times over mean
follow-up of 4.7 years.8 The rising financial burden
associated with HF hospitalizations led to public reporting
by the Centers for Medicare and Medicaid Services of risk-
adjusted unplanned all-cause readmission rates among
patients with HF.9 As such, the 30-day readmission rate for
HF patients has become a key quality metric, and subsequent
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3,964 Pa�ents 

3,774 Pa�ents 

190 pa�ents excluded 
due to death during 
index admission, 
discharge to hospice, 
or lost to follow-up

KEY FINDINGS

� Machine learning (ML) can be leveraged to build a risk
prediction model for the composite of hospital readmis-
sion and all-cause mortality at 30 days in a heart failure
population. Feature-aggregated models that include
extensive social, clinical, and physiological parameters
available from invasive and noninvasive studies can
outperform the HOSPITAL score, which is a current clin-
ical tool used for readmission risk prediction.

� MLmodels can deliver new insight into complex interac-
tions, nonlinearities, and the unknown importance of
prominently featured variables. Identifying promi-
nently featured variables in the model, whether previ-
ously identified or novel, can form the basis for future
investigations.

� Advanced analytics are needed, especially in heart fail-
ure and other complex diseases. Future studies are
needed to determine the feasibility of incorporating
disease-specific predictive models into the electronic
health record and whether they improve patient care
or lead to more efficient and cost-effective health
care resource utilization.
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reimbursement policies have sought to incentivize health care
facilities to lower 30-day readmissions by reducing Medicare
reimbursement for hospitals with high readmission rates.10

Given the enormous clinical and economic burden associ-
ated with HF management, mechanisms capable of predict-
ing patient-level risk for readmission and/or mortality in
the HF population have been the focus of significant research
efforts. Numerous readmission risk prediction models have
been developed, the best of which have displayed only
modest predictive ability.11–18 Most recently, machine
learning (ML) has been combined with a big data approach
for the prediction of all-cause 30-day readmissions producing
minimal improvement over conventional statistics-based
methods.19,20 We hypothesize that previous approaches
failed to yield higher predictive value because they utilized
structured databases that incorporate limited patient
characteristics that fail to capture the complex underlying
pathogenesis of HF. To address this gap, we sought to build
a higher-performing predictive model for 30-day unplanned
readmissions or all-cause mortality in HF patients, using
electronic health record (EHR) data that include extensive
social, clinical, and physiological parameters available
from invasive and noninvasive studies.
3,160 pa�ents 
without unplanned 
death/readmission 
within 30 days a�er 

discharge

614 pa�ents with 
unplanned 

death/readmission 
within 30 days a�er 

discharge

Figure 1 Flowchart of the included and excluded cohorts for the primary
outcome.
Methods
The CLEVER-HEART (PrediCtion Of EarLy REadmissions
In Patients With CongestiVE HeaRt Failure: A Novel
Approach) study aims to develop a predictive model that
accurately describes the risk of 30-day unplanned readmis-
sions or all-cause mortality in patients with HF, based on
an integrated, big data approach that includes psychosocial
factors, demographics, and clinical data, and incorporates
invasive and noninvasive hemodynamic and physiological
parameters. The study was conducted at New York-
Presbyterian Hospital/Weill Cornell Medicine (NYP-
WCM), a quaternary care center and inpatient facility with
over 2500 beds and hundreds of thousands of patients
annually. The Dalio Institute of Cardiovascular Imaging
has made use of the Architecture for Research Computing
in Healthcare program, a suite of tools and services offered
by the Research Informatics team within the Information
Technologies & Services Department of WCM in conjunc-
tion with the Clinical and Translational Science Center and
the Joint Clinical Trials Office.

