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Abstract

Shannon’s theory of communication has been very successfully applied for the analysis of biological information. However,
the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-)
chemical systems able to process ‘‘meaningful’’ information from those that do not. Here, we present a formal method to
assess a system’s semantic capacity by analyzing a reaction network’s capability to implement molecular codes. We
analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries), biochemical
systems (gene expression, gene translation, and phosphorylation signaling cascades), an artificial chemistry, and random
reaction networks. Our study suggests that different chemical systems posses different semantic capacities. No semantic
capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly
connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity
was found in the studied biochemical systems and in random reaction networks where the number of second order
reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information
processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of
meaningful information, e.g. in the context of the origin of life.
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Introduction

In recent years great advances have been made in understand-

ing the biochemical basis of biological information processing. For

theoretical analysis of biological information Shannon’s theory of

communication [1] has been applied very successfully in various

domains, like gene regulatory networks [2], bacterial quorum

sensing [3], or signaling in molecular systems [4,5]. The

mathematical theory of communication focusses on uncertainty

of events and intentionally neglects semantic aspects of informa-

tion, because ‘‘they are irrelevant for the engineering problem’’ (Shannon

[1], p. 1). However, in order to obtain a full understanding of

biological information, studying also semantic as well as pragmatic

aspects would be important, if not necessary [6,7]. Although

syntax, semantics, and pragmatics are interdependent [8], we

focus here only on the semantic aspects of molecular networks in

order to keep our formalism and analysis clear and concise.

In general, semantics refers to the relation between a sign and its

meaning. This relation can be characterized by a code, which is a

mapping from the signs to their meanings [9]. For example, the

genetic code is a mapping between codons and amino acids [10],

which is realized in cells by a complex translation machinery. An

important property of a code is its contingency. This means that

the relation between signs and meanings could be different, thus

the relation is not determined by the signs and meanings alone

[6,9]. In particular, this implies that natural laws allow to derive

the relation only by knowing the context under which the signs are

interpreted.

Furthermore, it implies the existence of another context under

which the signs are interpreted differently. This is why we say that

the relation between signs and meanings, i.e. the code, cannot be

explained by physical laws [11], like the natural laws do not help in

understanding the written law or the grammar of a language.

However, this notion of independence from natural laws

sometimes causes confusion [11].

In order to properly use semiotic concepts in biology we should

provide a link to the realm of physics by (1) selecting an

experimentally grounded and reliable formal description of the

targeted biological system, by (2) providing precise, not necessarily

formal, definitions of the semiotic concepts that shall be applied to

the system, and by (3) interpreting these definitions by linking

them to the formal description of the biological system. (1) We use

reaction networks as a formal description, (2) link it to the notion

of organic codes as reviewed by Barbieri [9] and (3) develop a

formal definition of a molecular code with respect to reaction

networks [12].

With this approach, the semiotic concept of code gets – at least

partially – operationalized by means of physical experiments. In

particular, it allows to incorporate contingency in a formal model

of molecular codes.

To illustrate the basic idea we will briefly discuss an example

reaction network that contains a contingency. Fig. 1A shows a

reaction network containing eight molecular species and four
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reactions. We assume that the network contains all possible

reactions that can appear when mixing these molecules. The

network then is assumed to be a complete model of the world, i.e.

no species and reactions are missing that are physically possible. A

reaction network can implement a mapping among molecular

species. Here, for example, fAg can be mapped to fCg by

reaction AzE?EzC. fEg is necessary for the reaction to

happen and thus we call it a molecular context. The network can

implement a molecular code, if there exists a set of molecular species

that can be mapped on a second set of molecular species in at least

two different ways. In this example network the sets S~fA,Bg
and M~fC,Dg fulfill this property. S (domain) maps to M
(codomain) by applying the context fE,Hg. No two elements of the

domain S map to the same element in the codomain M. There

exist an alternative molecular context fF ,Gg, which realizes a

different mapping between domain and codomain, so the

mappings qualify as molecular codes.

Methods

In this section we provide a formal definition of a molecular

code as a contingent mapping with respect to a reaction network.

Then we formally define a reaction network’s semantic capacity

based on the number of molecular codes it can realize, and finally

describe two algorithms for identifying molecular codes in a

reaction network.

Molecular Codes are Contingent Molecular Mappings
A reaction network N~SM,RT is defined by a set of molecular

speciesM and a set of reactionsR occurring among the molecular

speciesM. See Fig. 1A for an example. For each reaction r[R, let

Figure 1. Two exemplary reaction networks containing molecular codes. Panel A: Chemical reaction network SM,RT with species
M~fA,B,C,D,E,F ,G,Hg and reaction rules R~fAzE?CzE,AzF?FzD,BzG?GzC,BzH?HzDg; panel B: Code pair that can be
realized by the network in panel A. The binary molecular codes are characterized by S~fA,Bg, M~fC,Dg, and the two molecular contexts
C~fE,Hg, a n d C’~fF ,Gg; pa n e l C : C h e m i c a l r e a c t i o n n e t w o r k w i t h s p e c i e s M~fI ,J,K ,L,M,Ng a nd t h e r e a c t i on s
R~fIzM?KzM,IzN?NzL,JzM?MzL,JzN?NzKg; panel D: Two molecular code pairs can be realized by the network in panel C.
Note that our code analysis does not depend on catalysis. Replacing a reaction like AzE?CzE by AzE?C would lead to the same molecular
codes.
doi:10.1371/journal.pone.0054694.g001

Molecular Codes in Reaction Networks

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e54694



LHS(r) and RHS(r) denote the set of reacting and produced

species of reaction r, respectively.

A subset of molecular species C(M is closed, iff the application

of all possible reactions from R on C does only produce species

from C, i.e. for all r[R with LHS(r)(C: RHS(r)(C [13]. For

every set of species A(M there exists a smallest closed set GCL(A)
containing A [14]. We say that GCL(A) is the closure of A.

