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Background: Lung squamous cell carcinoma (LUSC) represents 30% of all non-small cell
lung carcinoma. Targeted therapy is not sufficient for LUSC patients because of the low
frequency of targeted-effective mutation in LUSC whereas immunotherapy offers more
options for patients with LUSC. We explored a ferroptosis-related prognostic signature
that can potentially assess the prognosis and immunotherapy efficacy of LUSC patients.

Methods: A total of 502 LUSC patients were downloaded from The Cancer Genome
Atlas (TCGA). The external validation data were obtained from the Gene Expression
Omnibus (GEO): GSE73403. Then, we identified the candidate genes and constructed
the prognostic signature through the Cox survival regression analyses and least absolute
shrinkage and selection operator (LASSO). Risk score plot, Kaplan–Meier curve, and ROC
curve were used to assess the prognostic power and performance of the model. The
CIBERSORT algorithm estimated the fraction of immune cell types. TIDE was utilized to
predict the response to immunotherapy. IMvigor210 was used to explore the association
between the risk scores and immunotherapy outcomes. A nomogram combined selected
clinical characteristics, and the risk scores were constructed.

Results: We screened 132 differentially expressed ferroptosis-related genes. According
to KEGG and GO pathway analyses, these genes were mainly engaged in the positive
regulation of cytokine production, cytokine metabolic process, and oxidoreductase
activity. We then constructed a prognostic model via LASSO regression. The
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proportions of CD8+ T cells, CD4+ activated T cells, and follicular helper T cells were
significantly different between low-risk and high-risk groups. TIDE algorithm indicated that
low-risk LUSC patients might profit more from immune checkpoint inhibitors. The
predictive value of the ferroptosis gene model in immunotherapy response was further
confirmed in IMvigor210. Finally, we combined the clinical characteristics with a LASSO
regression model to construct a nomogram that could be easily applied in clinical practice.

Conclusion: We identified a prognostic model that provides an accurate and objective
basis for guiding individualized treatment decisions for LUSC.
Keywords: lung squamous cell carcinoma, ferroptosis, prognostic model, microenvironment, nomogram
INTRODUCTION

Lung cancer has the highest morbidity and mortality of all
cancers globally (1), and non-small cell lung cancer (NSCLC)
comprises approximately 85%. Currently, most lung cancer
patients arrived at their first diagnosis with advanced-stage
disease, generally because of a lack of typical clinical
symptoms. Over the past decade, specific targeted therapy has
emerged as the most promising treatment. However, molecular
aberrations in specific genes, such as epidermal growth factor
receptors, are required for targeted therapies to be effective in
lung adenocarcinoma patients (2, 3).

To date, there are no approved targeted therapies for lung
squamous cell carcinoma (LUSC). The targeted therapy is not
sufficient for LUSC because of the low frequency of targeted-
effective mutation in LUSC, whereas immunotherapy offers more
options for patients with LUSC. The dramatic development of
immune checkpoint inhibitors (ICIs) has marked a revolution in
the treatment of LUSC. Early-stage clinical trials have shown that
objective response rates to ICIs are approximately 14%–20%.
FDA approves pembrolizumab monotherapy as first-line
treatment for LUSC patients who has high PD-L1 expression
(4, 5). Furthermore, ICIs and chemotherapy have been approved
as the first-line treatment (6). However, because of the high
tumor heterogeneity of LUSC, the immunotherapy efficacy may
differ greatly across LUSC patients (7). Meanwhile, the high price
and limited availability of ICIs severely inhibit their clinical use.
Thus, the development of new treatment approaches and the
exploration of effective prognostic models for screening high-risk
patients with LUSC has attracted increasing attention for the past
few years.