Study population
The study population included all patients admitted or
readmitted to the general medical or cardiac services at
NYP-WCM between January 2008 and September 2018
and assigned a billing diagnosis of acute HF or acute on
chronic HF, as defined by an International Classification of
Diseases, Ninth Revision (ICD-9) code of 428.* or an Interna-
tional Statistical Classification of Diseases, Tenth Revision
(ICD-10) code of I50.* The index admission was defined as
the first inpatient admission with a diagnosis of HF within
the study timeframe. A readmission was considered any sub-
sequent inpatient admission. In total, the study cohort
comprised 3774 patients assigned a primary billing code of
HF at index discharge. We excluded patients who died during
the course of their first HF hospitalization, were discharged to
hospice from their first HF hospitalization, or were lost to
follow-up within 30 days of discharge from the first HF
hospitalization (Figure 1). Patients were considered lost to
follow-up if they did not have any office visit or laboratory
or imaging data recorded in the EHR within 30 days of index
discharge. TheWCM institutional review board approved the
study protocol.

Data extraction and audit
Leveraging existing WCM infrastructure for the secondary
use of the EHR for research, the study extracted an extensive
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dataset from NYP-WCM EHR systems, including but not
limited to EpicCare-Ambulatory, Allscripts Sunrise Care
Manager, Xcelera, and CoPath.21 All data were extracted
according to defined specifications and stored in Microsoft
SQL Server architecture maintained by the Research Infor-
matics team. Nine hundred eighty variables were retrieved,
including socioeconomic, clinical history, laboratory, radio-
logic investigations, electrocardiogram (ECG), and invasive
coronary angiographic measurements (Supplemental Table
A.1). Patients with missing clinical information
(n 5 1606), not retrievable using automated extraction
methods, were subject to manual chart review for extraction
of the required clinical information. This information was
recorded in REDCap (Research Electronic Data Capture),
a Health Insurance Portability and Accountability Act–
compliant research electronic data capture platform.22

To verify the accuracy of the data extraction, 200 patients
were selected for an internal audit. Patients selected for audit
were stratified by year of index admission and by readmission
status (never readmitted, readmitted within 30 days, or read-
mitted after 30 days). For each of the selected audit cases,
data extracted from the EHR using automated techniques
were manually compared to the results of manual abstraction
from the inpatient and outpatient EHR systems.
Primary and secondary outcomes
The primary outcome of the study was the occurrence of
unplanned readmission or death from any cause within 30
days of discharge from the index HF hospitalization. A sec-
ondary outcome was the occurrence of 6-month unplanned
readmission or all-cause death. An unplanned readmission
was defined using the Centers for Medicare and Medicaid
Services algorithm, a well-established technique for identi-
fying hospital admissions attributed to unavoidable causes,
such as scheduled organ transplantation or maintenance
chemotherapy.23 All-cause mortality data were derived
from multiple sources, including inpatient and outpatient
EHR data, as well as the Social Security Death Master File.
Specifically, to ensure that nonevent patients were alive at
the 1-year follow-up mark, (1) patients without follow-up
data beyond the index admission were excluded from the
database; and (2) the last follow-up date was considered the
date an individual had EHR data.
Feature engineering and statistical analysis
To construct the model, we divided the variables into (1)
static and (2) dynamic characteristics. Static characteristics
constituted a set of static baseline level variables such as de-
mographics, socioeconomic variables, and baseline clinical
characteristics (eg, presence or absence of a given comorbid-
ity). Dynamic characteristics, or time-dependent variables
(eg, vital signs), consisted of multivariate time-series
observations with varying lengths of sequences and irregular
sampling. In model construction, we performed feature
engineering before fitting models to transfer time-series
classification problem into cross-sectional models. We
categorized our predictive models into 3 groups: (1) index
admission model; (2) index discharge model; and (3)
feature-aggregated model. The index admission model is
cross-sectional and comprised variables that were measured
at the beginning of the index hospital stay. The index
discharge model is similarly cross-sectional and comprised
variables measured at the end of the index hospital stay.
The feature-aggregated model incorporated longitudinal
attributes and temporal information of time-dependent vari-
ables using summary statistics. Each time-dependent variable
was aggregated into 7 descriptive statistics to represent the
longitudinal attributes of the variables: minimum, maximum,
standard deviation, mean, weighted average, average abso-
lute change, and last report value within 6 months before
discharge. The time-dependent variables were collected
during the index hospital stay. For the index admission and
discharge models, if a given variable during the index hospi-
tal stay was not available, we considered the last instance that
was closest (within 6 months) to the admission and discharge
dates, respectively.

