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Abstract

Background: Working dog handlers and breeders have strong opinions on characteristics that are desirable in the
breeds that they use to handle stock. Most of these characteristics are related to conformation or behaviour. This
study explored whether the genetics underlying desirable working behaviour traits might be identified by selective
sweep analysis; a method that identifies long regions of strong homozygosity combined with allelic divergence
from a comparison group. For this analysis, we compared genomic haplotype architecture in two breeds derived
from common founder stock but subjected to divergent selective pressures. The breeds studied were the Australian
Kelpie, which is registered with the Australian National Kennel Council, and the Australian Working Kelpie, which is
registered with the Working Kelpie Council.

Results: A selective sweep spanning 3 megabases on chromosome 3 was identified in the Australian Working
Kelpie. This region is the location of genes related to fear-memory formation and pain perception.
Selective sweep loci of similar magnitude were observed in the Australian Kelpie. On chromosome 8 is a locus
which may be related to behavioural excitability and on chromosome 30 is a smaller locus which most likely is
related to morphology.

Conclusions: Active working stock dogs of the Australian Working Kelpie breed have been bred primarily for gene
loci influencing pain perception and fear memory formation. By contrast Australian Kelpies are commonly
maintained in urban environments where these characteristics are not required and have been affected by
selection for conformation and coat colour. The identified loci may aid in the identification of superior working
dogs.
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Lay summary
The term ‘selective sweep’ is used in the study of genet-
ics to describe a reduction or loss of DNA sequence
variation in regions of the genome of species, breeds or
cultivars. This can occur as a consequence of strong se-
lective pressure (positive evolutionary selection) due to a
highly desirable DNA mutation in such regions which
convey a survival advantage (positive evolutionary nat-
ural selection). Alternatively it can be artificially driven
by man in other species through manipulating selection
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with eugenic breeding programmes. A selective sweep
analysis can be very helpful in both determining the close
genetic relationship of individuals and groups within a
species, and also in some cases can be useful in identifying
gene variants that cause disease.
In this study of Australian Kelpies we have applied a fresh

approach to selective sweep analysis that interrogates a
breed ‘split’ so as to learn more about the ‘external charac-
teristics’ (often called the phenotype) that are regarded as
desirable in two very different cohorts of dogs that share a
common breed origin. One group of dogs is intensively se-
lected for its ability to work with livestock, while the other
group is bred for conformation and companionship –
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Figure 1 Australian Working Kelpie (photo credit: Jonathan Early).

Figure 2 Australian Kelpie (photo credit: Jenny Bayliss Photography).

Arnott et al. Canine Genetics and Epidemiology  (2015) 2:6 Page 2 of 6
usually in an urban setting. This study suggests that “work-
ing Kelpies” have a strong genomic selection signal in a re-
gion of their genome that contains genes predominantly
concerned with resilience traits such as the ability to sense
pain and form memories associated with fear. The “non-
working” Kelpie group have selection signals that are most
likely related to body shape and size (conformation traits).
A selective sweep is the reduction or elimination of

variation among the nucleotides in neighboring DNA of
a mutation as the result of recent and strong positive
natural or artificial selection.

Background
Selection, both natural and artificial, can be very power-
ful in shaping phenotype and, as widely described in the
literature, this is broadly demonstrated in the morpholo-
gies and behaviours of domestic dogs. Previous studies
have assessed selective sweep by comparison of disparate
dog breeds [1-6]. In this work, we concentrate on com-
paring two closely related breeds that have been derived
from a common ancestor but then bred for different
purposes. By doing so, we expect to be able to more eas-
ily identify regions that underpin the observable behav-
ioural and physical differences between the breeds.
Where selection is based upon a common breeding

goal, selective progress in breed improvement is en-
hanced; a strategy widely used in the production animal
industries. Selection in dog populations is assisted by the
birth of progeny in litters that may number as high as 15
individuals but are more commonly in the range of 5–7
offspring. The prolificacy enables breeders to exert con-
siderable selection pressure within a family, albeit with a
demonstrably low correlation between pup behavioural
assessment and adult working success [7]. A relatively
large amount of selection pressure in dog breeding oc-
curs at a young age (approximately 8 weeks) when the
breeder elects either to keep a pup potentially for breed-
ing or to sell it. A second stage of selection occurs when
the adult is identified as being suitable for breeding.
The Australian Working Kelpie (AWK) breed repre-