Ferroptosis is a type of oxidative cell death presented in
neurological disorders, blood diseases, and tumors (8). Over
the years, it has been proposed that ferroptosis might prove
useful as a promising target for killing cancer cells that are
resistant to conventional treatment. Many genes validated to be
associated with ferroptosis are involved in the regulation of
tumorigenesis, such as TP53 (9), SLC7A11 (10), FBXW7 (11),
and CISD2 (12). There is an increasing body of literature that
recognizes tumor immunity depending on the tumor
microenvironment that regulated iron metabolism and
hemostasis in vivo (13, 14). Zhang (15) found that oxygen
radicals induced lethal ferroptosis of tumor, and the resulting
2

tumor antigens enhanced the immunogenicity. Therefore,
immunomodulation and ferroptosis performed synergistically
to achieve potent therapeutic effects. Thus, the in-depth
exploration of biomarkers associated with tumor immunity
and ferroptosis could contribute to a comprehensive picture of
cancer immunotherapy.

Currently, several studies have established ferroptosis
prognostic signatures of cancer from public databases. Lu (16)
discovered a novel risk model composed of ferroptosis gene
variants in order to predict esophageal squamous cell carcinoma
outcomes. Ye (17) built ferroptosis-related genes (FRGs) that
were identified to predict prognoses of ovarian cancer and could
potentially be used to target new treatments. However, there has
been little discussion about the role of FRGs in LUSC patients.

We used the Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) databases to construct
ferroptosis-related prognostic signatures for LUSC patients.
Comparing tumor tissues with adjacent normal tissues in
LUSC patients, we determined differentially expressed FRGs.
Furthermore, we used the training set to identify survival-related
signatures and build an FRG prognostic model. The model’s
accuracy and reliability were validated by an external GEO
cohort. Overall, researchers examined a ferroptosis-related risk
model that could be used to promote better clinical strategies for
LUSC patients.
METHODS AND MATERIALS

Data Source
The transcriptomic data of 502 LUSC patients, as well as the
corresponding clinical parameters, were downloaded from the
TCGA. The external validation data were obtained from GEO:
GSE73403 (18). IMvigor210 (19) was used to explore the relation
between the risk model and immunotherapy response. The
transcriptomic data in each database were normalized to
fragments per kilobase of transcript per million mapped reads
(FPKMs) and subjected to further log2 transformation using the
limma Bioconductor package (20). There were 587 FRGs
downloaded from the FerrDb (shown in Supplementary
Table 1) as candidate genes. The transcriptomic and
corresponding clinical factors of IMvigor210 were downloaded
via “IMvigor210CoreBiologies” R packages (21).
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Identification of Differentially
Expressed FRGs
The limma Bioconductor package was used to detect the
differentially expressed genes (DEGs) between tumor and
normal tissues in the TCGA dataset. The threshold values were
set up as follows: log2-fold change ≥ 1 and p-value <0.05.
Pheatmap, a package for generating heatmaps and volcano
plots, was used to generate the heatmap and volcano plot. We
used Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) enrichment analyses to examine the
possible functions of DEGs (22, 23), which provide a complete
set of functional annotation methods for understanding the
biological significance of a large numbers of genes. To screen
out FRGs, we merged all data by taking the interaction of the
DEGs and candidate genes.

Construction and Validation of the
Ferroptosis-Related Gene Model
Univariate Cox regression analysis was conducted in the TCGA
cohort to find FRGs that were linked to overall survival (OS) by
employing the “survival” R package. Then, the TCGA cohort was
randomly divided into the training and testing cohorts at a 7:3
ratio by the “caret” R package. Through the use of the “glmnet” R
package (24), we developed a prognostic signature using the least
absolute shrinkage and selection operator (LASSO) in the
training cohort. The risk score of each LUSC patient was
calculated as follows:

Risk score =oincoefficient� expression of
ferroptosis related genes

The same formula used in the training set was used to
determine the risk scores of patients in the testing and external
validation cohorts. On the basis of the median risk score, all
LUSC patients were divided into low- and high-risk groups.
Using Kaplan–Meier plots, we evaluated and compared the OS
time between groups. To determine the prognostic model’s
sensitivity and specificity, ROC curves were calculated (by
employing the “time ROC” R package) (25).