Continuous variables are given as mean 6 SD or median
(interquartile range). Categorical variables are given as
absolute value and proportion. Baseline characteristics of pa-
tients who experienced the primary outcome (all-cause death
or unplanned readmission within 30 days) vs patients without
the primary outcome were compared using the Student t test
or Wilcoxon rank-sum test for continuous variables and the
c2 or Fisher exact test for categorical variables, as
appropriate. P ,.05 was considered significant for all
analyses. The prediction model for all-cause death or read-
mission within 30 day was constructed using an eXtreme
Gradient Boosting (XGBoost) approach, which has been
extensively validated as an accurate approach that provides
the ability to utilize both continuous and categorical inputs
while allowing for the handling of sparsity without the
need for high computational power.24 Imputation of missing
values was not performed because XGBoost has intrinsic
mathematical mechanisms to handle missing values. Further-
more, imputation in the context of EHR data might lead to
biases because missingness is not present at random in
such a context.

Models were constructed and tested using derivation,
testing, and validation cohorts. The derivation and validation
cohorts comprised 90% of the data; the remaining 10% of the
data was used as an independent test cohort. The independent
test data were not included in the data used to train the model.
To develop derivation and validation cohorts, a stratified, 5-
fold cross-validation was used. The study population was
divided randomly into 5 subsets with similar event rates.
To form the derivation cohort, 4 subsets were combined,
and the remaining subset was reserved as the validation set.
This process was repeated 5 times, such that every subset
served as the validation set, thereby accounting for variability
among patients and providing risk estimates for all cases
(Figure 2). The area under the receiver operating curve
(AUC) from the test set was used to determine the model
performance and was compared to the HOSPITAL score
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Figure 2 Analysis flow for the development and evaluation of models.
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using the DeLong test,25,26 which is a validated score that is
commonly used in clinical practice for the identification of
individuals at risk for avoidable 30-day readmission.27 The
HOSPITAL score incorporates the following variables:
hemoglobin at discharge, discharge from oncology service,
sodium level at discharge, any ICD coded procedure
performed during hospital stay, index admission type, num-
ber of hospital admissions during the previous year, and
length of stay. We also compared the performance of our
model to that of serum brain natriuretic peptide (BNP) levels
at admission.
Results
Baseline characteristics
The study population comprised 3774 primary HF subjects
who met the inclusion and exclusion criteria. Six hundred
fourteen (17.0%) experienced the primary outcome,
including 92 (15.0%) instances of 30-day all-cause mortality
and 522 (85.0%) unplanned 30-day readmissions. Table 1
lists the baseline characteristics of the studied cohort, strati-
fied by primary outcome. Mean age of the entire cohort
was 73.07 6 15.23 years; 54.7% were male; and 51.1%
were Caucasian. There was a high prevalence of cardiovascu-
lar risk factors (35.5% diabetes mellitus; 63.7% hyperten-
sion; 49.2% hyperlipidemia; 25.7% history of smoking). In
addition, comorbid medical conditions were highly prevalent
