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Our pathophysiological concept of the most common central nervous system

demyelinating disease, multiple sclerosis, strikingly evolved by recent discoveries

suggesting that B lymphocytes substantially contribute in its initiation and chronic

propagation. In this regard, activated B cells are nowadays considered to act as

important antigen-presenting cells for the activation of T cells and as essential source

of pro-inflammatory cytokines. Hereby, they create a milieu in which other immune cells

differentiate and join an orchestrated inflammatory infiltration of the CNS. Without a

doubt, this scientific leap was critically pioneered by the empirical use of anti-CD20

antibodies in recent clinical MS trials, which revealed that the therapeutic removal of

immature and mature B cells basically halted development of new inflammatory flares

in otherwise relapsing MS patients. This stabilization occurred largely independent of

any indirect effect on plasma cell-produced antibody levels. On the contrary, peripherally

produced autoantibodies are probably the most important B cell component in two

other CNS demyelinating diseases which are currently in the process of being delineated

as separate disease entities. The first one is neuromyelitis optica in which an antibody

response against aquaporin-4 targets and destroys astrocytes, the second, likely distinct

entity embraces a group of patients containing antibodies against myelin oligodendrocyte

glycoprotein. In this review, we will describe and summarize pro-inflammatory B cell

properties in these three CNS demyelinating disorders; we will however also provide

an overview on the emerging concept that B cells or B cell subsets may exert

immunologically counterbalancing properties, which may be therapeutically desirable to

maintain and foster in inflammatory CNS demyelination. In an outlook, we will discuss

accordingly, how this potentially important aspect can be harnessed to advance future

B cell-directed therapeutic approaches in multiple sclerosis and related diseases.

Keywords: B cells, multiple sclerosis, central nervous system, antigen-presenting cell, cytokine secretion,

regulatory B cells, anti-CD20 therapy, neuromyelitis optica-spectrum disorders

INTRODUCTION

The fulminant clinical success of anti-CD20 antibodies in the treatment of multiple sclerosis (MS)
and neuromyelitis optica-spectrum disorders (NMO-SD) raised awareness that beside T cells, B
cells play a decisive role in their initiation, and propagation. Here, the rather immediate benefit
of anti-CD20 therapy has been mainly attributed to the extinction of B cells from the blood, but
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even more so from immunological relevant organs, such as
lymph nodes and spleen (1). In these peripheral compartments, B
cells interact with other immune cells after encountering antigen,
promote their differentiation and in turn undergo expansion
and maturation themselves (2). In NMO-SD, this peripheral B
cell activation results in a highly relevant antibody response
against CNS antigen. Consequently, most investigations focused
on elucidating mechanisms by which B cells contribute to the
pathogenesis of MS and NMO-SD in the periphery. These studies
revealed that beyond antibody production, cellular properties of
B cells such as antigen presentation and cytokine production
shape the response of other immune cells such as T cells
and myeloid cells both in a pro-inflammatory, but also in a
regulatory manner. Besides these properties in the periphery, B
cells and their antibodies probably play an important role within
the CNS, which may however substantially differ between MS
and NMO-SD.