Identification of the Relationship
Between the Risk Score and the
Immune Landscape
CIBERSORT identified the abundances of different cell types using
RNAseq profiles of bulk samples (26). In summary, employing
signatures from 500marker genes, CIBERSORT can simultaneously
count 22 immune cell types at once and estimate their relative
amounts. We used CIBERSORT to compare the amount of tumor-
infiltrating immune cells in different groups of LUSC patients.

We selected 8 transcripts to be immune-checkpoint-relevant,
namely, CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2,
TIGIT, and SIGLEC15, and extracted their expression levels. The
expression of risk score and selected immune-checkpoint-relevant
genes was illustrated in a heatmap by “pheatmap” R package. The
TIDE algorithm was used to estimate the likelihood of an
immunotherapy response (27).
Frontiers in Oncology | www.frontiersin.org 3
Nomogram Development and Validation
Based on the risk score and clinical parameters, we designed a
predictive nomogram to guide clinical decision-making. The
survival-related clinical variables were screened at a p-value of
less than 0.05 via univariate Cox analysis. An analysis of
multivariate survival was next performed to create a
nomogram. The nomogram prediction probabilities were
plotted against the measured rates using a calibration curve.
The nomogram’s clinical value was investigated using decision
curve analysis (DCA) (28). The nomogram, calibration curves,
and DCAs were all plotted using the R packages “rms”
and “rmda.”

Statistical Analyses
R Studio software (version 1.4.1717) was used to conduct all
analyses. To compare samples from normal and tumor, we used
Student’s t-test. Where appropriate, the c2 test or Fisher’s test
was applied to determine the connection between the risk score
and clinical parameters. Kaplan–Meier plots of survival times
were analyzed using the log-rank test. All p-values were two-
tailed with a significance level of 0.05.
RESULTS

Screening for 12 DEGs Associated With a
Poor Prognosis
The study protocol is shown in Figure 1. We obtained 16,164
DEGs between LUSC tissues and normal tissues from the TCGA.
Among them, 10,623 were downregulated, and 5,541 were
upregulated (shown in Figures 2A, B). We found that the
upregulated DEGs were mainly enriched in systemic lupus
erythematosus, small cell lung cancer, pyrimidine metabolism,
p53 signaling pathway, mismatch repair, and homologous
recombination. The downregulated genes were significantly
enriched in pathways including cytokine–cytokine receptor
interactions, viral myocarditis, and chemokine signaling
pathways (Figure 2C). The upregulated DEGs in the GO
functional analysis were mainly associated with biological
processes involving spindle organization, nuclear division,
organelle fission, epidermal cell differentiation, and cell cycle
DNA replication. The downregulated DEGs were enriched in
regulation of angiogenesis, and regulation of the ERK1 and ERK2
cascades (shown in Figure 2D).

The experimentally validated FRGs were crossed with the
DEGs. In total, the 132 differentially expressed FRGs were
further screened in the TCGA cohort. We performed
functional enrichment analysis of differentially expressed FRGs
in LUSC. The chord plot and bubble plot showed that the FRGs
were mainly enriched in the response to oxidative stress, positive
regulation of cytokine production, cytokine metabolic process,
oxidoreductase activity, and HIF-1 signaling pathway (shown in
Figures 3A, B).

Excluding samples with incomplete clinical data and OS of
less than 30 days, 482 patients from the TCGA were analyzed. As
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shown in Figures 4A–L, 12 genes associated with ferroptosis
were ruled out as prognostic factors.