(30.9% chronic kidney disease; 10.9% chronic obstructive
pulmonary disease; 50% coronary artery disease; 48.9%
previous diagnosis of HF before index admission). In terms
of New York Heart Association (NYHA) functional class,
17.1% were classified as class I, 28.7% as class II, 43.4%
as class III, and 10.8% as class IV. The NYHA class was
reported based on the patient’s baseline functional status
before the acute or acute on chronic HF decompensation
leading to admission.
Mean hemoglobin concentration was 11.2 g/dL, and mean
serum creatinine was 1.29 mg/dL. Mean BNP level was 862
pg/mL. On echocardiography, median left ventricular
ejection fraction (calculated using the Teichholz formula)
was 42.2% (interquartile range 25.1, 59.9). Mean left ventric-
ular internal dimension in diastole was 5.6 cm. In individuals
with measured values, mean pulmonary artery systolic
pressure was elevated at 49.5 mm Hg (interquartile range
40.1, 61.1). In terms of admission medications, 81.4% were
receiving beta-blocker therapy at the time of index admis-
sion, and 92.3% were receiving diuretic therapy. A small
proportion of individuals (4.8%) was receiving inotropic
therapy at the time of index admission.
Prediction of 30-day and 6-month outcomes
Three models were constructed for prediction of 30-day (pri-
mary outcome) or 6-month (secondary outcome) unplanned
readmission or all-cause mortality, and compared prediction
with that of the HOSPITAL score for avoidable readmis-
sions. Seven hundred ninety-six variables were used in the
admission and discharge models (184 variables from the
original 980 had significant sparsity and were not used),
and 2032 variables were used in the feature-aggregated
model. Both the Goodman-Kruskal t and c2 tests confirmed
the presence of a significant correlation between variable
sparsity and 30-day outcomes, and as such variable sparsity
was included in the prediction model. The index admission
model had AUC5 0.723, whereas the index discharge model
had AUC 5 0.754 for prediction of 30-day outcomes. In
comparison, the HOSPITAL score had AUC 5 0.666
(admission: P 5 .093; discharge: P 5 .022). The feature-
aggregated model achieved AUC 5 0.756 for prediction of
30-day outcomes, a value significantly higher than that of
the HOSPITAL score (P 5 .012) and index admission
BNP (P,.01) (Figure 3). In terms of the secondary outcome
(236 patients were excluded from the secondary outcome
because they had no follow-up data and were presumed to
have been lost to follow-up, resulting in n 5 3538), there
was no significant difference between the 3 models and the
HOSPITAL score for prediction of outcomes (admission:
P 5 .40; discharge: P 5 .20; feature-aggregated: P 5 .20),
whereas index admission BNP was significantly worse at
predicting 6-month outcomes (AUC 5 0.522; P ,.01 for
all comparisons).
Variable importance
Table 2 lists (in descending order) each variable’s importance
within the 3 models for both 30-day and 6-month unplanned
readmissions or all-cause mortality. For 30-day outcomes,
discharge to home (vs rehabilitation or long-term care facil-
ity), serum chemistry values (eg, hemoglobin level, red blood
cell distribution width), and quantitative ECG variables (eg,
R-wave axis, QRS duration, QTc interval, atrial rate) featured
prominently for the 3 models. The echocardiographic
variable with highest importance in the 30-day outcomes
models was aortic valve area in the index discharge model.



Table 1 Baseline demographic and clinical data of the studied cohort stratified by primary outcome

Variable
Entire cohort
(N 5 3774)

No death/readmission
within 30 days (n 5 3160 )

