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Abstract

We propose INvariance of Noise (INN) space as a novel method for source localization of magnetoencephalography (MEG)
data. The method is based on the fact that modulations of source strengths across time change the energy in signal
subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer
approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between
two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all
cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was
considerably stronger than the other.
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Introduction

Magneto- and electroencephalography (MEG/EEG) are non-

invasive brain imaging techniques providing millisecond time

resolution [1]. However, estimating the distribution of the sources

underlying the MEG/EEG signals is complicated by the ill-posed

electromagnetic inverse problem: there exists an infinite number of

source configurations that can generate identical MEG/EEG

responses. Therefore, appropriate constraints are needed to render

the solution unique.

MEG/EEG source localization methods can be divided into

two classes: dipole source models and distributed source models

[2,3,4]. Specifically, the most traditional inverse modeling

approach in MEG/EEG is to employ the parametric dipole

model. In this method, the data are assumed to be generated by a

small number of current dipoles whose optimal location,

orientation, and amplitude parameters are found with a least-

squares fit, see, e.g., [1,5,6,7]. In another class of dipole based

methods [8,9,10,11], sources are found by using one probe dipole

source to scan one by one all the possible source positions within

the whole brain volume. Plotting the goodness-of-fit at each

position will yield (pseudo)images, from which the source

localization information is derived. ‘‘These ‘‘dipole scanning’’

methods avoids nonlinear global optimization and have therefore

attracted increasing attention.

In the present study, we use another division of methods, based

on whether a method is adaptive or non-adaptive with respect to

the measured data. We thus arrive at a division between model-

based and data-driven approaches. The model-based approaches

include the minimum-norm estimate MNE [12], noise-normalized

MNE [13], FOCUSS [14], dipole LORETA [15], charge

LORETA [16], CMOSS [17], SCEA [18], LIPSS [19], 3SCO

[20] and NESOI [21]. These methods can also be viewed as non-

adaptive spatial filters, since their filter weights are independent of

the measurements [22]. In many of these approaches, the noise

covariance computed from the measurements is used to regularize

the solution or assess statistical significance but this noise estimate

is based on data acquired outside the time ranges where the signals

of interest are present.

Data-driven approaches belong to the ‘‘scanning dipole’’ class of

methods. They can be further divided into subspace-based and

adaptive spatial filters. The subspace-based methods [23] include

classical MUSIC (MUltiple SIgnal Classification) [24], R-MUSIC

[10], RAP-MUSIC [11] and INN, the method introduced in the

present paper. RAP-MUSIC is a further development of R-

MUSIC while both are variants of classical MUSIC. The adaptive

spatial filters, often called beamformers, come in several variants.

The most widely used one is the linearly-constrained minimum

variance (LCMV) beamformer, which was first employed in radar

and sonar signal processing [25] and later adopted to MEG/EEG

analysis [8,9].

Compared with model-based methods, adaptive techniques

critically depend on the second-order statistics of the measure-

ments to characterize the spatio-temporal features of the data.

Comparisons of various adaptive and non-adaptive methods have

shown that adaptive spatial filters can achieve much higher spatial

resolution than non-adaptive versions [22], and adaptive spatial

filters and MUSIC have higher specificity than non-adaptive

spatial filters [26].

However, MUSIC-based methods and beamformers perform

poorly if there is a high temporal correlation between sources. In

particular, it has been shown that bilateral transient [27,28] or
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steady-state [29,30] auditory evoked responses originating from

the temporal lobes are difficult to localize with conventional

beamformers. Several methods have been developed to address

this problem. One possibility is to use a unilateral subset of MEG

sensors for one hemisphere at a time [31]. However, this strategy

may result in localization errors due to incomplete removal of the

signals originating from the sources in the other hemisphere [29]

and is limited to situations where the approximate source locations

are known a priori. The situation can be improved by using a

strategy in which coherently interfering sources are almost

completely suppressed by adding null constraints to the lead field

matrix of the suppression source region when deriving the

beamformer weights [27]. However, this method still depends on

a priori information about the approximate locations of the

coherent interfering sources, which prohibits its use as a general

solution. A few other methods have achieved limited success but

are still suboptimal [28,30,32,33].

The present study proposes the INvariance of Noise (INN) space

for MEG source estimation. INN is based on the fact that

modulations of source strengths across the evoked response latency

change the energy in signal subspace but leave the noise subspace

invariant. This method was introduced for direction-of-arrival

estimation for radar and sonar applications [34]; it has not been

applied to source analysis of MEG signals before. Here we

reformulate the previously presented one-dimensional INN for

radar problem to deal with the three-dimensional MEG source

localization problem and demonstrate that INN is suitable for

MEG source localization. The performance of INN is compared

with MUSIC, RAP-MUSIC, and beamformers using both

simulations and real MEG data. In this study, INN was applied

to MEG data only, although in theory it should be applicable to

EEG data as well.

Methods and Theory

1. Subspace-based Methods: MUSIC and RAP-MUSIC
The MEG data Y(t) generated by current dipole sources can be

modeled as

Y(t)~AX(t)zn(t), ð1Þ

where A is the gain matrix relating the measured signals to the

dipole amplitudes, i.e., the solution of the forward problem, rows

of X(t) are the time courses of the current dipoles, and n(t) is

additive noise.