Establishment and Validation of a
Ferroptosis-Related Prognostic Signature
We randomly divided 482 LUSC patients from the TCGA
database into a training set and a testing set at a 7:3 ratio. To
validate our prognostic signature based on FRGs, we used
GSE73403 as a validation cohort. A LASSO model was built
from the TCGA training set to develop a prognostic model. The
above 12 FRGs were further narrowed down to 4 genes, namely,
CXCL2, SMAD7, HELLs, and IL1B (Figures 5A, B). The risk
score was calculated as follows: 0.01967 × CXCL2 + 0.1017 ×
SMAD7 − 0.0274 × HELLS + 0.069 × IL1B. The risk scores of all
patients were calculated. In accordance with the median risk
score, patients were separated into two groups. The high-risk
patients experienced a worse OS than low-risk patients (shown in
Figures 5C, D). We created 3-year and 5-year ROC curves to
determine the prognostic efficacy. The area under the curve
(AUC) was 0.668 for 3 years and 0.646 for 5 years, suggesting
that the model was well established (shown in Figure 5E).
Frontiers in Oncology | www.frontiersin.org 4
In both testing and validation sets, the proposed 4-gene
prognostic model was further validated. The Kaplan–Meier
survival plots of the test set indicated that the prognostic
model could classify LUSC patients into high-risk and low-risk
groups (Figures 6A, B). The patients with high-risk scores had
significantly shorter survival times than low-risk patients (HR
1.74, 95% CI 1.07–2.83, p = 0.027). According to the results from
the training and testing cohorts, high-risk LUSC patients in the
external validation set had a worse OS (shown in Figure 6C).
The AUC values were 0.603, 0.634, and 0.654 for 1, 3, and 5 years
in the testing set (Figure 6D). In the external validation set, the
1-, 3-, and 5-year AUC values were 0.800, 0.606, and 0.446,
respectively (Figure 6E). The risk plot of external dataset was
shown in (Figure 6F), revealing the prognostic model could
distinguish LUSC patients with high-risk well.

We performed stratified analyses of the FRG prognostic
signature for associations with clinical parameters, including
age, sex, and TNM stage. The Kaplan–Meier plot indicated
that the prognostic risk model accurately classified LUSC
patients into short-term and long-term survival groups among
patients older than 65 years (shown in Figure 7A). However,
FIGURE 1 | Flowchart.
July 2022 | Volume 12 | Article 933925
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among people younger than 65 years old, the HR for high-risk
group patients was 1.22 (95% CI 0.73–2.05) (p = 0.452, shown in
Figure 7B). When stratified by sex and N stage, the risk score
was significantly associated with survival in both groups (shown
Frontiers in Oncology | www.frontiersin.org 5
in Figures 7C–F). The relationship was not noteworthy among
people with late T stage disease. According to the TNM stage, no
association between risk scores and survival was observed in
LUSC patients with advanced stage, but high-risk patients with
A B

C D

FIGURE 2 | Genes differentially expressed in lung squamous cell carcinoma. (A, B) The heatmap and volcano plot shows differentially expressed genes in lung squamous cell
carcinomas based on the TCGA database. Up- and downregulated genes are indicated in red and blue, respectively. (C) Bubble graph for KEGG pathways. (D) Bubble
graph for GO pathways.
July 2022 | Volume 12 | Article 933925
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early stage had a worse prognosis (shown in Figures 7G, H). The
forest plot of the univariate Cox regression is shown in
Supplementary Figure 1.

Ferroptosis-Related Gene Signature
Related to Immune Cell Infiltration
The landscape of immune cell infiltration in the different groups
in the TCGA cohort is demonstrated in a heatmap (Figure 8).
There were significant differences in the SMAD7, CXCL2,
HELLS, and IL1B expression levels among the infiltrating
Frontiers in Oncology | www.frontiersin.org 6
immune cells, including CD8+ T cells, follicular helper T cells,
regulatory T cells, macrophages, and so on (shown
in Figure 9A).

We compared the tumor-infiltrating immune cells between
the low-risk and high-risk groups. The CIBERSORT was applied
to evaluate the proportion of immune cells. The proportions of
CD8+ T cells, CD4+ memory activated T cells, and follicular
helper T cells were significantly increased in the low-risk LUSC
patients (Figure 9B). Additionally, we observed that the relative
fractions of regulatory T cells, M0 macrophages, M2
FIGURE 3 | Functional analysis based on the differentially expressed FRGs. (A) Chord plot of molecular function and biological process. (B) Bubble graph of molecular
function and biological process.
July 2022 | Volume 12 | Article 933925
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macrophages, and neutrophils were significantly increased in the
high-risk group. However, there were no significant differences
in gamma delta T cells, resting NK cells, activated NK cells, or
dendritic cell infiltration between the two groups.