Death/readmission
within 30 days (n 5 614) P value

Age (y) 73.07 6 15.23 72.65 6 15.17 75.25 6 15.37 .0001
Male gender 2065 (54.72) 1761 (55.73) 304 (49.51) .0046
Caucasian 1319 (51.08) 1105 (50.69) 214 (53.23) .3481
Coronary artery disease 1885 (49.95) 1551 (49.08) 334 (54.4) .0159
Myocardial infarction 982 (26.02) 783 (24.78) 199 (32.41) .0001
Diabetes mellitus 1338 (35.45) 1109 (35.09) 229 (37.3) .2967
Hypertension 2402 (63.65) 1983 (62.75) 419 (68.24) .0097
Hyperlipidemia 1858 (49.23) 1537 (48.64) 321 (52.28) .0987
History of smoking 968 (25.65) 781 (24.72) 187 (30.46) .0029
Hemoglobin (g/dL) 11.2 (9.8, 12.7) 11.4 (9.9, 12.9) 10.7 (9.3, 12.11) ,.0001
Estimated GFR (mL/min/m2) 42 (29, 53) 43 (29.75, 53) 40 (25.92, 52) .0428
Serum potassium (mmol/L) 4.05 (3.75, 4.4) 4.05 (3.75, 4.4) 4.1 (3.8, 4.5) .0097
Brain natriuretic peptide (pg/mL) 862 (412.5, 1640.25) 843 (401.5, 1587.75) 913 (459, 1896) .0443
Beta-blocker 3001 (81.35) 2517 (81.46) 484 (80.8) .7064
NYHA functional class
I 635 (17.07) 545 (17.48) 90 (14.98) .0058
II 1069 (28.74) 923 (29.6) 146 (24.29)
III 1614 (43.4) 1320 (42.33) 294 (48.92)
IV 401 (10.78) 330 (10.58) 71 (11.81)

Values are given as mean 6 SD, n (%), or median (interquartile range) unless otherwise indicated.
GFR 5 glomerular filtration rate; NYHA 5 New York Heart Association.
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None of the invasive hemodynamic variables (including
right-sided pressures) was ranked among the top 25 predic-
tors. For 6-month outcomes, socioeconomic variables (eg,
distance from home to a park, total population) became
more important.

To further elucidate the association between the highest-
ranked variables in the prediction models and their influence
on 30-day and 6-month outcomes, multivariate logistic
regression models were constructed for each of the 3 models
for both the primary and secondary outcomes. Figure 4 shows
the odds ratios and associated 95% confidence intervals for
the 10 most important variables in each model. Lower
hemoglobin and/or hematocrit were associated with lower
occurrence of outcomes, whereas the presence of diuretic
Figure 3 Area under the curve (AUC) plots for index admission model, inde
HOSPITAL score and admission brain natriuretic peptide (BNP) levels for pred
mortality.
therapy in the discharge medication profile was significantly
associated with readmission or all-cause mortality at 6
months.

Discussion
In the present analysis, we utilized an integrated approach
using EHR data to develop 2 cross-sectional models and 1
feature-aggregated model of 30-day and 6-month unplanned
readmissions or all-cause mortality. We found that incorpora-
tion of clinical, socioeconomic, ECG, invasive and noninva-
sive imaging, and hemodynamic parameters as well as
administered medications resulted in improved outcome pre-
diction in comparison to the HOSPITAL score, a commonly
used risk score that predicts 30-day potentially avoidable
x discharge model, and feature-aggregated model, and comparison to the
iction of 30-day (A) and 6-month (B) unplanned readmission or all-cause



Table 2 Variable importance ranking for the 3 models for 30-day (primary outcome) or 6-month (secondary outcome) unplanned readmission
or all-cause mortality

30-Day outcomes 6-Month outcomes

Index admission Index discharge Feature aggregated Index admission Index discharge Feature aggregated

Red cell distribution
width (1)

Red cell
distribution
width (1)

Discharge to home QRS duration (2) QRS duration (2) QRS duration mean
(2)

Hemoglobin (1) Hemoglobin (1) Red cell distribution
width max (1)

Serum creatinine (1) Atrial rate (2) Diuretic therapy (5)

R-wave axis (2) R-wave axis (2) Red cell distribution
width mean (1)

Red cell distribution
width (1)

Red cell distribution
width (1)

History of psychiatric
disease

Atrial rate (2) Discharge to
home

Hemoglobin min (1) Diuretic (5) Serum creatinine (1) Antibiotic therapy
(5)

Hematocrit (1) WBC count (1) Red cell distribution
width last (1)

Blood urea nitrogen
(1)

Noninvasive blood
pressure
(diastolic) (1)

Serum creatinine
mean (1)