Intuitively, the closure of a set of species contains all those species

that can be reached by an arbitrary long reaction path among the

species of A.

Given a reaction network N~SM,RT and two sets of

molecular species S,M(M, we say that f : S?M is a molecular

mapping with respect to N, iff there exist a set of species C(M
(called context), such that for each pair s,s’[S with s=s’:
f (s)[GCL(C|fsg) and f (s’)=[GCL(C|fsg). If there exists a

molecular mapping f with respect to N, we also say that N can

realize the molecular mapping f.

Note that in a reaction network there is usually more than one

molecular context C that realizes a particular molecular mapping

f. Intuitively, in order to ‘‘compute’’ f (s) with the reaction network

N, we put all molecules from the context C together with s in a

reaction vessel. Then we repeatedly apply all applicable reaction

rules and add the products to the reaction vessel until no novel

molecular species can be added anymore. Then we check which

molecular species from M is present, which must be – according to

our definition – only one species and the result of f (s).

Given a reaction network N~SM,RT and a non-constant (A

mapping f : S?M is called non-constant, iff there exists s,s’[S
such that f (s)=f (s’)) molecular mapping f : S?M, with

S,M,C(M we call the mapping f a molecular code with respect

to N, if all other mappings g : S?M with the same domain S and

codomain M can also be realized by the reaction network N, i.e.

there exist alternative molecular contexts to map S to M.

The definition catches the notion of contingency as described

above, i.e. the elements of the domain can be mapped to the

elements of the codomain in a contingent way by changing the

molecular context. In a semiotic interpretation we can also say

domain and codomain contain the signs and meanings, respec-

tively. The molecular context thus becomes the ‘‘codemaker’’, i.e.

it is necessary to realize the code. In general, the definition given

above allows for codes of arbitrary size. In order to keep our study

tractable, we will focus on molecular codes that are binary, i.e.

where S as well as M contain exactly two molecular species [12].

We will also not study molecular mappings that are only partially

contingent. For binary molecular codes our definition can be

reformulated as follows:

Given a reaction network N~SM,RT and two binary sets of

molecular species S~fs1,s2g(M and M~fm1,m2g(M. The

mapping f : S?M is called binary molecular code (BMC), iff there

exist two sets C,C’(M, such that the following conditions hold:

f (s1)[GCL(fs1g|C), and f (s2)=[GCL(fs1g|C), and

f (s2)[GCL(fs2g|C), and f (s1)=[GCL(fs2g|C), and

f (s2)[GCL(fs1g|C’), and f (s1)=[GCL(fs1g|C’), and

f (s1)[GCL(fs2g|C’), and f (s2)=[GCL(fs2g|C’):

Each binary molecular code comes with a second code

implementing a different mapping. The alternative code g is

determined by g(s1)~f (s2) and g(s2)~f (s1). Sf ,gT is called code

pair. Two simple example networks are shown in Fig. 1A and 1C

(cf. Dataset S1 and Dataset S2 for the network description). Both

networks appear to be very similar in their structure, but contain

different numbers of code pairs. While the former network is

capable to realize one code pair, the latter network – though being

smaller – can realize two code pairs.

A Network’s Semantic Capacity can be Measured by
Molecular Codes

A system’s semantic capacity SC is its ability to realize contingent

molecular mappings, i.e. the number of code pairs CPN that can

be identified,

SC(N)~CPN :

To compare different semantic capacities we can also use the

logarithmic semantic capacity

SClog(N)~ log2 (1zSC(N))~ log2 (1zCPN )

especially with very high values of SC. We apply the transforma-

tion 1zx to guarantee that SClog(N) is well defined and its

smallest value is zero, in case the network cannot realize any

molecular code.

In future studies, the semantic capacity can be integrated with

measures of the code’s quality, fitness, or cost [15,16]. e.g. two

networks with the same number of code pairs could be

differentiated with respect to the costs to implement those codes.

Molecular Codes can be Identified Algorithmically
The formal definition of binary molecular codes allows to

develop code-identifying algorithms. In general, the algorithms

search for a combination of molecular species and reactions

fulfilling the BMC conditions. Different approaches can be used to

implement the BMC conditions, i.e. via closed sets, or via paths.

The closure-based algorithm calculates all closed sets and checks

combinations of six closed sets for the BMC conditions. In

particular, for the two elements of the domain, and the two

elements of the codomain the single molecular closed sets, i.e. the

closed sets that are generated by a single molecular species alone

(GCL(fmg), m[M), are used. There exist at most DMD single

molecular closed sets. The closure-based algorithm has a worst-

case running time complexity of O(DMD4n2
c) with nc as number of

all closed sets contained in the system.

Domain and codomain are connected by reactions such that an

alternative algorithm can be formulated using the network’s paths.

For the identification of BMCs the paths for all pairs of species are

identified. Every combination of four paths is checked for the

BMC condition. The running time complexity of this path-based

algorithm depends on the number of paths the network contains,

which can grow enormously with the network’s density. Therefore,

we apply a parameterized algorithm that uses only the k-shortest

paths [17] between every pair of species. The worst case running

time of the parameterized algorithm is bounded by O(DMD4k4). If

k is chosen too small the algorithm is not able to find all codes in

the system, but gives an approximate measure. Large values of k
resemble the non-parameterized path algorithm, since all paths

are considered for the analysis. Pseudocode for the parameterized

path algorithm, the closure-based algorithm and subroutines is

Molecular Codes in Reaction Networks
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given in Text S1. The different running time complexities suggests

a conditional application of the algorithms. The path-based

algorithm can be efficiently applied on networks that have a high

number of closed sets and a low number of paths, while the

closure-based algorithm can be applied in the other case, where

the number of paths is high and the number of closed sets in the

network is low. Interestingly, systems with high semantic capacity

tend to have both, high number of closed sets and many paths,

such that an algorithmic challenge remains for analyzing such

systems.