The expression of risk score and selected immune-
checkpoint-relevant genes was illustrated in a heatmap (shown
in Figure 10A). The risk score had a notable direct correlation
with the expression of all these immune-checkpoint-relevant
transcripts, indicating that the risk score represented the state
of tumor-induced immunosuppression.

To predict the clinical outcome of immune checkpoint
inhibitors, TIDE was used. TIDE scores differed significantly
between high-risk and low-risk groups (shown in Figure 10B).
According to TIDE, low-risk patients had a higher exclusion
score and a lower dysfunction score than high-risk patients.

The IMvigor210 cohort investigated the molecular
biomarkers that could predict the immunotherapy efficacy
Frontiers in Oncology | www.frontiersin.org 7
among muscle invasive bladder cancer patients. We further
detected the prognostic signature in predicting immunotherapy
response, including survival, therapy response, and immune
checkpoints, in the IMvigor210 cohort. The risk scores were
significantly different between non-responders and responders
to immunotherapy (Figure 11A). Meanwhile, the low-risk
patients harbored higher TMB and TNB than high-risk
patients (Figures 11B, C). According to the Kaplan–Meier
survival plots, patients could be classified into low- and
high-risk groups based on the prognostic model (shown
in Figure 11D).

Construction of the Nomogram
A prognostic nomogram was established by integrating the FRG
signature and clinical characteristics. According to the univariate
Cox regression analyses, the risk score, sex, age, T stage, M stage,
and clinical stage were potential independent prognostic factors
FIGURE 4 | Kaplan–Meier curve of the selected FRGs from the TCGA dataset. (A) Kaplan–Meier curve according to ANO6. (B) Kaplan–Meier curve according to
CXCL2. (C) Kaplan–Meier curve according to ENPP2. (D) Kaplan–Meier curve according to HELLS. (E) Kaplan–Meier curve according to IL1B. (F) Kaplan–Meier
curve according to MUC1. (G) Kaplan–Meier curve according to NNMT. (H) Kaplan–Meier curve according to TP63. (I) Kaplan–Meier curve according to PLIN2.
(J) Kaplan–Meier curve according to TFR2. (K) Kaplan–Meier curve according to SMAD7. (L) Kaplan–Meier curve according to DPP4.
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(shown in Supplementary Table 2). In order to predict the
survival rates over a 3- and 5-year period, we incorporated all of
these factors into a nomogram. Based on the nomogram, the
survival rate was assessed by summing several variables,
including risk score, T stage, and clinical stage (Figure 12A).
According to the nomogram, the AUCs over 3 and 5 years were
0.719 and 0.708, respectively (Figure 12B). Calibration curves of
Frontiers in Oncology | www.frontiersin.org 8
the nomogram indicated an accordant agreement for the 3-year
and 5-year OS (Figure 12C). The DCA showed that if the
threshold probability of a patient was >30%, using the
nomogram to predict 3-year OS and 5-year OS demonstrated a
larger benefit than did the clinical factors (Figures 12D, E).
Overall, the prognostic nomogram was superior in predicting the
survival outcomes of LUSC patients.
FIGURE 5 | Construction of prognostic signature for LUSC in the TCGA training set. (A) The selection of optimal predictive variables. (B) LASSO coefficients of the
12 variables. (C, D) Risk plot (C) and overall survival (D) between the high-risk and low-risk groups. (E) The receiver operating curve for overall survival over time.
July 2022 | Volume 12 | Article 933925
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FIGURE 6 | Validation of prognostic signature for LUSC. (A, B) Risk plot (A) and overall survival (B) in the TCGA testing set. (C) Overall survival analysis in the GEO
validation set. (D, E) The receiver operating curve for overall survival in the TCGA testing set (D) and GEO validation set (E). (F) Risk plot in the GEO validation set.
FIGURE 7 | Kaplan–Meier curve of stratified analyses of the FRG prognostic signature for associations with clinical characteristics. (A) OS curve in patients older
than 65 years old. (B) OS curve in patients younger than 65 years old. (C) OS curve in the T1+T2 stage. (D) OS curve in the T1+T2 stage. (E) OS curve in the N0
stage. (F) OS curve in the N+ stage. (G) OS curve in stage I + stage II. (H) OS curve in stage III + stage IV.
Frontiers in Oncology | www.frontiersin.org July 2022 | Volume 12 | Article 9339259
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DISCUSSION