Blood urea nitrogen
(1)

Atrial rate (2) Hemoglobin mean
(1)

Antibiotic therapy
(5)

Park distance (4) Serum magnesium
(standard
deviation) (1)

Lymphocyte
absolute count
(1)

Eosinophilia
count (1)

R-wave axis mean (2) History of psychiatric
disease

Total population (4) QTc interval min (2)

Index stay T-wave axis (2) T-wave axis weighted
average (2)

T-wave axis (2) Albumin (1) Serum creatinine min
(1)

QTc interval (2) QRS duration (1) PR interval mean (2) Time to furosemide
(6)

PR interval (2) T-wave axis mean (2)

Platelet count (1) Glucose (1) Serum magnesium
(standard
deviation) (1)

Total population (4) Mean corpuscular
volume (1)

Red cell distribution
width max (1)

QRS duration (2) Index weight R-wave axis
weighted average
(2)

Index stay length P-wave axis (2) Lymphocyte absolute
count mean (1)

Glucose (1) Potassium (1) Atrial rate weighted
average (2)

Atrial rate (2) Activated PTT (1) Total population (4)

Discharge to home Ventricular rate
(2)

Hematocrit min (1) Hematocrit (1) Lymphocyte absolute
count (1)

Red cell distribution
width mean (1)

QT interval (2) Respiratory
hazard index
(4)

Hematocrit max (1) PR interval (2) Blood urea nitrogen
(1)

Atrial rate mean (2)

Noninvasive blood
pressure (1)

Albumin (1) QTc interval min (2) Lymphocyte absolute
count (1)

Glucose (1) QRS duration min (2)

Mean corpuscular
volume (1)

QTc interval (2) WBC count (standard
deviation) (1)

Ventricular rate (2) T-wave axis (2) Cardiac medication
(5)

Neutrophil absolute
count (1)

Index stay Cardiac medication
(5)

Alkaline phosphatase
(1)

Hemoglobin (1) Noninvasive blood
pressure (systolic)
mean (1)

Ventricular rate (2) Vitamin (6) T-wave axis last (2) History of permanent
pacemaker

WBC count (1) Hematocrit min (1)

Alkaline
phosphatase (1)

Current weight
(1)

Glucose (standard
deviation) (1)

Serum BNP (1) Noninvasive blood
pressure (systolic)
(1)

Anion gap (standard
deviation) (1)

Serum calcium (1) Noninvasive
blood
pressure (1)

Mean corpuscular
volume (standard
deviation) (1)

QT interval (2) QT interval (2) QTc interval
(standard
deviation) (2)

Total urine output LA area (2)
chamber view
(3)

T-wave axis
(standard
deviation) (2)

Park distance (4) Diuretic therapy (5) Beta-blocker therapy
(5)

Alanine
aminotransferase
(1)

Aortic valve area
(3)

T-wave axis (average
absolute change)
(2)

Total urine output Index stay PR interval min (2)

Aspartate
aminotransferase
(1)

Cardiac
medication
(5)

Mean corpuscular
volume max (1)

Hemoglobin (1) History of psychiatric
disease

Serum sodium mean
(1)

T-wave axis (2) P-wave axis (2) Age E/Eʹ ratio (3) Heart rate (1) T-wave axis min (2)
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Table 2 (Continued )

30-Day outcomes 6-Month outcomes

Index admission Index discharge Feature aggregated Index admission Index discharge Feature aggregated

Serum potassium
(1)

Total protein (1) LA dimension
weighted average
(3)

Noninvasive blood
pressure (1)

Serum chloride (1) QTc interval mean (2)

Numbers in parentheses indicate the category in which each variable belongs, as follows: 1: hospital variable; 2: electrocardiography; 3: echocardiography; 4:
social determinants of health; 5: discharge medication; 6: admission medication.