Results

We survey different kinds of systems for their semantic capacity

by the application of the algorithms described above. In particular

we analyze the gene translation chemistry, gene regulatory

networks, phosphorylation cascades, combustion chemistries, the

martian atmosphere photochemistry, and random reaction net-

works. As a result of the analysis we can assign semiotic roles to the

molecular species. Table 1 summarizes the semiotic structure of

the analyzed biological systems. For details on all analyzed

networks see Table S1.

The Genetic Code is a Molecular Code
The genetic code, i.e. the mapping describing the translation

from nucleotide triplets to amino acids, was the first biological

code described as such [18] and is often used as initial example for

molecular codes [9,15,19].

To check whether the genetic code is a molecular code as

defined in this paper we need to identify contingent molecular

mappings in the reaction network describing the translation from

codons to amino acids. In recent species only one code is realized,

thus the reaction network taken from a certain species will not

contain any molecular codes. A reasonable approach to overcome

this effect is to merge the known genetic codes in one reaction

network, such that the merged network contains all (known)

alternatives. Note that merging two chemical networks has to be

done carefully to avoid unwanted inconsistencies. In particular,

the networks to be merged needs to be from the same

physicochemical context, which determines the reactions of the

network model. This guarantees that no ‘‘artificial’’ contingencies

are introduced. The gene translation chemistries studied here can

be merged, because they take place in the same environment.

The fact that there exist more than one genetic code is known

for a long time [20,21]. The 17 known genetic codes, as listed at

NCBI [22], cover nuclear and non-nuclear codes of different

genera, e.g. bacterial, archaeal, and plant plastid codes, the

vertebrate, invertebrate and yeast mitochondrial codes, and the

alternative yeast nuclear code. The flexibility of the genetic system

is also underlined by the possibility to introduce even unnatural

amino acids to the genetic codes of various organisms [23]. For

our analysis, we merge the 17 codes listed at NCBI by constructing

a reaction network containing the 64 codons, 20 amino acids, and

the specific tRNAs, which are necessary for the translation. For all

mappings between DNA triplets and amino acids occurring in the

17 codes we add a reaction in the network of the form

codonztRNA?amino acid (see Dataset S3).

The algorithmic analysis of this network identified 16 binary

molecular codes (see Text S2 for a complete list), i.e. a logarithmic

semantic capacity of SClog~4:09. The binary codes can partly be

assigned to larger molecular codes. For instance, the codons

CTT,CTG,CTA, and CTC can be mapped on leucin (L) and

threonin (T) and give rise to six of the found BMCs. A second

group involves the mapping between AGG,AGA and glycin (G),

serine (S), arginine (R) and the translation stop. This code can also

be decomposed into six BMCs. There does exist four more BMCs

that involve the codons TCA, TTA, TAG and TAA and the

amino acids leucine (L), glutamine (Q) and the stop signal. The

data suggests that it is easier for the cell to change the mapping for

the stop signal, than for an amino acid. Table 2 summarizes the

identified BMCs. The general existence of alternative mappings in

the genetic translation system suggests that the genetic code

qualifies as a molecular code. The relatively small semantic

capacity of the merge network demonstrates that the genetic code,

thus a principally contingent system, is under strong constraints,

regarding the assignment between codons and amino acids.

To calculate the system’s potential maximum semantic capacity

we extend the reaction network model by including all potential

mappings between codons and amino acids even if they have not

been observed so far. The model includes all possible tRNA

Table 1. Overview of semiotic interpretation of the biological systems surveyed.

Role Gene regulatory codes Genetic codes
Phosphorylation cascade
codes

Signs transcription factor s DNA codons and/or unloaded tRNAs high concentration of kinases
and/or phosphatases

Meanings gene product s amino acid s high/low concentration of
target molecules

Molecular contexts DNA with promoter
and coding region

loaded tRNAs or a combination of loaded
tRNAs, aaRSs, and codons

kinases and/or phosphatases

doi:10.1371/journal.pone.0054694.t001

Table 2. Molecular codes in the reaction network model of
the 17 known genetic codes.

Signs (codons)

Meanings
(amino
acids) #BMC References

CTT, CTG, CTA, CTC L, T 6 [20,24]

AGG, AGA G,S,R, Stop 6 [20,25–36]

AGG, TCA S, Stop 1 [20,27,28,31,33,37]

AGA, TCA S, Stop 1 [20,27,28,31,33,37]

TTA, TAG L, Stop 1 [20,22,37–39]

TAA, TAG Q, Stop 1 [20,40–43]

Here the 16 BMCs found in the merge of the 17 known genetic codes are
summarized. If applicable BMCs are grouped. References: Articles reporting the
respective alternatives in the genetic code that are part of a BMC in this
analysis.
doi:10.1371/journal.pone.0054694.t002

Molecular Codes in Reaction Networks
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molecules, such that each codon could be read for each amino

acid. In such a system the number of binary molecular codes can

easily be calculated. Each pair of codons forms a code pair with

each pair of amino acids. Since there exist
64

2

� �
pairs of triplets

and
20

2

� �
pairs of amino acids the number of BMCs is

SC(gene translation)~
64

2

� �
: 20

2

� �
~383,040: ð1Þ

The logarithmic semantic capacity is approximately 18:55. The

difference to the merge network (which relies completely on

observed variation in the code) suggests that cells use only a small

fraction of their semantic capacity.

The analysis of molecular codes relies on the identification of

the adapters [9]. In the two models above the tRNAs are the

adapters and carry the combinatorial complexity of the system. In

the following we analyze a more realistic model of the gene

translation machinery by including the loading step of the tRNA.

The refined network model NGC~SMGC ,RGCT contains all

possible mappings between the 64 codons and 20 amino acids as

described above. Additionally, we model the loading step of the

tRNAs by inserting the respective amino acyl tRNA synthetases

(aaRS) (cf. Fig. 2). The reaction network NGC describes the core

molecular mechanism realizing the standard genetic code and all

alternative codes. The set of molecular species MGC contains all

DNA strings of length three (Table S2, Eq. 2), representing the

codons, the twenty proteinogenic amino acids in their free form

(Table S2, Eq. 3), the twenty amino acids bound in a protein

(Table S2, Eq. 4), all possible tRNAs in their unloaded (Table S2,

Eq. 5) and loaded form (Table S2, Eq. 6) and all possible aaRS

(Table S2, Eq. 7), such that the system is able to load all amino

acids to all tRNAs.