In recent decades, outcome predictions for LUSC patients have
primarily relied on clinical characteristics, including age, TNM
stage, and some serum tumor biomarkers. However, the
predictive efficacy of these factors is limited and they are not
able to assist in clinical decision-making. Therefore, the
identification of more effective biomarkers could help
physicians judge the prognosis and make subsequent
individual treatment decisions. With advances in sequencing
technology, genomics might be useful to identify predictive
biomarkers in malignancies. However, one single gene offers
little predictive power for the outcomes of LUSC patients. A
number of multigene models have demonstrated much better
predictive power than single genes.

Ferroptosis is a recently identified method of regulating cell
death involving iron-dependent ROS generation (8). Recent
studies have demonstrated that ferroptosis contributes to the
progression of various cancers, including adrenocortical
carcinoma, pancreatic carcinoma, renal cell carcinoma, and
hepatocellular carcinoma (29, 30). According to Wang (31),
immunotherapy-activated CD8+ T cells aggravated ferroptosis-
specific lipid peroxidation, thereby enhancing immunotherapy’s
anti-tumor efficacy. Zhang (15) showed that hydroxyl radicals
caused lethal ferroptosis in tumor cells, and the immunogenicity
of the microenvironment was enhanced by the exposed tumor
antigens as a result. Ferroptosis is likely to play a role in tumor
immunity. A previous study (32) showed that the ferroptosis
Frontiers in Oncology | www.frontiersin.org 10
regulators served as a prognostic factor for recurrence and
survival in pan-cancer tissue. Furthermore, the ferroptosis
score was an independent predictor of response to
immunotherapy. Collectively, understanding mechanisms of
ferroptosis in the tumor immune microenvironment in LUSC
may facilitate biomarker-guided clinical decisions.

Using FRG signatures, we identified high-risk LUSC patients
and investigated the relationship between the risk signature and
the tumor immune microenvironment. First, we screened FRGs
from the FerrDb database and identified 132 DEGs in the TCGA
cohort. To investigate the molecular mechanisms and biological
functions of these genes, we conducted functional analyses. In
the TCGA cohort, twelve FRGs were screened out as prognostic
genes by univariate Cox regression analysis. We then constructed
a prognostic model of 4 FRGs via LASSO regression. A favorable
predictive efficacy was demonstrated in both the TCGA testing
set and the external validation set. Finally, we combined the
clinical characteristics with a LASSO regression model to
construct a nomogram that could be easily applied in
clinical practice.

All four genes have been validated as ferroptosis-related. It has
recently been proposed that ferroptosis is likely to release several
immune modulators that trigger an anti-tumor immune response.
Among the 4 FRGs in the prognostic model, CXCL2 is the ligand of
the chemokine receptor CXCR2 and is mainly expressed on
macrophages and myeloid-derived neutrophils. CXCL2 can
recruit myeloid-derived suppressor cells and tumor-associated
macrophages and increase immunosuppressive effects, thus
FIGURE 8 | Infiltration of immune cells among high-risk groups versus low-risk groups.
July 2022 | Volume 12 | Article 933925
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enhancing cancer cell proliferation, invasion, and metastasis (33,
34). CXCL2 has been reported to facilitate myeloid cell migration
and CD8+ T-cell exhaustion, causing accelerated tumor growth and
invasion in glioblastoma (35). In the context of hepatocellular
carcinoma, CXCL2 is downregulated in tumor tissues compared
to adjacent normal tissues, and upregulation of CXCL2 inhibited
angiogenesis and the aggressiveness of hepatocellular carcinoma
(36). However, Peng (37) found that CXCL2 was a major
chemokine involved in regulating the recruitment of neutrophils
into the tumor immune microenvironment and promoting the
production of prometastatic factors with positive feedback. At
present, there is a relative dearth of studies exploring the role of
CXCL2 in the tumor immune microenvironment of LUSC.