BNP 5 brain natriuretic peptide; LA 5 left atrium; PTT 5 partial thromboplastin time; WBC 5 white blood cell.
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hospital readmissions. To our knowledge, this study
incorporated more variables, both static and dynamic, in a
feature-aggregated model than any other study to date. In
addition, our analysis showed that certain variables (eg, he-
moglobin level, red cell distribution width, ECG features)
are consistent with previous studies showing high predictive
value in HF risk assessment, reinforcing that these relation-
ships may warrant further investigation.

Several predictive models have been developed in an
attempt to estimate readmission risk among patients hospital-
ized with HF (Supplemental Table A.2). These models incor-
porate administrative or clinical variables using regression
modeling, with limited discriminative ability. For example,
Felker et al13 evaluated 949 HF patients for 60-day mortality
or the composite of death or rehospitalization at 60 days.
They used a Cox proportional hazards model to identify
variables that independently predicted risk and subsequently
used a logistic regression model to predict the risk of death or
rehospitalization. The c-statistic for the composite outcome
was 0.68 (after bootstrapping). Keenan et al14 used 283,919
hospitalizations in a derivation cohort to build a predictive
model for the occurrence of 30-day readmissions. They
Figure 4 Quantification of the strength of association between the top variables f
indicates statistically significant; blue indicates nonsignificant) and associated 95%
used a generalized linear model with a logit link function to
construct the model, which had AUC5 0.60 for the primary
outcome. In contrast, Yamokoski et al15 enrolled 373
hospitalized patients with advanced HF and used logistic
regression to predict the occurrence of rehospitalization or
death within 6 months. The c-statistic for rehospitalization
prediction was 0.519. These examples suggest that, despite
a multitude of known risk factors, the actual prediction of
HF rehospitalization is difficult and raise the possibility
that important predictors of HF readmission are not
represented in such models. Our investigation attempted to
overcome these limitations by using a big data approach inte-
grating static data (clinical and socioeconomic variables)
with a multitude of imaging results (echocardiography,
computed tomography, invasive coronary angiography), he-
modynamic data, ECG, medications, and built environment
(ie, human-made aspects of the environment including
buildings, urban infrastructure, and parks for both physical
and social human activities) data while utilizing state-of-
the-art ML algorithms that have been shown to provide
optimal predictive modeling effectiveness. Consequently,
our index admission and index discharge models predicted
or each model and 30-day (30d) or 6-month (6m) outcomes. Odds ratios (red
confidence intervals are shown.
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30-day readmission and all-cause mortality with improved
performance compared to the currently used HOSPITAL
score for avoidable readmissions, while producing a high
AUC compared to other investigations related to HF readmis-
sion prediction.17,28,29 Of note, the HOSPITAL score pre-
dicted potentially avoidable readmission with a c-statistic
of 0.72 (95% confidence interval 0.72–0.72) in a validation
study by Donzé et al27 using an international cohort of pa-
tients consecutively discharged from the medicine floor.
The lower performance of the HOSPITAL score in this study
may be due to inclusion of primarily HF patients, resulting in
some elements of the HOSPITAL score, such as discharge
from oncology service, being less relevant. Nonetheless,
the HOSPITAL score is a well-validated score for hospital
readmissions that is commonly used in clinical practice.