The setRGC contains all reactions loading the amino acids onto

the tRNAs (Table S2, Eq. 8) and all reactions inserting an amino

acid in the peptide sequence (Table S2, Eq. 9). Fig. 2A displays a

subnetwork (Dataset S4) with two codons (GGA, AGU), two

amino acids (Gly, Ser) and the respective other elements of the

network (tRNA and synthetases).

Analyzing the subnetwork (Fig. 2, Dataset S4 ) allows to assess

the whole network’s semantic capacity. Table 3 shows the four

contained molecular code pairs, the respective molecular contexts

are listed in Table 4. The identified code pairs (Table 3) show that

not only codons can be signs, but also the unloaded tRNAs can

function as signs. These additional signs increase the number of

code pairs in a combinatoric manner. The ‘‘new’’ codes differ

structurally in their molecular context. While, classically, the

codons are mapped to the set of amino acids using the loaded

tRNAs as context, the new signs, i.e. unloaded tRNAs, are

mapped to the set of amino acids by using a molecular context that

consists of the free amino acid loaded to the free tRNA, the

synthetase performing the loading step, and the codon that needs

to be recognized by the tRNA. The number of code pairs in this

system can be calculated by

CPGC~
ns

2

� �
{

ns

2

� �
: nm

2

� �
, ð2Þ

with ns as number of signs and nm as number of meanings (amino

acids). For the full gene translation system the number of signs is

ns~czt, with c as number of codons and t as number of

unloaded tRNAs. Since there is always one pair of one tRNA and

codon belonging together, which therefore can not be combined in

an BMC, we have to subtract the number of such pairs ns=2 from

the amount of all combinations.

Using Eq. (2) t he analysis of the whole network (NGC ),

describing all potential genetic codes with 64 codons and 20 amino

acids, results in 1,532,160 binary code pairs, i.e.

SClog(NGC)&20:55. This is a different result than for the less

detailed model, as calculated by Eq. (1). The extension of the

model by aaRS, unloaded tRNAs, and unloaded amino acids

increases the semantic capacity. This increase is not only an

artifact from increasing the network size, but results from

qualitative new code pairs.

Figure 2. Subnetwork of the full gene translation network model with synthetases (NGC) and the realized molecular codes. The
network (panel A) shows a subnetwork of the gene translation network model containing the translation, and loading reactions for two selected
codons (GGA, AGU) and amino acids (Gly, Ser). The semantic analysis shows that four code pairs can be implemented by this network (panel B).
doi:10.1371/journal.pone.0054694.g002

Molecular Codes in Reaction Networks
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The question to what extend a tRNA based code could be

employed by the cell is open, but the potential existence of such a

code is nevertheless an interesting result.

Gene Regulation by Transcription Factors Allow for
Molecular Codes

In general, the gene regulatory network (GRN) of a cell

constitutes the regulatory relations between genes. A particular

regulatory relation is a fairly complex process involving a gene, the

promoter and binding region of that gene, the binding of the

transcription factor (TF) plus c ofactors, and the production of a

product by the recruitment of the gene expression machinery. We

will show here that a cell’s GRN is also a highly semantic system.

In order to do so, we model a GRN as a reaction network

NGRC~SMGRC ,RGRCT by explicitly inserting the relevant

components (Fig. 3). The resulting network is not a generic model

to describe all possible gene regulatory networks, but a model that

covers the main properties of regulation important for this study.

MGRC contains n transcription factors TFi, m products Pj , and

genes Gij . Each gene Gij represents a combination of a promoter

site i and a coding region j, where the promoter site i is specific to

TFi and the coding region j produces Pj . For our model we

assume that there exist as many promoter sites and coding regions

as transcription factors and products, respectively, such that each

promoter-gene combination is possible. In summary

MGRC~fTF1,TF2, . . . ,TFi, . . . ,TFn,P1,P2, . . . ,

Pj , . . . ,Pm,G11,G12, . . . ,Gij , . . . ,Gnmg:

Note that the differences of eukaryotic and prokaryotic gene

regulation are abstracted by our model, because only the

general mechanism of transcription factor regulated expression

that gives rise to a high semantic capacity shall be explored

here. Therefore, we consider transcription factors that bind only

one promoter and that a promoter is bound by only one

transcription factor. Then, the expression of a gene i,j is given

by

RGRC~ TFizGij?TFizGijzPj

� �
, i~1,2, . . . ,n,

j~1,2, . . . ,m:

The semantic analysis shows that the reaction network can

implement molecular codes, but only in one way, i.e. with the

transcription factors as signs and the set of products as meanings.

The set of genes, i.e. the combination of promoter and coding

region, forms the molecular context. So the mapping between

transcription factor and gene product can be altered by the

exchange of a promoter region of a gene (or vice versa). Such

promoter exchanges are also a common tool in molecular biology

to allow for the external control of gene expression [44], e.g. to

discover the function of silenced gene clusters [45].

Interestingly, in contrast to the model of the gene translation

chemistry described above, the DNA is not the sign, but functions

as the molecular context. This ‘‘role change’’ suggests an

interdependence between different codes. Here the ‘‘gene regula-

tory code’’ regulates the execution of the ‘‘gene translation code’’,

as the former one controls the usage of the latter’s signs.

Note that the reaction network model can easily be made more

complex by modeling transcription factors as protein complexes

and including the respective assembly processes, by modeling

different types of transcription factors (activators, repressors,

enhancers), or the introduction of several DNA binding sites in

the regulatory region to allow a combinatoric regulation by several

transcription factors. However, the general conclusion about the

semantic capacity of a GRN would not be affected.