Assuming that n(t) is uncorrelated across the channels, that the

variance of the noise on each channel is s2, and that the signal and

noise are uncorrelated, the correlation matrix of the MEG data is

R~vY(t)Y(t)T
w~APATzs2I ð2Þ

where P~SX(t)X(t)TT:
Using the singular value decomposition (SVD) of R, we obtain

the ordered singular values fli; i~1,2,:::,k,li§liz1g and corre-

sponding singular vectors fei; i~1,2,:::,kg, where k is the number

of MEG sensors. Assuming that the number of dipoles p is known a

priori, we can designate the signal and noise subspaces as

Es~½e1,e2,:::,ep� and En~½epz1,epz2,:::,ek�, respectively.

Subspace correlation is defined as the set of the the cosines of

the principal angles that measure the similarity between the

subspaces spanned by the columns of two matrices. The elements

in the subspace correlation are ranked in decreasing order, and we

denote the largest subspace correlation (i.e., the cosine of the

smallest principal angle) of two matrices B and C as

subcorr(B,C)1 ð3Þ

If subcorr(B,C)1~1, then the two subspaces have at least a one-

dimensional subspace in common. Conversely, if

subcorr(B,C)1~0, then the two subspaces are orthogonal. The

computational methods to obtain subcorr(B,C)1 have been

described elsewhere [10,35]. To identify the source locations,

classical MUSIC employs the cost function

J(h)~subcorr(a(h),Es)
2
1, ð4Þ

where a(h) is the signal vector produced by a dipole at location h.

In practice, the cost function is computed as

J(h)~lmaxfUT
L EsE

T
s ULg ð5Þ

where UL contains the left eigenvectors of a(h), and lmax is the

maximum eigenvalue of the enclosed expression. Locations of the

sources are found as the p maxima of this cost function across

dipole locations h. One difficulty of this approach is that one must

search for multiple local maxima of J in a 3D brain volume space

and such nonlinear searches may miss shallow or adjacent peaks

[11].

In RAP-MUSIC, this problem is circumvented by employing a

recursive strategy. The first source is found as the global maximum

of J(h). After the first source with parameters h1 is found, a

projection operator

P\
h1

~I{a(h1)(a(h1)T a(h1)){1a(h1)T ð6Þ

is formed and the next source is found as

h2~ arg max
h

(subcorr(P\
h1

a(h),P\
h1

Es)
2
1) ð7Þ

Next, a projection operator including the signal patterns from the

two sources already found is applied to find the third source. This

process is repeated until all p sources are found.

2. Adaptive Spatial Filters
Beamformers can be viewed as adaptive spatial filters that pass

the signal from desirable locations while blocking signals from

other locations. The source activity s(h,t) at location h and time t

is estimated by a simple linear operation,

s(h,t)~W(h)T Y(t) ð8Þ

where W(h) is a column vector consisting of a set of spatial filter

weights. In an LCMV beamformer W(h) minimizes the variance

of the filter output:

min
w

W(h)T RW(h)

subjecttoW(h)T a(h)~1:
ð9Þ

The solution of this constrained optimization problem is [8,36].

MEG Source Localization
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W(h)~R{1a(h)½a(h)T R{1a(h)�{1 ð10Þ

Mapping the filter output as a function of location generates a

functional (pseudo) image. In this study, we use a vector LCMV

beamformer described in previous references [27,36].

2. INN
Theoretically, if we increase the source strengths, the variance

of the signal subspace will increase whereas distribution of the

noise subspace remains the same. In other words, the noise

subspace is invariant with respect to the strengths of the sources.

INN is designed according to this property.

Let us define a new matrix Dh as

Dh~Rzha hð Þa hð ÞT ð11Þ

where R is the data correlation matrix of Eq. (2), a(h) is the field

distribution generated by a unit source at location h, and h is a

positive constant scalar. To balance the order of magnitude

between R and a hð Þa hð ÞT , we further rewrite Eq. (11) as,

Dh~Rzh
trace(R)

trace(a(h)a(h)T )
a hð Þa hð ÞT : ð12Þ

SVD of Dh generates the ordered singular values

fmh
i ,i~1,:::,k,mh

i §mh
iz1g and the corresponding singular vectors

Vh~½Yh
1,Yh

2,:::,Yh
k�. Eq. (12) is the formula that we adopted in

the following computation. As h is a positive scalar, it can be

proved that [37],

mh
i §li, i~1,:::,k ð13Þ

Importantly, when h matches one of the source locations, the last

(k{p) eigenvalues of Dh and R would be the same, i.e.,

mh
i ~li~s2, i~pz1,:::,k ð14Þ

In other words, the energy of the noise subspace obtained from Dh

is the same as that obtained from R.

Note that the property stated in Eq. (14) does not depend on the

value of scalar h explicitly and will hold for any positive h. In the

simulation section we will study how to select a proper value for h.

In numerical calculations, because R is obtained from a finite

number of time instants, the variance of the original and new noise

subspaces may not be exactly the same and Eq. (14) does not

exactly hold. Thus, in practice, we search the sources in a manner

where mh
i in Eq. (13) not exactly but as closely as possible equals to

li. Therefore, an appropriate cost function to consider is:

J(h)~
1

PK
i~pz1

(mh
i {li)

: ð15Þ

The values of the cost function J(h) can be used as the imaging

index at each grid points within the whole brain volume to

generate pseudo-images. The positions where peaks are found are

regarded as the locations of the sources.

In summary, the INN algorithm consists of the following steps:

1. Compute Rfrom the MEG data.

2. Compute the SVD of R.

3. Choose a positive h and compute Dhat each possible source

location h (refer to the following section 3.5).

4. Compute J(h).

5. Repeat steps 3 and 4 for all putative source locations.

6. The positions of sources are those where J(h) has a local

maximum.