sents dogs registered with the Working Kelpie Council
(WKC) and is the product of more than a century of
breeding by Australian sheep and cattle farmers who
have focused on stock working ability (Figure 1). The
WKC describe an early focus their breeding strategy,
“Selection from the beginning was for a sheepdog that
could cope with the conditions. This having been ob-
tained with the early crossings the features (sic) has been
rigorously retained....... revels in hard going. Established
specially for local conditions he is able to muster huge
areas under extreme conditions, often having to do with-
out water for hours on end” [8]. The requirements for a
dog working stock in a yard or during transport are
recognised in the working dog breeder community as
being quite different from those required to herd stock in
a large area with often difficult terrain, or from the re-
quirements of a breeder who is interested in competitive
sheepdog trials [9-12]. However, we expect that the basic
ability to effectively work stock might have a common
basis and in this study we are interested to explore
whether we might uncover this through genomic analysis.
Breeders of the Australian Kelpie (AK) representing

dogs registered with the Australian National Kennel
Council (ANKC) sell pups primarily into companion
homes and are more likely to engage in activities such as
dog showing and other competitive dog sports that are
not related to stock work (such as obedience and agility)
(Figure 2). The AK was first exhibited in 1908 and the
breed standard was adopted in 1963 [13]. Both breeds are
originally derived from a bitch known as Kings Kelpie that
won the first sheepdog trial in New South Wales [13]. In
the early years of the breed many of the dogs were black



Arnott et al. Canine Genetics and Epidemiology  (2015) 2:6 Page 3 of 6
and tan but solid black dogs were derived from a male
known as Moss who was later bred with Kings Kelpie and
produced a popular sire known as Barb (named for a black
racehorse) [13].
Methodologies for the assessment of selective sweep have

been explored extensively in the literature [6,14,15]. For the
current study, we elected to use a simple analysis of ex-
tended homozygosity over one megabase genomic windows
combined with a long region of heterogeneous allele fre-
quency (FST) [16] relative to the alternate population with
the goal of identifying genomic regions that have responded
best to the strong selective forces applied by breeders.

Results and discussion
The results of the homozygosity analysis are shown in
Table 1 for the Australian Working Kelpie and the Australian
Kelpie. A single major locus of sweep spanning 4 Mb was
identified for the Australian Working Kelpie. The bounds
of this sweep were on canine chromosome 3 spanning
from 26 megabases (Mb) to 30 Mb on the canine refer-
ence assembly CanFam3.0 [17,18].
Two loci were identified for the Australian Kelpie. The

first is on chromosome 8 and spans 4 Mb from 64 to
68 Mb with the strongest signal at 67 Mb. The second is
Table 1 Regions identified in the primary analysis for differen
12 Australian Working Kelpie dogs that were then assessed f

Primary

Chromosome Position (1 Mb bin)
canfam 3.0

Markers in
window

maf£ AWK†

AWK 3 26000000 64 0.012

3 27000000 79 0.012

3 29000000 70 0.009

3 30000000 66 0.008

10 47000000 72 0.048

11 2000000 40 0.016

11 17000000 83 0.05

11 36000000 71 0.041

15 46000000 72 0.031

24 46000000 88 0.025

30 1000000 82 0.011

30 5000000 41 0.046

39 102000000 47 0.026

AK 8 64000000 81 0.166

8 65000000 75 0.165

8 67000000 71 0.13

30 23000000 87 0.193

39 16000000 42 0.208
†Australian Working Kelpie.
‡Australian Kelpie.
£minor allele frequency (maf).
*supported in expanded analysis.
on chromosome 30 and is supported in the wider data
for a single window at 23 Mb. Adjoining windows span-
ning an area of 21 Mb to 25 Mb maintained mean
minor allele frequencies of lower than 0.07 in the larger
data cohort.
Positional candidate genes for behavioural and mor-

phological traits are shown in Table 2 for the three sup-
ported sweep regions.
Both breeds appeared to have a single predominant

common haplotype on the X chromosome (Additional
file 1: Table S1). This is not surprising as both groups in
our data were founded on a single female that had of-
fered exceptional working ability [8]. One additional
locus of sweep for the AK was excluded from the re-
ported results due to low density of markers in the win-
dow (at chr16:59000000) but is nonetheless observably
supported in the dog phenotypes. The Australian Kelpie
is frequently self-coloured brown or black (although the
brown may be reported as either red or chocolate by
breeders, depending on the hue). In contrast, Australian
Working Kelpies may be the same colours as those
reported for the AK, but most frequently exhibit tan
markings (commonly referred to as black and tan or red
and tan). One window of selective sweep for the AK
tial selective sweep including 12 Australian Kelpie and
or validation in a further 10 AK and 28 AWK individuals