Signaling by Phosphorylation Cascades Allows for
Molecular Codes Only in a Dynamic Setting

Cells maintain different systems for signal transmission and

integration [46]. The most prominent signaling systems rely on

reversible phosphorylation of amino acids side-chains for regula-

tion of signaling protein activity. The direct involvement of such

systems in signaling suggest that they may be semantic systems. If

so, they should be able to realize molecular codes. We have

studied phosphorylation cascades, like the mitogen activated

kinase regulatory network, as a typical instance of an intra-cellular

signaling system. These systems demonstrate the limitation of our

static approach. Here, it is necessary not only to distinguish

between molecular species, but also between their concentrations.

By assigning concentration levels to each species we allow for the

Table 3. Code pairs in the gene translation model.

Code pair Signs Meanings

1 fGGA, AGUg fGlyprot, Serprotg
2 fGGA, tRNAAGUg fGlyprot, Serprotg
3 fAGU, tRNAGGAg fGlyprot, Serprotg
4 ftRNAGGA, tRNAAGUg fGlyprot, Serprotg

Code pairs realized by the subsystem of the gene translation network with
synthetases shown in Fig. 2.
doi:10.1371/journal.pone.0054694.t003

Table 4. Molecular contexts of the codes in the gene translation model.

Code pair Molecular context alternative molecular context

1 ftRNAGGA,Gly, tRNAAGU,Serg ftRNAAGU,Gly, tRNAGGA,Serg

2 fAGU,Serfree, SynAGU,Ser, tRNAGGA,Glyg fAGU, Glyfree, SynAGU,Gly, tRNAGGA,Serg

3 fGGA,Serfree, SynGGA,Ser, tRNAAGU,Glyg fGGA, Glyfree, SynGGA,Gly, tRNAAGU,Serg

4 fGGA, AGU, Glyfree, Serfree, SynGGA,Gly, SynAGU,Serg fGGA, AGU, Glyfree, Serfree, SynGGA,Ser, SynAGU,Glyg

Molecular contexts of the code pairs shown in Table 3.
doi:10.1371/journal.pone.0054694.t004
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dynamic change of these concentrations by the system’s reactions.

Thus, a molecular species’ concentration is decreased if it is used

as reactant in a reaction and increased if produced by a reaction.

A species can have an effect on another species’ concentration

through the reactions in the system.

In general, the activation of a kinase by phosphorylation can

generate a molecular mapping between the kinase and its target,

but this mapping is not necessarily a molecular code (Fig. 4A). In

contrast, a two-step cascade is able to implement a molecular code

(Fig. 4C).

The simple one-step phosphorylation model (Fig. 4A) contains

two kinases: an initial kinase (S) and a target kinase (A) which can

be phosphorylated by S (SP z A?AP). We also model the

dephosphorylation (AP?A). For sake of simplicity we do not

model the phosphatases, and the phosphate related molecular

species (e.g. ATP, ADP, P) involved in the process, but assume a

buffered concentration. In the simple one-step model we can

identify a molecular mapping between SP and the two states of

kinase A (Fig. 4B). If SP has a low concentration the system is in a

state where the unphosphorylated state A has a high concentration

and the phosphorylated state AP has a low concentration.

According to the definition of molecular code given above the

system should be able to change the mapping, i.e. be contingent,

by the application of a different molecular context to realize a

code. Here, no alternative mapping between S and A can be

realized, such that the system is not able to realize a molecular

code.

If we consider a different system where two kinases are between

SP and A, we obtain a two-step phosphorylation cascade (Fig. 4C).

SP now phosphorylates the inserted species, while these have an

effect on A. The system has the possibility to ‘‘choose’’ between

two alternative systems, i.e. the inserted species may be ‘‘active’’ in

the unphosphorylated state (B), or in the phosphorylated state (C).

There exist several mappings in such a system, e.g. between SP

and B, S and C, and SP and A. The former two mappings behave

like the simple model (see above). The mapping between S and A
is a molecular code, because the molecular context of the system

can be changed, such that the alternative system behavior is

generated (Fig. 4D). The molecular context between S and A is

either the set fB,BPg, or alternatively fC,CPg. If we assume two

concentration levels denoted by ½:�high and ½:�low for high and low

concentrations, respectively, we can identify the following codes:

Applying the molecular context fB,BPg we get the mappings

½SP�low?½A�low, ½SP�low?½AP�high, ½SP�high?½A�high, and

½SP�high?½AP�low, while the molecular context fC,CPg leads

to the mappings ½SP�low?½A�high, ½SP�low?½AP�low,

½SP�high?½A�low, and ½SP�high?½AP�high. We simulated the

system and applied both contexts fB,BPg and fC,CPg. For the

former context a change in ½SP� (x-axis) leads to a decrease in the

½AP�=½A�-ratio (y-axis). Applying the alternative context fC,CPg
leads to the opposite behavior. Fig. 4 E illustrates these

dependencies (for details of the underlying model see Text S3 ).

The extension of our static approach to a dynamic setting needs

more strict definitions, such that the here shown properties are

only a first step into this direction.

Random Reaction Networks as Null Model
To check whether the motif describing a BMC can be generated

by chance we analyzed random reaction networks of different sizes

and densities for their semantic capacity. The networks have been

generated by random insertion of reaction rules in an empty

network. Each random reaction rule is bimolecular, i.e. contains

two reactants, and one product (see Text S1 for pseudocode). The

analysis showed that the binary code motif can be generated in

random networks (Fig. 5), i.e. contingent mappings can be

generated randomly. For a fixed network size and varying

densities the average semantic capacity shows a unimodal

behavior, which suggests that there exist an optimal range of

densities for each network size, leading to maximal semantic

capacity. This optimal range shifts to higher densities with

increasing size of the network (see Fig. 6). The optimal interval

is bounded at lower densities by the low complexity of the network,

there are not enough reactions to promote the insertion of

Figure 3. Gene regulatory network model. Panel A: Model of the
expression of a gene, and the reaction network formulation of the same
process (below). Blue text in panel A indicates the semantic
interpretation, i.e. the transcription factors are the signs, the products
are the meanings, and the DNA is the molecular context. Panel B:
reaction network constructed according to the formalization of gene
regulation shown in (A) containing two transcription factors (TF1, TF2),
two gene products (P1, P2) and the according genes (G11, G12, G21,
G22).
doi:10.1371/journal.pone.0054694.g003
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molecular codes by chance. On higher densities the network is

strongly connected, such that the subsets of the system are hardly

closed, therefore it is also harder to implement codes by chance.