Compared to MUSIC, one important advantage of INN is that

it is insensitive to strength differences and correlation between

sources, even for closely spaced sources. This property is especially

important when a weak source is present in the vicinity of a strong

one.

Figure 1 demonstrates the principle of INN in MEG source

localization. The definition of the coordinate system used in all

simulations is shown in Figure 1a. One horizontal slice through the

MEG head model (see simulations section for details) containing

930 grid points, has two simulated sources. Figure 1b shows the log

scale distribution of the eigenvalue difference between the new

created matrix Dh and the original correlation matrix R for 930

possible source locations. The two red dashed lines indicate the

distribution of eigenvalues when the source location h matches the

location of the simulated sources, while the overlapping 928 black

lines show the distribution of the eigenvalues at the remaining 928

locations. In the noise subspace (eigenvalue indices 4…272), the

lines clearly fall into two separate groups, which shows that INN

can identify the correct source locations. Figure 1c shows the cost

function at all 930 grid points on the slice (z = 40 mm) when the

dimension of the signal subspace p = 4. There are two clear peaks

at the correct source locations with additional but weaker peaks in

neighboring locations. Figure 1d shows the imaging results on the

slice z = 40 mm.

Simulations

1. Model Configuration and Parameter Definition
In the simulations, the spherically symmetric MEG forward

model [38] was employed. The source space had a spherical shape

(radius = 90 mm) with a 5-mm spacing between sources. The

simulated sensor array comprised 272 magnetometers arranged in

a hemispheric array on a sphere with 100 mm radius. The average

distance between sensors was 22 mm. The SNR was defined as the

ratio of the Frobenius norm of the data matrix to that of the noise

matrix. We used correlation coefficient (r2) to measure the degree

of linear correlation between two source waveforms.

2. Resolvability of Closely Spaced Sources
We first tested how correlation and SNR modulate localization

accuracy of different methods for closely spaced sources. Two

equally strong tangential sources were simulated: dipole 1 was

located at (25, 45, 40) mm with orientation (20.5797, 20.1380,

20.6621) and dipole 2 was at (5, 45, 40) mm with orientation

(20.9341, 0.1489, 20.3246). The distance of the sources was thus

10 mm. The waveforms of the two sources were 10 Hz sine

functions with different phase and 500 ms duration. The sampling

frequency was 1000 Hz. The correlation coefficient (r2) between

the two sources was set to 0.99, 0.7, 0.5, or 0 by adjusting the

phase difference between the waveforms. Uncorrelated white

Gaussian noise was added to all data points scaled such that SNR

MEG Source Localization
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was 1.5 or 3. Simulated evoked MEG responses were generated

and source analysis conducted separately for each combination of

r2 and SNR.

Figure 2 shows localization results of the four methods with

varying degree of correlation between the sources and with

different SNRs. In the SNR = 1.5 case (upper panel), BEAM-

FORMER and MUSIC performed poorly for all degrees of

correlation. Both of them have difficulty separating the correlated

closely spaced sources. RAP-MUSIC also performed poorly; since

the first source could not be identified, the second recursion of

RAP-MUSIC was incorrect. For moderately correlated (r2 = 0.5

and r2 = 0.7) sources, INN (h = 1) could resolve them accurately.

However, for the highest correlation (r2 = 0.99), INN, similar to the

other methods, had difficulty in resolving the sources, placing a

false combined source between the true locations. For uncorrelat-

ed sources (not shown), MUSIC and BEAMFORMER resolved

the two sources successfully. It should be noted that the SNR = 1.5

is lower than that of typical evoked responses consisting of 100–

200 trials resulting in SNR = 5…10. The lower panel of Figure 2

shows the localization results for SNR = 3. As r2 decreases, INN

resolved the two sources accurately with less spatial blurring.

However, BEAMFORMER could not resolve the two sources

except for r2 = 0 (not shown). As r2 was decreased to 0.7, MUSIC

started to resolve the two sources, with increasingly clear

separation with smaller r2 values. RAP-MUSIC (the 2nd recursion)

improved in a similar fashion as MUSIC since its performance

depended on the MUSIC results in the first iteration.

3. Symmetric Sources in the Two Hemispheres
Two spatially separated but correlated sources were placed at

(25, 45, 40) mm and (25, 245, 40) mm to simulate bilaterally

symmetrical sources (same z-plane; 90 mm apart) corresponding

to activity in the left and right auditory cortices. SNR was set to

0.5, 0.8, 1, or 2, and r2 was adjusted to 0.5, 0.9, or 0.99 by varying

the relative phases of the waveforms.

Figure 1. A simulation illustrating the principles of INN. (a) Coordinate system used in the simulations. Two current dipole sources at (220, 45,
40) mm and (20, 45, 40) mm were simulated in a horizontal slice through the brain (z = 40 mm, 930 voxels, MEG array with 272 sensors). The
orientation of the two sources is (20.6377, 0.3337, 20.6943) and (20.3876, 1.3302, 0.2834). (b) The curves depict the log scale distribution of the
normalized eigenvalue difference of the signal subspace and the noise subspace between the new constructed matrix Dh and the original data
correlation matrix R (Eqs. 2 and 11). The two largely overlapping red lines show the distribution for the test source exactly at the two true source
locations. The black lines show the distribution at the remaining 928 locations. The fact that the red and black lines are clearly separate when the
eigenvalue index is equal to or larger than 4 suggests that INN is able to localize sources. (c) The normalized cost function distribution when the
dimension of the signal subspace is 4. At the two simulated source locations (voxel indices 353 and 597) there are two clear peaks, with additional but
clearly weaker peaks in neighboring locations. (d) An INN imaging result on the slice at z = 40 mm. The white crosses show the true source locations.
doi:10.1371/journal.pone.0058408.g001
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Figure 3 shows localization results for the four methods in a

subset of the SNR and r2 values. For INN, we selected h = 1. When

r2 was fixed at 0.99, with increasing SNR the performance of all

four methods improve gradually (columns of Figure 3). As

expected, BEAMFORMER and MUSIC results were similar.