B CELLS CONTRIBUTE AS
ANTIGEN-PRESENTING CELLS TO THE
ACTIVATION OF T CELLS

B cells are professional antigen-presenting cells (APC): they
recognize even low concentrations of antigens specifically and
constitutively express major histocompatibility complex (MHC)
class II and co-stimulatory molecules. This enables B cells to
prime T cells and in turn induces their own differentiation into
memory cells and antibody-producing plasma cells (Figure 1A).
In contrast to myeloid APC, which randomly ingest peptides,
B cells are capable of specifically recognizing, and internalizing
natively folded “conformational” protein antigens via their B cell
receptor. Subsequently, B cells process these structures to short
linearized peptides and present it to antigen-specific T cells via
MHC class II molecules. Thus, B cells are most efficient APC
when they share antigen recognition with responding T cells (3).
In genetically-altered mice containing myelin specific B and T
cells, the mere coexistence of these cells induces a spontaneous
form of experimental autoimmune encephalomyelitis (EAE) (4,
5), a commonly used murine model for human inflammatory
CNS demyelinating disorders. In the very same model, the
selective ablation ofMHC class II on B cells rendersmice resistant
to disease induction (6), showing their substantial contribution
as APC to this model. However, efficient priming of naïve T cells
does not only rely on peptide presentation via MHC class II, but
furthermore requires the ligation of co-stimulatory molecules,
such as CD40, CD80, and CD86. The quality of these signals in
conjunction with soluble factors shapes the emerging effector T
cell type. While for instance a strong cell-cell contact via CD40
on B cells and CD40 ligand (CD40L) on T cells is necessary for
the generation of pro-inflammatory T cells, a weaker molecular
contact induces rather regulatory T cell functions and a complete
block of CD40-CD40L interaction even prevents EAE (7, 8). In
line with these findings, B cells of active MS patients compared
to controls express increased amounts of CD40 together with
higher level ofMHC class II andCD80 (9, 10) suggesting that they
harbor an enhanced APC capacity. Furthermore, peripheral as

well as CNS B cells exhibit signs of chronic activation with a shift
toward antigen-experienced memory B cells (11, 12) pointing
toward an active involvement of B cells in MS pathogenesis.
This assumption is further corroborated by functional studies
which revealed that in a subgroup of relapsing-remitting MS
patients, B cells were capable of initiating proliferation, and
interferon-gamma (IFN-γ) secretion of potentially pathogenic
CD4+ T helper (Th)1 cells ex vivo (13). In summary,
these findings point toward an active involvement of B cells
in the pathogenesis of MS, potentially by activating CNS-
infiltrating T cells that in turn drive inflammation in brain and
spinal cord.

B CELLS SECRETE PATHOGENIC, BUT
ALSO REGULATORY CYTOKINES, WHICH
CONTROL OTHER IMMUNE CELLS

Besides being equipped with molecules required for direct cell-
cell contact, B cells provide a variety of cytokines for inter-
cell signaling. This is important as T cell activation does
not only rely on the strength of co-stimulatory signals, but
furthermore the cytokine milieu provided by the presenting
cell (Figure 1B). For instance, interleukin (IL)-6 secreted by B
cells fosters the differentiation of Th17 cells, while it prevents
the generation of regulatory T cells (14, 15). Thus, in a B
cell dependent EAE setting, B cell-restricted IL-6 deficiency
diminished the Th17 response and ameliorated the disease
severity (6, 16). B cells isolated from the blood of MS patients
though exhibit an abnormal pro-inflammatory cytokine profile
when compared to healthy controls. They secrete elevated
amounts of IL-6, lymphotoxin alpha and tumor necrosis factor
alpha (TNF-α), and produce less anti-inflammatory IL-10 (11,
16). The observation that these abnormalities were apparent
upon polyclonal stimulation suggests that not only autoreactive
B cells but rather the B cell pool at large is deregulated in
individuals with MS (11, 17). Moreover, MS patients showed
an increased frequency of memory B cells that co-express the
pro-inflammatory cytokines granulocyte-macrophage colony-
stimulating factor (GM-CSF), IL-6, and TNF-α. In the small MS
cohort investigated, therapeutic removal of B cells including the
latter memory B cell subpopulation resulted in a diminished
pro-inflammatory IL-6 response by macrophages in a GM-CSF-
dependent manner (18). An observation that points toward an
inflammation-promoting potential of B cells in MS. However, a
similar investigation aiming to assess the activation of myeloid
APC in blood before and after therapeutic B cell removal in MS
and NMO patients did not reveal such uniform results. Here,
the macrophages of the study participant showed similar TNF-
α secretion before treatment initiation, but varied widely after
anti-CD20 therapy (19). This suggests that B cell depletion had a
differential effect on the activation of myeloid cells in individual
patients, with either pro-inflammatory, or anti-inflammatory
outcomes (Figure 1C). Moreover, it indicates that in a subgroup
of MS patients, B cells may exert immune regulatory functions
prior to their therapeutic removal. Indeed, B cells are not
only a relevant source of pro-inflammatory, but moreover of
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FIGURE 1 | B cells, T cells, and myeloid cells shape each other’s immune response via direct interaction and/or secretion of cytokines. (A) B cells encounter protein