The optimal interval coincides with two important network

properties, i.e. the number of paths, and the number of closed

sets. With increasing network density the number of paths grows,

while the number of closed sets decreases. High semantic capacity

can be found in networks with a high number of pathways and at

the same time a high number of closed sets.

Figure 4. Reaction networks describing phosphorylation motifs. Molecular species in these networks represent kinases that may be
activated or inactivated by phosphorylation. Activated and non-activated forms of a kinase are modeled as different species (e.g. species A and AP).
Panel A: Reaction network of a simple phosphorylation motif, which can realize a molecular mapping, but not a molecular code. Panel B: Molecular
mappings that can be realized by the reaction network from panel A. These mappings do not constitute a molecular code. Panel C: M ore complex
reaction network that can realize molecular codes. Panel D: The two binary molecular codes (i.e., one code pair) are realized by either one of the two
molecular contexts fB,BPg or fC,CPg. In contrast to the other described molecular codes (e.g. the genetic code), here, the code is not only specified
by the species also, but also by the species’ concentrations. Panel E : Simulation of the second network (panel C) showing the ½AP�=½A� ratio over ½SP�
for the two different contexts. The red line shows the system’s behavior for the context fB,BPg, while the green line shows the system’s behavior for
the alternative context fC,CPg over varying initial concentrations for SP. The blue line indicates the (here arbitrary) threshold to separate high and
low concentrations.
doi:10.1371/journal.pone.0054694.g004
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Combustion Chemistries and the Martian Atmosphere
Photochemistry Show no Semantic Capacity

We analyzed a number of chemical systems, i.e. combustion

chemistries of hydrogen [47] (Dataset S6), methane [48] (Dataset

S7), ethanol [49] (Dataset S8), dimethyl ether [50] (Dataset S9).

The chemistries are intended to describe all significant processes

that can occur in the combustion, i.e. burning, of the respective

molecule. The original combustion chemistry data (provided in

CHEMKIN format [43]) have been processed to obtain the

reaction networks describing the respective chemistry. In the

CHEMKIN files reactions are described at equilibrium with

additional thermodynamic parameters. Taking these as basis we

obtain reaction networks containing the directed reactions

depending on the thermodynamic parameters.

The reaction networks cover different sizes (10–79 molecular

species) and densities (38–752 reactions). The semantic analysis

shows that none of these chemistries is able to realize molecular

codes. We can now compare the results with our null model

derived from the random reaction networks data (Table 5) to

evaluate if both are consistent.

For the hydrogen chemistry the lack of code pairs can be

explained by the small number of closed sets compared to the

number of paths, such that the molecular species are ‘‘too

connected’’ and the network is less structured. In the null model

also no molecular codes can be identified. The estimated number

of closed sets and paths, although differing from the original

chemistry, are also marking that the respective random networks

are not in the optimal interval.

In the methane combustion chemistry we see that there exist far

more paths than closed sets, such that the network is to some

extend ‘‘unstructured’’. The according null model networks also

contain a high number of paths, but also a higher number of

closed sets. The algorithmic analysis shows that some of the

generated null model networks can realize BMCs, such that the

average logarithmic semantic capacity is 1:04. Nevertheless, we

consider this also as a very low semantic capacity compared to, e.g.

the gene translation chemistry. We also analyzed the atmosphere

chemistry of Mars [51] (Dataset S5 ) to check whether other kinds

of non-biological systems may contain codes. The model contains

32 molecular species, 104 reactions and 5512 closed sets. In

particular, the network describes the reactions happening on the

day side of mars. Therefore, light (hn) is modeled explicitly as

inflow reaction ?hn. The day side martian photochemistry is not

able to realize molecular codes. The comparison of the null model

chemistries for ethanol, dimethyl ether, and the martian atmo-

sphere chemistry were not feasible with our current algorithms,

due to the large number of paths and closed sets in these networks.

NTOP: An Artificial Chemistry Allowing for Molecular
Coding

Recall that with increasing density random networks have a

vanishing semantic capacity. In the following we show that even a

dense network can have a relatively high semantic capacity. For

this purpose we analyze an artificial chemistry with 16-species

introduced by Banzhaf [52] called NTOP. For each species there

is a 4-bit binary representation and the reaction rules are derived

with respect to this representation, which is referred to as a

structure-to-function mapping (see Ref. [52] for details and

Dataset S10 for the network model).

The algorithmic analysis results in six code pairs (Text S4 ). Two

properties of molecular codes that are of general importance also

for biological molecular codes can be observed here. (1) A

meaning can take the role of a sign in another code, and (2)

molecular species can function as signs (or meanings) in different

codes, i.e. they keep their role in different contexts (Fig. S1).

To test the robustness of the network’s semantic capacity, we

replace 1, 2, 5, 10, 15, 200, and 1000 reaction rules randomly,

respectively. In a randomly chosen reaction rule we replace the

molecular species, while keeping the number of reactants and

products the same. Thus, the type of the reaction stays the same,

while the connections are changed. Increased randomization

results in a decreased average semantic capacity (Fig. S2).

Nevertheless in some cases the randomized network is capable

to implement more code pairs. The general trend towards less

code pairs can be explained by referring to the analysis of random

reaction networks. Random reaction networks with the same

number of species and reactions as NTOP show no semantic

capacity (SClog~0). Thus the random variation of the NTOP

chemistry drives the system towards the mean semantic capacity of

random networks.