Previous studies have revealed that SMAD7 acts as a tumor
suppressor in a variety of cancers, including gastric cancer (38),
Frontiers in Oncology | www.frontiersin.org 11
bladder cancer (39), and hepatocellular carcinoma (40).
Nevertheless, several studies have pointed out that SMAD7
might promote tumor progression, migration, and invasion.
SMAD7 enhanced TGF-b induction of c-Jun and HDAC6 and
contributed to tumor aggressiveness in prostate cancer cells (41).
In colorectal cancer, SMAD7 expression was associated with
poorly differentiated cell morphology, higher cell proliferation,
and liver metastases (42). Luo (43) found that overexpression of
SMAD7 overexpression increased lung cancer incidence. Zhou
(44) reported that overexpression of SMAD7 promoted
proliferative and migratory capacities in pancreatic cancer.
Taken together, the literature on the involvement of SMAD7
in tumor progression has reported contradictory data about its
protumorigenic or antitumorigenic role in different types of
cancer. In our study, the expression of SMAD7 was negatively
FIGURE 9 | Immune cell infiltration in different high- and low-risk groups in the TCGA cohort. (A) Heatmap of immune cell proportions. (B) The bar graph showing
the difference between infiltrated immune cells in the tumor microenvironment. *p < .05, **p < .01, ***p < .001, and ns means not significant.
July 2022 | Volume 12 | Article 933925
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associated with CD8+ T cells and positively associated with
regulatory T cells and M0 macrophages. Those with high
SMAD7 expression have significantly shorter OS compared to
those with low expression. Taken together, we speculated that
SMAD7 overexpression might contribute to immunological
suppression and a poor prognosis in LUSC. Additional studies
are required to clarify the exact mechanism of SMAD7.

HELLS, a member of the SNF2 chromatin remodeling protein
family, modifies the nucleosome organization and position by
disrupting histone–DNA interactions (45). HELLS has been
reported to maintain cancer cell stemness by controlling DNA
methylation patterns (46). Overexpression of HELLS enables
continuous cell cycle activity and proliferation and is associated
with poor outcomes. Hou (47) revealed that HELLS might serve
as an oncogene in pancreatic cancer, and downregulating HELLS
impaired tumor growth. In hepatocellular carcinoma, HELLS is
involved in chromatin remodeling and epigenetic silencing, thus
promoting tumor proliferation and metastasis (48). Additionally,
Zhu (49) found that high expression of HELLS was related to an
improved prognosis in lung cancer patients. Xing (50) reported
that HELLS expression levels were correlated with the OS of
cervical carcinoma and endocervical adenocarcinoma. Our
results suggested that patients with high HELLS expression
displayed better OS. In conclusion, these results indicated that
HLELS plays different roles in different types of cancers.

IL-1b, a member of the IL-1 cytokine family, plays a critical
role in cytokine production, cellular migration, angiogenesis,
and the immune response. In pancreatic cancer, IL-1b
activated quiescent pancreatic stellate cells and promoted
an immunosuppressive microenvironment rich in M2
macrophages, myeloid-derived suppressor cells, regulatory B
cells, and Th17 cells (51). Kaplanov (52) found that implanted
breast cancer tumors regressed in IL-1b-deficient mice or in
Frontiers in Oncology | www.frontiersin.org 12
wild-type mice treated with anti-IL-1b antibodies. Furthermore,
the blockade of IL-1b and PD-1 completely abrogated
the tumors.