Validation

maf AK‡ maf absolute
difference

maf AWK† maf AK‡ maf absolute
difference

0.176 0.164 0.027* 0.187 0.16

0.194 0.181 0.031* 0.187 0.156

0.178 0.169 0.015* 0.151 0.135

0.161 0.153 0.082 0.178 0.096

0.169 0.121 0.101 0.173 0.071

0.184 0.169 0.022 0 0.022

0.179 0.13 0.148 0.182 0.034

0.186 0.144 0.062 0.118 0.056

0.195 0.164 0.106 0.21 0.104

0.16 0.136 0.052 0.153 0.1

0.13 0.119 0.014 0.085 0.071

0.162 0.116 0.092 0.022 0.069

0.153 0.127 0.213 0.23 0.017

0.049 0.118 0.189 0.049* 0.141

0.042 0.123 0.221 0.040* 0.182

0.008 0.122 0.131 0.004* 0.126

0.029 0.164 0.178 0.016* 0.162

0.048 0.161 0.057 0.075 0.018



Table 2 Positional candidate genes for behaviour and morphology phenotypes according to the mouse genome
browser

Positional candidate genes

Canine Locus
(Canfam 3.0)

Mouse Locus
(GRCm38/mm10)

Sweep cohort Behaviour Integument/
Pigmentation

Craniofacial Skeletal

chr3:26-30 Mb chr13:91.8-95.7 Mb AWK† Homer1, Arsb, Lhfpl2,
Ap3b1,Crhbp, F2rl1

Msh3, Homer1,
Ap3b1,F2rl1

Arsb, Ap3b1 Arsb, F2rl1

chr8:64-68 Mb chr12:105-109 Mb AK‡ Dicer1, Bdkrb2,Bdkrb1,
Bcl11b

Dicer1, Bdkrb2,
Bdkrb1, Bcl11b

Dicer1, Ak7, Bcl11b Dicer1, Bdkrb2,
Bcl11b

chr30:23-24 Mb chr9:70.5-71.5 Mb AK‡ - - Adam10, Aldh1a2 Adam10, Aldh1a2
†Australian Working Kelpie.
‡Australian Kelpie.
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(chr16:59000000) sits directly on the K-locus (DEFB103)
[19] that affects the expression of pheomelanin versus
eumelanin in the dog. No sweep was observed in either
breed for the agouti locus that has been previously
described as the major locus underlying the black and tan
coat colour phenotype [20,21].
It is not the first time that the locus on chromosome 3

for the AWK has been identified in research on this
breed. In an analysis to identify a putatively recessive
locus underpinning an inherited disorder in Kelpies,
Shearman et al. [22] identified this exact same region as
a region of extended homozygosity in samples affected
by cerebellar ataxia. We predict that the earlier disease
association study had included a mixture of AK and
AWK in the control cohort and that the signal identified
is based on cohort stratification. While some dogs in the
current population participated in the study of cerebellar
ataxia, our analysis excluded all case samples from the
data and doing so clearly reveals that homozygosity in
this region is a characteristic of all AWK.
Presuming that the region in this sweep is affected by

strong selection for working success, the most interesting
of the positional candidate genes on chromosome 3 is the
HOMER1 gene. This gene is associated with fear memory
formation and pain perception (nociception) in the mouse
[23-25]. The areas where working stock dogs are employed
in Australia have large numbers of environmental hazards.
In particular, a large proportion of the groundcovers are of
a spiked nature and species such as Tribulus terrestris (cat-
head burr), Xanthium spp (Bathurst burr, Noogoora burr),
Onopordum acanthium (Scotch thistle), Alternanthera
pungens (Khaki weed), Nassella neesiana (Chilean needle
grass) and Cenchrus spp (Spiny burrgrass) are common
(http://www.weeds.org.au/). In addition, traumatic injuries
caused by livestock, fences and vehicles are well docu-
mented [26]. A dog that can overcome pain to maintain
sufficient focus and continue its work will be a strong asset
to the working dog handler. Dogs that are resilient will
also have an enhanced chance of working success in
the challenging environment of Australian stockwork.
Interestingly, an important founder sire for the AWK,
a blue dog named “Coil”, is renowned for his excep-
tional pain tolerance and endurance. Coil won the
1898 Sydney trial achieving a perfect score despite
competing with a fractured foreleg [8]. Further re-
search is required to explore whether pain thresholds
truly differ between these cohorts of dogs.
For the Australian Kelpie, the major identified sweep