Discussion

We have introduced a formal criterion for identifying

molecular codes in reaction networks and a measure of the

semantic capacity of a network, as the number of different code

pairs the network can realize. Our notion of contingency,

defined as the ability of systems to choose between different

mappings, extends and operationalizes the notion of ‘‘indepen-

dence’’ and ‘‘contingency’’ as discussed by Monod, Barbieri and

others.

The structure of molecular codes allows to decompose them

into binary molecular codes, which were studied here. Having a

list of binary molecular codes it is possible to merge them into

larger molecular codes, as has been demonstrated for the genetic

code.

Applying the new concepts to different networks, our basic

finding demonstrates that the semantic capacity of biological

networks tends to be higher than the semantic capacity of the

studied non-biological networks. Thus, an important step during

the transition from non-life to life must have been the utilization of

a chemistry that allows to implement molecular codes. In our

opinion it is an open issue how that first coding chemistry has

looked like. But, we have now a criterion that can guide us in what

we have to look for. Following this line of thought it seems that

biological systems ‘‘learned’’ by evolution to make use of

chemistries with high semantic capacities by selecting the most

appropriate mappings for their purpose. There exist at least three

(not necessarily disjoint) evolutionary paths to select a unique

mapping from the actual contingency: (1) compartimentalization, i.e.

spatial separation of the two alternative mappings, (2) separation

by time of execution, and (3) fixation, i.e. separation by deleting one

of the alternative mappings. For the genetic code we could argue

that at least two paths are used by cells to maintain the uniqueness

of the mapping. Different codes are implemented in different

species and compartments (compartimentalization) [22] and the

genes for the alternative amino acyl tRNA synthetases are not

present in the genome (fixation). Time separation can be

understood as a regulated switch of mappings, e.g. in mitotic

control where the presence of a protein called Cdc20 inhibits the

Anaphase-Promoting Complex (APC) during the activated spindle

assembly checkpoint (SAC), while in the context of the inactivated

checkpoint, Cdc20 activates APC [53,54].

Moreover, we can now precisely formulate another hypothesis,

namely, that during the course of evolution the semantic capacity

of the chemistry employed by the biological systems has a

tendency to increase, by recruiting new chemistries, though the
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increase is not necessarily monotonous. One candidate mechanism

is the invention and improvement of compositional adaptors, like

proteins with exchangeable domains [55] or genes including their

promoter- and coding-regions [9]. Note that also the appearance

and evolution of neurons and cognitive systems is in line with the

hypothesis of increasing semantic capacity.

The analysis of a network model implementing the genetic code

showed that not only the codons can be signs, but also tRNA

molecules could, in principle, be signs. Apparently, this potential

code is not used by the cell. The biomolecular and evolutionary

interpretation of this fact has to be left for future studies, because

we have to make the notion of code usage, that is, the pragmatic

aspect of biological information, more precise.

Furthermore, we have shown that DNA not only can function

as a sign but also as a molecular context, as the study of gene

regulatory networks revealed. The mechanisms in gene regulatory

systems and the observation that such systems are highly flexible

(i.e. the mapping between transcription factors and gene products

can easily be changed) leads to the conclusion that the chemistry of

GRNs possesses also a high semantic capacity. This may be the

reason why it is the main regulatory subsystem of cells and often is

used as typical representant of cellular information processing

[56]. From a theoretical point of view it will be interesting to

analyse more complex variants (several binding site, different types

of transcription factors, transcription factor assembly) of the

general GRN network for their influence on the semantic capacity.

Figure 5. Structural properties of random reaction networks of different size and density. Panels A and B show two important network
parameters for five different network sizes over the numbers of reaction rules. The data represents the average values of random replicates. Error bars
indicate the standard error of the mean. Panel A shows the average number of paths in the network. Since we applied the path algorithm which only
uses the k-shortest paths between each pair of molecular species the curve shows a sigmoidal behavior, which is saturated at the value DMD:(DMD{1),
with k~10. Panel B shows the average number of closed sets. With growing density the number of closed sets decreases. Panel C shows the
distributions of the average number of code pairs (vSClogw). The semantic capacity follows a unimodal distribution indicating the existence of an
optimal interval for the random generation of the BMC motif. If the number of paths is too low no mappings can be implemented because of the
missing links between potential signs and meanings. Similarly, if the number of closed sets is too low no mappings can be implemented either.
doi:10.1371/journal.pone.0054694.g005
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These extensions can introduce new codes by allowing for

additional control and regulation of the system.

Phosphorylation cascades represent a class of biological systems

that allow for molecular codes, but requires a quantitative analysis,

i.e. the incorporation of concentrations. Thus our qualitative

approach is not sufficient here. In the future the molecular code

concept needs to be extended to the dynamic interpretation of a

system. A molecular code then could be interpreted as a mapping

between system states.

The analysis of random networks of different sizes and densities

results in a better understanding of the basal rate of code

occurrence. We can observe that the distribution of BMCs is

unimodal, with high semantic capacity appearing only in sparsely

connected random networks, in particular, where the number of

second order reactions is approximately twice the number of

molecular species. Interestingly, random networks with high

semantic capacity show at the same time a high number of closed

sets of species (which decreases with increasing network density)

and a high number of paths (which increases with increasing

network density). The null model estimates the semantic capacity

of a reaction network that is generated completely by a random

process. For biological and chemical systems this is obviously not

true, because of physical constraints like mass conservation on the

reactions.

The analysis of the artificial chemistry NTOP suggests that also

in dense networks the semantic capacity can be high. We

hypothesize that this was caused by the structure-to-function

mapping applied in the definition of the chemistry.