For BEAMFORMER, MUSIC and RAP-MUSIC, a spurious

additional source disappeared at SNR $2. When r2 was reduced

from 0.99 to 0.9, all four methods identified both sources, although

one of the peaks in the cost function was clearly shallower than the

other in BEAMFORMER and MUSIC (rightmost column). In

other cases (r2#0.9 and SNR $0.5), the localization performance

(not shown) was similar to that shown in the last column of

Figure 3. In all cases, based on visual inspection INN had the best

performance.

4. Sources with Large Strength Differences
This simulation was designed to study the performance of the

four methods for two closely separated sources with a large

strength difference. The source locations and waveforms were

identical to those used in Section 3.2, except that the strength of

one source was five times larger than the other. At SNR = 3, the

phase difference between the two sources was adjusted for

obtaining correlations of r2 = 0.3, 0.8, 0.95, or 0.99.

Figure 4 shows the corresponding localization results. Again, for

INN, h = 1. For all cases, BEAMFORMER and MUSIC only

identified the stronger source. With a higher correlation, the

pseudo-images became more and more spatially blurred. In almost

all cases, RAP-MUSIC identified the weaker source with spatial

blurring, while the stronger source was suppressed. RAP-MUSIC

results show a long clear ditch from top to bottom, which reflect

suppression of the stronger source found in the first recursion.

With r2 = 0.99, RAP-MUSIC failed since the maximum of

MUSIC was located halfway between the two sources. INN was

able to correctly locate both sources at low r2 values, but with a

higher correlation, the two sources became more blurred and

finally fused together at r2 = 0.99. Note that the left (weaker) source

appeared more diffuse than the right (stronger), especially when

the two sources were highly correlated.

5. Selection of the h Parameter in INN
This simulation was conducted to investigate the effect of

parameter h on INN source localization. Simulation parameters

Figure 2. Comparison of BEAMFORMER, MUSIC, RAP-MUSIC (2nd recursion) and INN with two closely spaced (10 mm apart)
simulated sources at different levels of correlation (r2 = 0.5, 0.7, or 0.99). The true source locations are (25, 45, 40) mm and (5, 45, 40) mm.
SNR is 1.5 (upper panel) or 3 (lower panel). The white crosshairs indicate the true source locations and the blue circles the local maxima found by the
different methods. The left bottom corner shows the x- and y-axis scales.
doi:10.1371/journal.pone.0058408.g002
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were the same as in Section 3.2. At each combination of SNR and

r2, h was parametrically varied to 0.001, 0.01, 0.1, 1, 10, 100,

1000, 105, 1010, or 1015. A simulated evoked MEG response was

generated separately for each combination of SNR, r2, and h. SNR

was set to 3. The two sources were correlated with r2 = 0.30 or

r2 = 0.90.

Figure 5 shows the INN results for r2 = 0.30 (upper panel) and

r2 = 0.90 (lower panel) at increasing h values. With both very small

Figure 3. Comparison of BEAMFORMER, MUSIC, RAP-MUSIC (2nd recursion) and INN with two widely (90 mm) separated simulated
sources at multiple SNRs and correlation coefficients. The true source locations are (25, 45, 40) mm and (25, 245, 40) mm. In the first four
columns SNR varies at 0.5–2 and r2 = 0.99; in the rightmost column SNR is 0.5 and r2 = 0.9. The white crosshairs indicate the true source locations and
the blue circles the local maxima. The left bottom corner shows the x- and y-axis scales.
doi:10.1371/journal.pone.0058408.g003

MEG Source Localization
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(#0.1) and very large (1015) h values, INN had difficulty in

identifying both sources. However, at all intermediate h values,

INN was able to resolve both sources accurately. We also explored

different values of SNR and found that the results were similar to

the SNR = 3 case. That is, changing SNR had no influence on the

rules of selecting h.

6. Effect of the Selected Noise Subspace Dimension
Since we do not know dimensions of the noise and signal

subspaces when analyzing experimental MEG data, we performed

a simulation to examine the effect of the selected DIMension of the

noise subspace (DIM). The simulation parameters were the same

as in Section 3.2. SNR was set to 2 or 3. Two sources were

correlated at r2 = 0.90, 0.50, or 0.30. For each pair of SNR and r2,

DIM was set to 271, 270, 269, 268, 267, 262, 232, 202, 172, 142,

112, 82, 52, or 22.

Figure 6 shows the localization results using INN (h = 1) for

different DIM, SNR, and r2 values. When DIM = 271, the noise

space was overestimated, and consequently INN failed to identify

both sources. At DIM = 270, the dimension of the signal subspace

was 2 and INN again failed. When DIM = 269 (the dimension of

signal subspace was 3), INN failed by placing a false diffused

source close to the center between the two real sources. This can

be explained by regarding the third left eigenvector as the

transitional subspace and signal energy leaking into the noise

subspace. In the case of two sources, the signal subspace should

only include two left eigenvectors and the third left eigenvector

should belong to noise subspace. In practice, the third eigenvector

can be regarded as a transitional vector that may belong to either

signal subspace (weak signal) or noise subspace (strong noise).