antigens specifically via their B cell receptor and present linearized peptides bound to the major histocompatibility complex (MHC) class II to T cells. Thereby, they act

as efficient antigen-presenting cells and control the differentiation of T cells by the density of co-stimulatory molecules on their cell surface and the cytokine milieu they

provide. In turn, this interaction fosters (B) the differentiation of B cells into antibody-producing plasma cells and memory B cells. B and plasma cells secrete pro- and

anti-inflammatory cytokines, which affect the expression of co-stimulatory molecules and the production of chemokines/cytokines by myeloid antigen-presenting cells.

Vice versa, myeloid cells have an impact on B cell activity through the secretion of distinct cytokines and chemokines. (C) Myeloid antigen-presenting cells, such as

monocytes, macrophages, and dendritic cells internalize antigen randomly or opsonized antigen specifically via Fcγ receptors, process them, and present the

linearized peptides via MHC class II to T cells. They are able to induce both pro- and anti-inflammatory T cells, controlled by the expression density of co-stimulatory

molecules on myeloid APC and their distinct secretion of cytokines.

anti-inflammatory cytokines: while antigen-activated B cells
mostly secrete pro-inflammatory ones, antigen-naïve B cells,
plasmablasts, and plasma cells produce relevant amounts of anti-
inflammatory IL-10, IL-35, and transforming growth factor beta
(TGF-β). In the context of EAE, adoptive transfer of IL-10-
secreting B cells for instance suppressed disease (20), while B cell-
restricted abrogation of IL-10 or IL-35 augmented its severity.
Moreover, both B cell-derived IL-10 and IL-35 were required
for physiological recovery from an acute disease flare (21, 22),
and the presence of B cell-secreted TGF-β limited the induction
phase of EAE (23). In all of these studies, augmented EAE
severity went along with an increased number of differentiated,
pro-inflammatory Th1, and Th17 cells, suggesting that anti-
inflammatory cytokines secreted by B cells were required to limit
the pathogenic T cell response during EAE. In humans, similar
regulatory B cell properties have been described (24) and are
assumed to be impaired in MS patients (11). However, further
research is required to validate this assumption and to ascertain
whether regulatory B cells are equally relevant in MS as they
are in EAE. If this proves true however, future therapies should
aim to maintain or restore regulatory B cell functions, while
targeting pro-inflammatory properties selectively; an issue that
currently available therapies cannot address (25, 26). In this
context, a promising approach may be the inhibition of Bruton’s

tyrosine kinase (Btk), an enzyme that is present in B cells, and
innate immune cells, such as myeloid APC, but not in T cells.
B cells require Btk for proper B cell receptor signaling, where
it rather modulates the signal responsiveness, than turning it
on or off (27). Thus, its inhibition does not deplete B cells, but
presumably lowers their response to B cell receptor stimuli (28).
In this way, Btk inhibition is assumed to foster the induction
and maintenance of tolerogenic B cells, while it counteracts their
antigen-mediated pro-inflammatory activation (29–31). In mice
with collagen-induced arthritis and in a murine lupus model,
both autoimmune disorders with pathogenic B cells involvement,
an orally applied Btk inhibitor reduced the amount of circulating
autoantibodies and inhibited the development of disease (32),
showing its ability to limit a pathogenic B cell response. In MS,
first phase II clinical trials testing evobrutinib (ClinicalTrials.gov
Identifier: NCT02975349), an orally applied, highly selective Btk
inhibitor, significantly reduced the number of new enhancing
T1, and new or enlarging T2 lesions when compared to
placebo (ECTRIMS Online Library. Montalban X. Oct 12, 2018;
232075). These preliminary results suggest that a monotherapy
aiming to inhibit Btk can be promising in MS. Moreover, Btk
inhibition may be suitable as maintenance therapy after initial
anti-CD20-mediated B cell depletion to avoid recurrence of
pathogenic B cells.
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B CELLS DIFFERENTIATE INTO
ANTIBODY-PRODUCING PLASMA CELLS