There exist certain limitations on the kind of networks that

should be analyzed with our approach. The definition of

molecular codes requires that, to be applicable, the network

model needs to contain all possible reactions among the molecular

species. Network data widely available from databases like KEGG,

Reactome, BioCyc, or Biomodels DB usually does not fulfill this

criteria, yet. The networks found in these databases are becoming

now rather complete with respect to the particular organism they

belong to. However the network data is rather incomplete with

respect to the underlying (bio-)chemistry. That is, with respect to

the underlying chemistry many more alternative network species

and reactions are possible, which cannot be found in those

databases for several practical as well as conceptual reasons. It is

the central innovation of our approach that for detecting a

molecular code, we need to know the potential reaction network,

which in general is not visible in the actual organism. It might

sound a bit paradoxical that a network property depends on

something that is not part of the network. In our case, however,

the link to this ‘‘invisible’’ part is provided by physical laws and

chemistry, which determine the alternative network species and

reactions.

How to measure the semantic capacity of an actual biochemical

system? We suggest a procedure consisting of three major steps:

Step 1: Define the system to be studied and its chemistry, Step 2:

Obtain the reaction network by physical experiments, Step 3:

Compute all molecular codes of the network. In Step 1 we

explicate the necessary assumptions: We define the chemical

universe we will look at, i.e. the set of potential chemical species

and the set of all possible reactions. Note that this depends on the

time scale at which our system exists. At a longer timescale more

reactions might have to be considered. Further assumptions can

include constraints like temperature, pressure, pH, or energy

consumption. In Step 2 we construct the reaction network using

scientific physical experiments. Methods for this exist in a large

variety in Chemistry and the Life Sciences. Note that with proper

assumptions (Step 1) we approach with increasing number of

Figure 6. Maximal semantic capacity in random networks.
Scatter plot showing the position of the maximal semantic capacity of
the random reaction network data (cf. Fig. 5) in a (DMD|DRD)-plot. The
linear regression of the data shows that the maximal semantic capacity
is reached if there are approximately two times more reactions in the
system than molecular species: reactions~{3:06z1:89 species.
doi:10.1371/journal.pone.0054694.g006

Table 5. Comparison of combustion chemistries and random networks (null model).

Combustion chemistry properties Null model estimate

DMD DRD #closedsets #paths SClog est:#closedsets (SEM) est.#paths est.SClog

HYD 10 38 16 7.69:104 0 39.84 (0.53) 878.15 (1.27) 0 (0.0)

MET 37 340 4,136 .106 0 6,423.22 (209.75) .1.33.104 1.12 (0.08)

ETH 57 752 5,136 .106 0 82,453.25 (9,545.96) .3.19.104 3.86 (0.36)

DME 79 708 8 .106 0 n.a. n.a. n.a.

Values in brackets are the standard error of the mean (SEM). The analyzed combustion chemistries show no semantic capacity. This is supported by the analysis of
random networks of the same size and density. The low number of codes found in these random networks can be explained by the noise of the random network
generation. Number of random networks: nHYD~1000, nMET~180, nETH~8, for DME the calculation was not feasible. All networks have been analyzed with the
pathways based algorithm with k~10. The number of paths in MET, ETH, DME has been estimated by counting paths with growing values of k. The maximal
computable value gives a lower bound.
doi:10.1371/journal.pone.0054694.t005
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experiments a single unique network. In other words, there is a

single ‘‘true’’ network, which is defined by the scientific procedure

and the assumptions made in Step 1. At least in principle, we can

obtain this network with arbitrary precision, provided arbitrary

but finite experimental resources. As an open problem remains the

question how a measurement error on the network level

propagates to the estimation of the semantic capacity. Step 3 is

purely formal and in principle deterministic. Practically, however,

for large and complex networks (e.g., networks with more than

1000 species) the run time of our deterministic algorithms

described here is too long and thus efficient heuristics have to be

developed for these networks in the future.

In summary, we conclude that our approach provides a new

way to analyze aspects of the information processing capabilities of

molecular systems, which might contribute to the understanding of

biological information in the context of the origin and evolution of

life, cellular signaling, or synthetic molecular computing systems.

Supporting Information

Figure S1 Relation among the code pairs in the NTOP
chemistry. Graph illustrating the six code pairs found in the

NTOP chemistry. The nodes refer to the closed sets containing the

signs and meanings in each individual code pair. The six code

pairs are distinguished by color. The graph clearly shows that signs

and meanings can be reused in different codes and also change

their role, i.e. meanings can be sign in another code, e.g. f10,15g.
(EPS)

Figure S2 Effect of network randomization on the
semantic capacity. The boxplots shows the relation between

semantic capacity and increasing randomization for the artificial

chemistry NTOP. With increasing randomizing the semantic

capacity decreases on average. Nevertheless, weak to medium

randomization, i.e. only parts of the network are randomly

rearranged, can also lead to higher semantic capacity, while after

very high randomization this effect does not appear. The boxplots

show the distribution of the semantic capacity after 100

independent randomizations of the chemistry by replacing a fixed

number of reaction rules.

(EPS)

Table S1 List of all analyzed systems stating their size,
density, semantic capacity, the reference of the system,
and the method used for analysis.
(PDF)

Table S2 Reaction network formulation of a gene
translation system with amino-acyl-tRNA-synthetases.
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Text S1 Pseudocode of the closure-base code identify-
ing algorithms, the pathway-based code identifying
algorithm and the random network generation algo-
rithm.
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Text S2 List of Molecular Codes that can be identified
in the merge of the 17 known genetic codes. For the
network see Dataset S3.
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Text S3 Mathematical model of the phosphorylation
cascade shown in Figure 4C.
(PDF)

Text S4 List of all binary molecular codes (including
duplicates) identified in the NTOP chemistry.
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Dataset S1 Network model of Figure 1A.
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Dataset S2 Network model of Figure 1C.
(TXT)

Dataset S3 Network model the merge of the 17 known
genetic codes as listed at NCBI.
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Dataset S4 Network model of a 262 subnetwork of the
gene translation chemistry including synthetases.
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Dataset S5 Network model of the Martian atmosphere
photochemistry.
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Dataset S6 Network model of hydrogen combustion.
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Dataset S7 Network model of methane combustion.
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Dataset S8 Network model of ethanol combustion.
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Dataset S9 Network model of di methyl ether combus-
tion.
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Dataset S10 Network model of the artificial chemistry
NTOP.
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