When 52ƒDIMƒ268, INN was able to identify the two sources.

Thus, in the case of two sources, a wide range of DIM values gave

reasonable results. With DIM #22, INN barely identified the two

sources (results were very similar to those obtained when

DIM = 269, not shown). In analyzing real data, the number of

actual sources is unknown but typically small, suggesting that a

relatively conservative DIM value should be adopted.

7. Performance Comparisons between the Methods
This simulation was conducted to compare the performance of

INN, BEAMFORMER, MUSIC, and RAP-MUSIC. Two

simulated sources were placed at (0, 260, 40) mm (‘‘S1’’) and

(0, 250, 40) mm (‘‘S2’’). S1 was kept fixed whereas the y

coordinate value of S2 was varied at y = 250, 245, 240, 230,

220, or 210 mm corresponding to an inter-source distance of 10,

15, 20, 30, 40, or 50 mm. We employed r2 = 0.99, 0.7, or 0.3. For

each r2 and distance, we used SNR = 1, 1.5, 2, 2.5, 3, 4, and 5. For

each combination of r2, SNR, and inter-source distance, 100 trials

were generated independently. These settings not only investigated

the effect of different inter-source distance, r2, and SNR, but also

how well the method performed in the case of a superficial and a

deep source (as S2 moved deeper with a larger y value). We used

the mean localization bias (MLB) to quantify the localization

accuracy, calculated as the average distance between the true and

the estimated source locations over all the trials in the simulation.

Figure 7 shows the MLB of the two simulated sources, S1 and

S2, as a function of SNR, inter-source distance and r2 using the

four methods. Figure 7a shows the results obtained for r2 = 0.99,

Figure 7b for r2 = 0.7, and Figure 7c for r2 = 0.3 at different SNRs

and inter-source distance.

Figure 4. Comparison of BEAMFORMER, MUSIC, RAP-MUSIC (2nd recursion) and INN with two simulated sources with a large
strength difference (the posterior source is 5 times weaker than the anterior one). The true source locations and the xy-scales are the
same as in Fig. 2 (10 mm distance between the sources). SNR is 3. The two sources were correlated with a correlation coefficient of 0.3, 0.8, 0.95 or
0.99. The black crosshairs indicate the true source locations and the blue circles the local maxima.
doi:10.1371/journal.pone.0058408.g004
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As expected, all four methods had a smaller MLB for the

superficial (S1) source and a larger MLB for the deep (S2) source.

However, the localization error for these two sources was smaller

for INN (h = 1) (red solid line for source S2 and blue solid line for

source S1, data points indicated by ‘x’) than for BEAMFORMER

(dotted lines, red for S1 and blue for S2, data points indicated by

boxes) and MUSIC (dotted lines, red for S1 and blue for S2, data

points indicated by stars). INN was the least sensitive to source

depth. However, BEAMFORMER or MUSIC identified the

superficial source better than the deep source, in the sense that the

superficial source was identified with a smaller MLB and a much

lower SNR (Figure 7b, c).

In the case of r2 = 0.99 (Figure 7a), INN could identify the two

sources under proper SNR and inter-source distance, whereas

BEAMFORMER and MUSIC failed at almost all cases (except for

distance = 60, where the superficial source S1 was identified

accurately by BEAMFORMER and MUSIC). INN was not as

sensitive to r2, intersource distance, and SNR, as BEAMFOR-

MER and MUSIC.

The localization performance of RAP-MUSIC (2nd recursion)

depended on the accuracy of identifying the first source by

MUSIC. The superficial source S1 was easier to identify and

therefore, the cost function of MUSIC reached the global

maximum at S1. RAP-MUSIC (2nd recursion) took S1 as the

source already identified and localized source S2. As expected,

RAP-MUSIC localized S2 with a smaller MLB than MUSIC.

Real Auditory Evoked MEG Responses
Auditory evoked responses were acquired from eight healthy

adult subjects with informed consent. The presented data are a

subset of those previously reported in [39] where the MEG source

localizations were computed using noise-normalized MNE and

confirmed with fMRI in the same subjects. The stimuli were

300 ms white noise bursts and checkerboards with 300 ms

duration. They were presented in a sequence consisting of

auditory only (A), visual only (V), or audiovisual (simultaneous

auditory and visual, AV) presentation. Stimulus events had a mean

interstimulus interval of 6.1 seconds, and A/V/AV events

occurred in a pseudorandom order. In the present study, we only

used the responses to the auditory only (A) stimuli. Simple noise

burst stimuli (such as those employed here) are known to mainly

activate the supratemporal auditory cortices bilaterally [40].

Whole-head 306-channel MEG was recorded with a VectorView

neuromagnetometer (Elekta Neuromag, Finland) between 0.01–

330 Hz and sampled at 1 kHz. Responses from 80 trials were

averaged with respect to the stimulus onset. Epochs containing

electro-oculogram (EOG) signals exceeding 150 mV peak-to-peak

amplitude were automatically discarded from the averages.

A three-dimensional realistically shaped volume source space

with 7 mm spacing was generated using our MNE toolbox

(http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/

sofMNE.php). Inner skull surface was extracted from a T1-

weighted MRI of each subject segmented with FreeSurfer (http://

surfer.nmr.mgh.harvard.edu), and used as the boundary surface

Figure 5. INN images for two simulated closely spaced sources as a function of parameter h. The original source locations and the xy-
plane axis scales are the same as in Figure 2 (10 mm apart). SNR was set to 3. The two sources were correlated with a correlation coefficient of 0.90
(upper panel) or 0.30 (lower panel). The h value used in each profile is shown in the upper right corner of each panel.
doi:10.1371/journal.pone.0058408.g005
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for the source space. The source localization was done on the

whole brain volume and the 7 mm spacing denotes the distance

between grid points of a regular 3D grid defined in the brain

volume. The time window for source analysis was from 0 ms to

300 ms, which covered the main response components. Source

analysis was done directly on the average response.