ML has been widely used across various medical spe-
cialties with the goal of producing highly accurate predictive
modeling for specific events. ML is a field that draws on
statistics, mathematics, and computer science to propose
novel strategies for the construction of data-driven models
from large datasets.29,30 ML-based modeling predicts an
outcome based on complicated and nonlinear relationships
between certain variables and a specific outcome of interest,
and can produce improved prediction models compared to
those from systems that rely on expert-selected features.
The present analysis showed that discharge to home (vs to
rehabilitation or long-term care facility) ranked above both
clinical and imaging variables, having the greatest predictive
value for mortality and hospitalizations in the 30-day feature-
aggregated model. This information is not routinely incorpo-
rated in HF risk prediction models and emphasizes that
discharge planning could be an area for interventions,
including increases in remote monitoring or outreach
programs. Other important variables were chemistry based
(eg, red cell distribution width, hemoglobin, hematocrit,
blood urea nitrogen), which is consistent with a recent sys-
tematic review of 117 HF prediction models and a study re-
ported by Angraal et al31 using ML techniques to predict
mortality and hospitalizations in patients with HF and
preserved ejection fraction.32 Relevant hemodynamic param-
eters were limited to echocardiographic variables, such as the
E/Eʹ ratio (a measure of left ventricular filling pressure),
aortic valve area, and left atrial area, which could be a
barometric measure of the chronicity and severity of mitral
valvular disease, left ventricular systolic or diastolic dysfunc-
tion, or all aforementioned conditions. Likewise, QRS
duration was highly predictive of unplanned readmission or
all-cause mortality in almost every model, again possibly rep-
resenting the extent of left ventricular dysfunction.33 This is
consistent with a recent study by Raghunath et al34 showing
that a deep neural network can predict 1-year all-cause
mortality from ECG voltage–time traces (AUC 0.88), thus
highlighting the need for further investigations to determine
the relationship between ECG features and readmission or
all-cause mortality. Invasive hemodynamic measures were
not top predictors; this could be explained by the heterogene-
ity in indication for right heart catheterization, which may be
performed to establish the diagnosis of HF in individuals with
ambiguous or conflicting signs and symptoms, whereas in
others it could be performed to monitor and tailor therapy.
Overall, the use of ML for predictive modeling within health
care will potentially improve risk assessment and help
streamline resources or guide new interventions. This study
emphasizes the need to target patients discharged to their
home.
Study limitations
In line with recent data, our findings suggest that short-term
outcomes prediction in HF is a complex task that requires an
innovative and comprehensive approach. Nevertheless,
several limitations associated with the investigation should
be noted. First, single-center data were collected retrospec-
tively using EHR resources. However, inclusion criteria
were defined requiring that patients have follow-up data in
the EHR within 30 days of discharge in order to demonstrate
that they received ongoing care at the institution. Future
studies may consider utilizing the New York City Clinical
Data Research Network, which includes multisite clinical
records on patients across 20 NewYork City medical centers.
However, such a database does not have the granular and
longitudinal data of the CLEVER-HEART cohort and intro-
duces interinstitutional variance in documentation and trans-
formation practices. Second, the present analysis relied on
hospital billing data to capture HF hospitalizations, which
has implicit limitations in evaluating the risk of disease
progression and acuity. Lastly, ML methods do not provide
the ability to infer the direction of association between vari-
ables and a particular outcome. Our analysis partially averted
this limitation by selecting the top predictors in the model and
using them to construct a multivariate logistic regression
model, which in turn provided a sense of both the strength
and direction of the association between the particular
variable and the primary outcome. However, use of a logistic
regression model to elucidate the association between the
highest-ranked variables may simplify complex relationships
such as hemoglobin, which was shown in the Seattle Heart
Failure Model to have a U-shaped relationship with mortal-
ity.35 Nevertheless, despite these limitations, to the best of
our knowledge the present study is the most comprehensive
analysis, as characterized by its incorporation of numerous
variables (beyond the traditional clinical and socioeconomic
variables typically included in risk scores) as well as the
utilization of primary HF patients and tailoring the outcome
to unplanned readmissions or mortality.
Conclusion
The present investigation developed an improved and
integrated model for the prediction of 30-day unplanned re-
admission or all-cause mortality in a contemporary cohort
of primary HF patients. Several pathophysiological markers
of importance in this model previously have been shown to
be significant in other risk prediction models and reinforce
the possible value of further investigation. The incorporation
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of comprehensive EHR data and the utilization of novel ML
algorithms could lead to the development of accurate
predictive models that are disease-specific and tailored to a
particular outcome of interest, leading to more efficient and
cost-effective health care resource utilization.
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