locus on chromosome 8 contains genes that relate to
both behaviour and morphology but none that stands
out as an obvious candidate. The region contains a large
gene poor section that has an enriched selection of highly
conserved non-coding elements. The gene BCL11B (B-Cell
Lymphoma/Leukemia 11B) is a transcriptional repressor
and one gene, UNC79 (Protein Unc-79 Homolog) just out-
side of the swept interval but in the vicinity has been linked
with hyperactivity in the mouse [27].
Given the activity of the genes in this region, the driver

for the chromosome 30 sweep locus in the AK likely has a
morphological, rather than behavioural, basis.

Conclusions
By focusing on breeds that are derived from a common
foundation but then selected for different purposes we have
been able to identify a major locus underlying ability of
stock dogs, represented by the Australian Working Kelpie,
to effectively work in harsh environmental conditions.
While stock dog breeders may be selecting primarily for
traits such as stock sense and boldness, we reveal that they
are favouring breeding from dogs that can focus and con-
tinue working despite the presence of environmental haz-
ards and discomforts. This requirement is not needed for
dogs accustomed to an urban lifestyle. Australian Kelpies
are not usually employed in stock work. They appear to
have been subjected to selection that is predominantly
based on morphology rather than behaviour.

Methods
Twelve Australian Working Kelpie (AWK) dogs (registered
with the Working Kelpie Council) and twelve Australian

http://www.weeds.org.au/
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Kelpie (AK) dogs (registered with the Australian National
Kennel Council) were used in the primary analysis. Ten
additional AK (representing data from an unrelated family
collected for an unrelated disease study) and 28 additional
AWK (collected for unrelated studies) were used to validate
the loci identified in the primary analysis. Case samples
from the other studies were excluded.
Peripheral blood samples were obtained from six dogs

using EDTA blood collection tubes (BD Vacutainer, BD
Franklin Lakes, NJ) and extracted using EZ1® DNA Blood
Kits (Qiagen, Valencia, CA). The remaining two samples
were collected using Oragene ANIMAL OA-400 saliva col-
lection kits (DNA Genotek, Ontario Canada) and extracted
following standard kit-issued protocol.
Both primary analysis and validation samples were col-

lected with University of Sydney ethics clearance (N00/
10-2012/3/5837 and N00/10-2012/3/5928).
Genotyping was conducted on the Illumina Canine

High Density Genotyping array (170,000 markers) by
Neogen/Geneseek Nebraska USA.
Results were assessed for minor allele frequency within

dog registry cohorts using the –freq option in the Plink
software package [28]. Mean minor allele frequencies
were binned in one megabase non-overlapping sliding
windows across the genome within cohort.
For analysis of the Australian Working Kelpie selective

sweep(s), one megabase windows with more than 40 single
nucleotide polymorphism (SNP) observations and a mean
minor allele frequency of lower than 0.05 were identified
and compared with the same window for the Australian
Kelpie. Where the absolute difference between minor allele
frequencies in the compared groups was greater than the
arbitrarily set value of 0.11 the region was selected for valid-
ation. Next, windows with a mean minor allele frequency
of lower than 0.05 in the Australian Kelpie and an absolute
difference in minor allele frequency (>0.11) relative to the
Australian Working Kelpie were identified for validation as
indicating sweep in the Australian Kelpie.
Finally, both data sets were expanded to include the

additional 38 dogs (10 AK and 28 AWK) and the ana-
lysis was repeated.
The intervals identified as representing selective sweeps

were compared with the conserved syntenic regions on the
mouse genome using the mouse genome browser hosted
by Mouse Genome Informatics [29]. Genes with relevance
for behaviour, integument, craniofacial and skeletal pheno-
types were identified using the phenotype utility within
the browser.

Additional file

Additional file 1: Table S1. Relative minor allele frequencies for both
Kelpie types (AK and AWK) in one megabase windows across all
chromosomes.
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