INN identified the left and right auditory cortices successfully in

all 8 subjects, whereas MUSIC and BEAMFORMER failed in

most occasions. Based on the type of failure, i.e., the number and

location of the estimated sources obtained by MUSIC and

BEAMFORMER, the imaging results were divided into 3 Classes;

Figures 8, 9, 10 show the corresponding results from one

representative subject in each Class. For Class 1 (4 subjects,

Figure 8), MUSIC and BEAMFORMER misplaced a single

spurious source at midline. For Class 2 (3 subjects, Figure 9),

MUSIC and BEAMFORMER only identified the left source and

missed the right one. In Class 3 (1 subject, Figure 10), MUSIC and

BEAMFORMER detected 3 sources, one source at the mid-

sagittal plane and the other 2 sources at right and left temporal

lobes (Top and middle rows in Figure 10).

Discussion

This study introduces a novel method, INN, for MEG source

localization. The basic idea is that for multidimensional spatio-

temporal signals, the noise remains unchanged when the source

amplitudes change. For each putative source location, INN adds a

rank-one correlation matrix (obtained from the field distribution of

a dipolar source) to the correlation matrix R of the data. At a true

source location, the INN cost function, Eq.(15), will, in theory,

diverge. In all other locations, the structure of signal and noise

subspaces (including the spatial distribution of signal strength) will

change and, therefore, the cost function will attain a smaller value.

Hence, when scanning through the source space, a peak suggests a

true source location.

1. INN is Effective for Highly Correlated Sources
Highly correlated sources are frequently encountered in MEG/

EEG studies. High inter-source correlation can seriously degrade

the performance of localization accuracy. Let us consider an

extreme case where r2 = 1, that is s1(t)~gs2(t). Thus, the sum of

the field produced by the two sources will be Y(t)~(a1gza2)s1(t)
(Coherent Source Model 1, CSM1). The source correlation matrix

will be proportional to
1 g

g g2

� �
, which has only rank = 1. In this

case, methods based on the second order statistics such as

BEAMFORMER and MUSIC usually find a spurious source

whose signal pattern is close to (a1gza2) instead of a1 or a2. In

reality, such extreme conditions are rare [30]. Therefore,

depending on the source-to-source correlations, source localization

results vary between complete failure identifying a source in an

incorrect location and successful identification of the true sources.

In order to explain Class 3 failure of MUSIC and BEAM-

FORMER for the real MEG data, we can model the coherent

source problem in an alternative way. Assuming two sources are

highly but not fully correlated, they should have a common

component sc(t). For source 1, the waveform will be the

combination of the common component sc(t) and a small

independent component si
1(t), that is, s1(t)~sc(t)zsi

1(t): Similar-

ly, s2(t)~sc(t)zsi
2(t): The MEG recordings will be

Y(t)~(a1za2)scza1si
1za2si

2 (Coherent Source Model 2,

CSM2). Here, the waveforms sc, s1, and s2 are not correlated

and thus, the problem of coherent source localization is

transformed into a problem involving three uncorrelated sources.

Under ideal conditions, methods based on the second order

statistics of the measurements Y(t) usually should be able to detect

Figure 6. INN images for two simulated sources as a function of the dimensions of the selected noise subspace (DIM), SNR, and
correlation coefficient r2. For each fixed SNR and r2, DIM values were between 271 (leftmost column) and 22 (rightmost column). The true source
locations and the xy-plane axis scales are the same as in Figure 2 (10 mm apart). Values of SNR and r2 are shown to the right.
doi:10.1371/journal.pone.0058408.g006
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three sources, whose signal patterns are closest to a1za2, a1, and

a2 (where the signal pattern corresponding to a1za2 creates a

spurious source between a1, and a2). When processing real data,

due to the variation of SNR, model parameters, source

configuration, and possible other factors, MUSIC and BEAM-

FORMER may only detect the spurious source and miss the two

true sources. In other cases, with appropriate parameters (e.g., the

remaining source component si
1 or si

2 is strong enough, and SNR

is proper), the two real sources may appear with smaller ‘‘power’’.

INN handles correlated sources in a novel way. MUSIC or

RAP-MUSIC identify sources by calculating the minimum/

maximum of subspace correlation of lead field vectors at each

possible source locations and noise/signal subspace of data

correlation matrix. Different from MUSIC and RAP-MUSIC,

INN identifies sources by comparing the sum of eigenvalue

differences in noise subspace between modified matrix and the

original one at each potential source location (for a detailed

theoretical analysis about the difference between MUSIC and

INN, please refer to the Supporting Information S1). In short,

INN only utilizes the noise related eigenvalues to accomplish

source localization. Therefore, the correlation between sources

theoretically hardly influences the resolution characteristics of

INN. Thus, as long as the sources are not fully correlated (r2,1),

INN can identify them under reasonable conditions, i.e., sufficient

SNR and inter-source distance.

As shown above, MUSIC generally places a false source

between two closely spaced and highly correlated sources. RAP-

MUSIC depends on the accuracy of MUSIC in finding the first

maximum, which is then suppressed in the subsequent steps of

RAP-MUSIC. Therefore, RAP-MUSIC fails if MUSIC cannot

identify the location of the first source correctly. INN has

considerable advantages over both MUSIC and RAP-MUSIC.