As mentioned before, the process of antigen presentation does
not only activate the responding T cell but in turn induces
the proliferation of the presenting B cell and its subsequent
differentiation into memory cells and antibody-producing
plasma cells. Hence, the presence of persisting oligoclonal
immunoglobulins (Ig) termed oligoclonal bands (OCB) in the
cerebrospinal fluid (CSF) of most MS patients (33–35) can be
construed as a first evidence of the pathogenic activation of
B cells in MS. More detailed investigation revealed that these
intrathecal Ig were most likely produced by plasma cells within
the CSF as the CSF Ig proteome and the Ig transcriptome of
CSF-located B cells matched with each other (36). In addition,
intrathecal B cells show signs of somatic hypermutation and
clonal expansion (37, 38) pointing toward a germinal center-
like reaction with antigen-driven affinity maturation within the
CNS. However, there is new evidence that these terminally
differentiated B cells in the CSF were not solely a product of
intrathecal maturation, but can cross the blood-brain barrier and
interact with the peripheral immune system (39–42). How this
migration though influences the maturation of intrathecal B cells
in detail and whether it affects the peripheral B cell response is
not yet fully understood. Up to now, the expression pattern of
OCB in the CSF do not have an apparent correlate in the blood,
indicating that despite the ability of B cells to exchange, antibody-
secreting plasma cells mainly accumulate within the CNS of MS
patients. However, the pathogenic relevance of these CNS-located
B cells and their products for the pathogenesis of MS is still
controversially discussed. The presence of co-localizing Ig and
complement depositions in ongoing MS lesions (43) suggests
that autoantibodies are involved in CNS injury. A assumption
that has been further fueled by studies demonstrating that
antibodies isolated from the CSF of MS patients induce axonal
damage and complement-mediated demyelination when applied
to human CNS tissue ex vivo or in vitro (44, 45). Nevertheless,
the particular antigen(s) recognized by these antibodies are still
unclear (46). Reiber et al. (47) for instance claimed that OCB
of MS patients were mostly directed against CNS-unrelated
antigens, such as rubella, measles, and varicella zoster virus
indicating an unspecific “bystander” activation of B cells. Others
however proposed autoantibodies against CNS structures, such
as myelin, astrocytes, and neuroglial cells to be part of this
intrathecal humoral immune response. They report that OCB of
MS patients contain autoantibodies against myelin basic protein
(48), myelin-associated lipids (49), contactin-2 (50), and KIR4.1
(51). However, the variety of proposed antibody specificities and
the fact that some of the aforementioned findings were not
easily reproducible by other laboratories (52–54) possibly reflect
the complexity of MS pathogenesis. Alternatively, it suggests
that MS may consist of multiple disease entities with distinct
disease driving mechanisms. In fact, the first clinical variant
of MS, which has been separated from the “core disorder”
was NMO based on the discovery of anti-aquaporin (AQP)4