The regulatory T cells were related with worse prognosis in
various solid tumors, including breast cancer, pancreatic
cancer, and ovarian cancer (53). Tian (54) reported that the
regulatory T cells were correlated with histopathological grade
in gliomas, indicating that the regulatory T cells might play a
crucial role in carcinogenesis. Cui (55) found that follicular
helper T cells were critical for germinal center formation by
supporting B cells and correlated with prolonged survival in
lung adenocarcinoma patients. However, Eschweiler (56) found
that follicular helper T cells were prevalent in multiple tumors,
including NSCLC, melanoma, breast cancer, and colorectal
cancer. They were located in tertiary lymphoid structures and
presented superior immunosuppressive capacity. A previous
study revealed that M0 and M2 macrophages were independent
prognostic factors and associated with a high risk of relapse in
multiple solid tumors, including colorectal cancer (57), breast
cancer (58), and glioblastoma (59). Based on our findings, the
proportions of anti-tumor immune cells, including CD8+ T
cells, CD4+ memory activated T cells, and follicular helper T
cells, were significantly increased in the low-risk group
compared with the high-risk group. Meanwhile, the
immunosuppressive cells, including regulatory T cells, M0
macrophages, and M2 macrophages, were significantly
accumulated in the high-risk group.

The risk score exhibited a significantly positive relation with
all these immune-checkpoint-relevant transcripts, indicating
that the risk score represented the state of tumor-induced
immunosuppression. We further estimated the TIDE algorithm to
identify patients who might benefit from ICIs. We found that high-
risk LUSC patients with a higher dysfunction score and a lower
A B

FIGURE 10 | Immunotherapy response of LUSC. (A) The heatmap of expression of risk score and selected immune-checkpoint-relevant genes. (B) The violin plot
for the TIDE scores between the high- and low-risk groups. *p < .05, **p < .01, and ***p < .001.
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exclusion score might benefit less from ICIs than low-risk LUSC
patients. The results of immune-checkpoint-relevant transcripts and
TIDE algorithm were consistent with CIBERSORT, indicating that
the high-risk LUSC patients more likely exhibited an
immunosuppressive tumor microenvironment.

The study has important implications for the prognosis and
treatment for LUSC patients. Above all, we provided a new FRG
signature to guide clinical practice and risk stratification. The
patients with a low risk score were more likely to benefit from
ICIs and experienced longer survival time. Secondly, we
identified several critical ferroptosis genes that might offer
therapeutic targets in LUSC. The previous study (60) searched
for FRGs in LUSC patients. They identified 16 genes and built a
risk model for OS. Instead, we constructed a 4-gene prognostic
model with the desired efficacy. Feng (61) constructed an
algorithm based on FRGs and explored the relation of
ferroptosis score and immunotherapy response among LUSC
patients. Aside from research on immunotherapy response and
Frontiers in Oncology | www.frontiersin.org 13
prognosis among LUSC patients, the present study further
explored the prognostic value of the model among other
solid tumors.

Our study has some limitations. First, an open-source
database was used to download mRNA expression data and
related clinical information. These findings have yet to be verified
in clinical trials. Additionally, lung squamous cancer is a
complex disease regulated by multiple factors, such as the
environment, genetics, and epigenetics. Additional molecular
biological experiments are required to confirm that the 4 FRGs
have roles in the progression of LUSC. Finally, the risk model
could not provide the prognostic value compared to several
commonly used predictors, including pathological grade and
treatment strategy, because of missing TCGA data.

In summary, we identified an FRG signature to predict the OS
of LUSC patients. This risk signature has utility as a clinical
prognostic tool for guiding clinical practice and risk
stratification. Furthermore, the low- and high-risk groups
FIGURE 11 | Immunotherapy response in IMvigor210. (A) The violin plot for risk scores between responders and non-responders to immunotherapy. (B) The violin
plot for TMB between high- and low-risk groups. (C) The violin plot for TNB between high- and low-risk groups. (D) Survival curves of predicting the OS using risk
score. *p < .05, and *** p < .001.
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identified by the signature had different degrees of immune cell
infiltration and response to immunotherapy. Thus, this
prognostic model provides an accurate and objective basis for
guiding individualized treatment decisions for LUSC.
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