Even when the sources are very close to each other, highly

correlated, and noise level is high, INN still identifies the two

sources correctly (see Figure 2). Moreover, as shown in Figure 3,

for highly correlated but spatially distant sources, the performance

of the other three methods is worse than that of INN.

2. INN is Effective for Sources of Different Strengths
Our simulations also suggest that INN outperforms MUSIC

when there is a large strength difference between two sources. This

follows from that INN only considers the variation of the noise

variance distribution. In theory, the variation of the strength ratio

between two sources only influences the variance distribution of

the signal subspace and hardly influences that of the noise space.

In cases of two sources with large relative strength difference,

MUSIC may only identify the stronger source and miss the weaker

one. RAP-MUSIC can handle this case readily by suppressing the

source components already found. When the stronger source

(found in the first MUSIC recursion) is suppressed, RAP-MUSIC

will typically find the weak one in the next recursion. In this case

INN and RAP-MUSIC perform equally well. However, as shown

in Figure 7, where RAP-MUSIC fails for very highly correlated

sources, INN still works.

Although, under suitable SNR, INN can localize sources with

large differences in strength, it cannot directly recover source

amplitudes or relative strengths between sources (the noise space is

independent of source strengths). However, after the source

locations have been identified with INN, the corresponding time

courses and amplitudes can be readily extracted with other

methods (e.g., generalized least squares).

3. INN is Robust for a Wide Range of h and DIM Values
INN requires choosing two parameters h (Eq. 10) and the noise

subspace dimension (DIM). Our simulations suggest that the

proper values for h will maximize INN performance, and that INN

performance is stable across a wide range of h values. Theoret-

ically, any h.0 is sufficient for source estimation [34]. The role of

h is to balance the order of magnitude between Dh and R. One

possible option of selecting h is to set h = 1, in which case, h

balances the order of magnitude of first term h and the second

factor of last term hof the right side in Equation (12). In our

simulations any h value between 1 and 105 gave highly similar

results. For simplicity and consistency, in the present study we used

h = 1 in all simulations and analysis of the real data.

DIM should be selected in a range 0vDIMƒk{(pz1) (k
denotes the number of sensors), assuming the SVD of data

Figure 7. Mean Localization Bias (MLB) of two simulated sources as a function of intersource correlation r2, intersource distance,
and SNR, separately for MUSIC, RAP-MUSIC, BEAMFORMER, and INN. r2 is fixed at 0.99 (a), 0.7 (b), and r2 = 0.3 (c). In each subplot, for
each r2, SNR changes in the range [1,1.5,2,2.5,3,4,5] and distance in the range [10,15,20,30,40,50,60]. The points with MLB larger than the half distance
between the two sources are not shown.
doi:10.1371/journal.pone.0058408.g007

Figure 8. Analysis of Class 1 real auditory evoked responses using the different methods. The red points indicate the peaks of the cost
functions. INN identified sources at the left and right supratemporal cortices, in agreement with locations of the auditory cortices. The threshold was
set to 80% of peak of cost function within the corresponding source region. MUSIC, BEAMFORMER and RAP-MUSIC (2nd recursion) found a single
peak located at midline.
doi:10.1371/journal.pone.0058408.g008
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correlation matrix clearly shows the signal subspace to be rank p.

Like MUSIC or RAP-MUSIC [11], INN is also insensitive to

slight overestimation of the signal subspace. It is worthwhile to

note that INN fails when DIM is equal to (k{p). The (p+1)th

eigenvector is a transitional one. Therefore, including the (p+1)th

eigenvector in noise subspace will deteriorate localization accura-

cy. In a suitable range, decreasing DIM will slightly increase the

performance of INN by showing sharper peaks, since, as DIM

descreases, the signal components less and less leak into the noise

subspace and thus, the noise subspace can more and more

sufficiently represents the noise components. The key idea of INN

is to utilize some property of the noise subspace and therefore,

more sufficiently representing noise components results in better

localization performance for INN. Of course, DIM should not be

too small, as this would result in failure due to poor representation

of the noise subspace. Based on our simulations, it is better to

underestimate than overestimate DIM. If the number of the

sources is p and the number of sensors is k, DIM should be slightly

less than or equal to k{(pz1).

In the present study, we mainly describe the case of two sources.

For more than two sources, the selection of DIM in theory follows

similar reasoning as for two sources since, generally speaking, each

source is represented by one eigen component and increasing the

number of sources will not change the criteria to select the noise

space. However, in practice (with real MEG data) the number of

sources is often unknown. If the estimated p is slightly larger than

the real value, based on the above discussion, the performance of

INN should not degrade. If the estimated p is smaller than the

number of true sources, INN accuracy may decrease because the

selected noise subspace might cover part of the signal subspace.

Hence, if the number of sources is uncertain, it may be better to

slightly overestimate p (which decreases DIM).