autoantibodies in the patients’ blood (55, 56). AQP4 is a water
channel found both in peripheral organs such as the kidney
(57) as well as in the CNS (58). There it is mainly expressed
on the end feet of astrocytes (59, 60), most densely in the optic
nerve and spinal cord where astrocytes and oligodendrocytes
are in close proximity (61). Hence, these are the regions where
NMO lesions predominantly occur. Since AQP4 is not expressed
on oligodendrocytes themselves (58), astrocytes are suggested
to be the main target in NMO (62, 63). Corroborating this
notion, active NMO lesions contain areas of co-localizing Ig
and complement depositions with a vast loss of AQP4 and
glial fibrillary acid protein immunoreactivity that points toward
an antibody-mediated destruction of astrocytes. Older lesions
however show in addition a reduced number of oligodendrocytes
and extensive demyelination of gray and white matter (56, 64,
65) indicating that demyelination occurs secondarily in later
stages of the disease as a result of the preceding astrocyte
loss. Hence, NMO is nowadays recognized as an autoimmune
astrocytopathy (66) which is, at least in part, mediated by
autoantibodies against AQP4. Interestingly, anti-AQP4 antibody
titer are relatively low or even absent in the CSF of NMO
patients even when the corresponding antibody titer in the
blood are high (67). Furthermore, only 15–30% of NMO patients
have OCB in the CSF, which in addition mostly disappear
with disease progression (68). These findings together suggest
that in NMO, B cells are in the first place activated outside
the CNS resulting in a pronounced humoral immune response
against AQP4 in the periphery. However, new data indicate
that also in NMO patients, similar to MS, B cells exchange
across the blood-brain barrier resulting in the presence of AQP4-
specific B and plasma cells both in the blood and the CSF (69).
Nevertheless, the particular trigger(s) of these astrocyte-directed
attacks and the exact sequence of B cell activation including
the circumstances under which AQP4-directed B cells and/or
antibodies gain access to the CNS to induce lesion formation
are not fully understood. Despite these pending mechanistic
issues, the diagnosis of NMO is nowadays closely tied to the
presence of antibodies against AQP4. However, some patients
with clinical features suggestive for NMO do not have detectable
anti-AQP4 antibody titers. Instead, about a third of them
produce antibodies against myelin oligodendrocyte glycoprotein
(MOG) in the blood (70–72). MOG is a transmembrane protein
expressed on the outermost lamella of the myelin sheath and
the surface of oligodendrocytes (73). Its extracellular localization
and its lack of expression in the thymus renders MOG a
plausible target for autoimmune responses (74, 75). Patients
with autoantibodies against MOG have a severe disease course
with high relapse rates, strong brainstem, and spinal cord
involvement and do hardly respond to several disease-modifying
treatments (54). Evaluation of their CSF and histological analysis
of biopsy/autopsy tissue revealed no astrocytopathy, but myelin
damage as primary injury in the CNS (1, 54, 76–78). Similar
to classical NMO, OCB occur only occasionally (79), and anti-
MOG antibodies can be found in the serum, but not in the CSF
(80, 81).
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PATHOGENIC INVOLVEMENT OF B CELLS
AND THEIR PRODUCTS IN THE
PERIPHERY AND WITHIN THE CNS

The occurrence of a peripheral humoral immune response
against CNS antigen is the most striking similarity between
patients with anti-AQP4 and anti-MOG antibodies. It delineates
them distinctly from MS patients, which show an accumulation
of Ig in the CSF, but have no apparent reflection of these
antibody patterns in the blood. However, the pathogenic role
of these autoantibodies outside the CNS is still elusive. In
mice, it has been demonstrated that peripheral anti-MOG
antibodies foster the activation of encephalitogenic T cells in the
periphery by opsonization of otherwise unrecognized traces of
CNS antigen, which results in the induction of EAE (82, 83).
How these endogenous CNS antigens though reach the periphery
is uncertain, but presumably by being drained from the CNS
to peripheral lymph nodes along lymphatic vessels (84). Even
though it is not yet proven that this mechanism is of relevance for
the human condition, it is conceivable as antibodies isolated from
anti-MOG antibody positive patients were capable of opsonizing
human MOG (83). Furthermore, traces of myelin have been
found in cervical lymph nodes of MS patients as well as healthy
controls (85, 86) indicating that also in humans, CNS structures
can be made accessible to the peripheral immune system by this
route. Consequently, it includes the possibility that CNS antigens
are recognized and opsonized by CNS-directed autoantibodies
in the periphery. Overall, these findings suggest that anti-AQP4
antibody positive NMO as well as MOG antibody-associated
disease is primarily driven by a pathogenic B cell activation in
the periphery resulting in the generation of antibody-producing
plasma cells, again in the first place in the periphery. In contrast,
in MS, B cells probably exert their pathogenic properties both
in the periphery as well as within the chronically inflamed
CNS itself, but most probably independent of CNS-specific
peripheral antibodies. After activation, B cells migrate through
blood or lymph vessels into peripheral lymphoid organs, where
they undergo full activation and maturation. Currently available
immune-modulating MS therapies are very efficient in targeting
these peripheral immune cells, but have only little or no access to
the CNS-compartmentalized cells (87, 88). New concepts though
suggest that two, probably independent, inflammatory processes
drive CNS injury in MS, and potentially involve B cells: on
the one hand, de novo infiltration of immune cells from the
periphery into the CNS that correspond with focal inflammation,
MRI-detectable lesions, and relapses. On the other hand, chronic
progression supposedly driven by CNS-intrinsic inflammation
that is promoted by CNS-resident immune cells in conjunction
with CNS-trapped leukocytes (89). The first mechanism is
premised on abnormally activated immune cells that migrate
from lymphatic tissue, the location of their priming, across the
blood-brain barrier into the CNS. There, these leukocytes are
assumed to reactivate and contribute to the injury of axons
and glial cells (90–92) forming focal lesions. These lesions are
typically located perivascular and contain T cells, monocytes, B,
and plasma cells (93). Since anti-CD20-mediated B cell depletion
is highly efficient in preventing the formation of such focal CNS
lesions, its assumed therapeutic efficiency is mainly based on the

abrogation of the aforementioned cellular B cell properties in
the periphery, and within the perivascular space (94). Chronic
progression in contrast is characterized by gradual expansion of
consisting lesions with myelin-containing macrophages at the
lesion border, gray, and white matter atrophy as well as diffuse
aberrant inflammation of the normal-appearing white matter
(95, 96). In progressive MS, this cortical demyelination has been
further associated with B cell-rich structures in the meninges
(97, 98) as well as with plasma cell accumulation in experimental
CNS inflammation (99). These findings point toward a gradual
shift of disease-driving B cell functions from the periphery to
the CNS with disease progression. Furthermore, they indicate
that B cells may be involved—directly or indirectly—in cortical
injury. An observation that is further corroborated by the
findings of Lisak et al. (100) demonstrating that secretory
products independent of antibodies and multiple cytokines
produced by B cells of progressive MS patients are cytotoxic to
oligodendrocytes and neurons (101). In line with these results, it
is not surprising that even though anti-CD20 is highly efficient
in limiting the formation of new CNS lesions, it does not
entirely stop chronic progression. This further strengthens the
assumption that chronic CNS injury in MS is not primarily
caused by de novo infiltrating immune cells, but by an established
CNS-compartmentalized inflammation, which results in a CNS-
autonomous immune response over time.

CONCLUSION

Current research indicates that in MS, B cells contribute
to the formation of relapses as well as to the progression
of the disease independent of de novo CNS infiltration.
In contrast, in NMO and anti-MOG antibody-associated
demyelination, a peripherally generated CNS-targeting
antibody response is suggested to be the main disease
driver. Accordingly, these delineating disease entities may
require MS-independent therapeutic strategies, a concept
that is currently evolving. Thus, therapies targeting distinct
aspects of NMO-relevant B cell functions such as plasma
cell differentiation and complement fixation are currently
under evaluation. First trials showed promising results for the
treatment with tocilizumab, an therapeutic antibodies against
IL-6 receptor (102, 103), and eculizumab, an complement
component 5-specific antibody (104). Besides these pathogenic
B cell properties, B cells, or B cells subsets likely exert a
therapeutically desirable regulatory function in either disease,
limiting tissue inflammation as well as pro-inflammatory
activation of other immune cells. Accordingly, one of the
prime challenges for the long-term targeting of B cells in MS
and related demyelinating diseases will be to delineate and
specifically target pathogenic B cell properties by novel strategic
concepts, such as the selective depletion of differentiated B cells,
interference with their activation or ablation of a disease-driving
antibody response.
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