4. INN Performance with Real Data
When applied to real auditory evoked MEG responses, INN

clearly outperformed the other scanning methods we evaluated, as

it correctly identified the supratemporal primary auditory cortices

in both hemispheres in all subjects. In the remaining part of this

paragraph, we will analyze why the other methods failed. For

Class 1 errors, the correlation between sources was large and SNR

was low enough to almost perfectly fit CSM1. Consequently,

MUSIC and BEAMFORMER only placed a combined source in

the midline with its field pattern best matching that from the two

bilateral sources ((a1gza2) where typically g&1), which is similar

to our simulations in Figure 3 (see also [27]). Since the field pattern

did not match either a1 or a2, the ‘‘power’’ at the true source

location was too small to be identified as a source (see also Eq. 11

in [41] for theoretical analysis, and real MEG data in [27,42]). For

Class 2 errors (if gww1or gvv1 in CSM1), the combination of

field patterns (a1gza2) will be approximately proportional to a1

or a2 so that only one source was detected. Correspondingly, in

Class 2 errors, MUSIC and BEAMFORMER only identified the

left source and missed the right one. This was caused by the MEG

signals over the left hemisphere being stronger than over the right

hemisphere, implying that the underlying source was stronger or

more superficial (see also [28]). Class 3 results can be explained

using CSM2. In this case, MUSIC identified bilateral temporal

sources, but along with an additional spurious source. Since the

strongest MUSIC source was in the right hemisphere, RAP-

MUSIC (2nd recursion, after suppressing the contralateral source

identified by MUSIC) identified the left hemisphere source as well,

but the maximal activation was deeper than the true source. Since

localization of the right hemisphere source found by MUSIC was

biased, the left hemisphere source identified by RAP-MUSIC was

also biased. It would be possible to improve this result by

suppressing a larger region surrounding the identified right

hemisphere source – this ensures that the first source is more

efficiently removed even if there is a localization bias, and hence

reduces problems related to inter-source correlation [42].

BEAMFORMER also identified sources in the vicinity of auditory

cortices in both hemispheres and a spurious source in the midline.

Based on the similar images produced in the simulated case (e.g.,

the 3rd column in Figure 3), the mid-sagittal source appears to be a

spurious source resulting from the correlated bilateral auditory

sources. A previous study found similar problems in most subjects

[28]. In addition, due to the high inter-source correlation, both

sources (one in each hemisphere) were dislocated clearly too deep

in the white matter (while it is well-known that MEG/EEG signals

are generated in grey matter). Although the conventional

BEAMFORMER encountered difficulties in such cases, some

newer variants of spatial filters might handle these situations better

[27,30,42].

5. Selection of the Cost Function J(h)
In the present study, we used the cost function specified in Eq.

(15). It would be possible to modify the cost function by squaring

the denominators, or multiplying them by a factor. Another option

would be to substract from J(h) (or use it as a threshold) the

Figure 9. Localization of Class 2 real auditory evoked responses using the different methods. The red points indicate the peaks of the
cost functions. The threshold was set to 80% of peak of the cost function within the corresponding source region. To show the underlying anatomical
structure, the transparency of the overlaid images was set to 50%. INN identified sources at the left and right supratemporal auditory cortices. MUSIC
and BEAMFORMER only detected a source in the left auditory cortex. RAP-MUSIC (2nd recursion) misplaced a false source at midline.
doi:10.1371/journal.pone.0058408.g009
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theoretical value or an estimate of J(h) which would decrease the

values in non-source locations where changes occur only in the

noise subspace. Other possible modifications of Eq. (15) might be

feasible as well. While such modifications might improve the

source localization accuracy of INN and therefore remain an

interesting topic for future work, they may also create sparser

imaging results. Here, we just proposed a simple form of the cost

function (the same as that in the original work) as a first approach

and other options for the cost function can be explored in the

future.

Figure 10. Localization of Class 3 real auditory evoked responses using different methods. The red points indicate the peaks of the cost
functions. The threshold was set to 80% of peak of the cost function within the corresponding source region. To show the underlying anatomical
structure, the transparency of the overlaid images was set to 50%. MUSIC found supratemporal sources in both hemispheres but also an additional
spurious source in the midline. For MUSIC, the right hemisphere source was strongest (normalized maximum cost function value = 1), followed by the
midline (0.83) and left hemisphere (0.63) sources. BEAMFORMER found bilateral sources that were rather deep in white matter and an additional
spurious source in midline. RAP-MUSIC (2nd recursion) found one source in the left temporal lobe since the right hemisphere source was suppressed.
Again, INN identifed sources at the left and right supratemporal auditory cortices, in agreement with previous knowledge.
doi:10.1371/journal.pone.0058408.g010
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Conclusions
We propose INN as a novel scanning method to identify the

sources of MEG signals. We evaluated its performance for two

simulated dipolar sources while varying the distance between the

sources, degree of correlation between the two sources, and SNRs.

We compared INN with MUSIC, conventional BEAMFORMER,

and RAP-MUSIC. Based on our simulations, INN appears

promising. For closely spaced correlated sources INN offers

clearly better performance than MUSIC, RAP-MUSIC and

BEAMFORMER. We also applied INN to human auditory

evoked MEG data, where the results showed that it clearly

outperforms MUSIC, RAP-MUSIC and BEAMFORMER. One

shortcoming of INN, similar to other subspace-based methods, is

that it cannot directly recover the amplitudes of the sources.

Therefore, another approach, such as a conventional linear least-

squares fit with fixed source locations and orientations, is necessary

to estimate the time courses of the sources.

Supporting Information

Figure S1 The eigenvalue distribution of D(h) and the data

correlation matrix R. The eigenvalues are shown as function of the

eigenvalue index. Two cases are illustrated: A. The orientation of

the test source a(h) is the same as the real source when it is at a

true source position (upper panel). The red lines show the

distribution of new matrix D(h) when h is exactly at the two true

source locations. The black lines show the distribution of D(h) at

the remaining 928 locations. The blue line shows the distribution

of eigenvalues of the original correlation matrix R. B. The

orientation is not considered (directly calculate D(h) using Eq. (7))

(lower panel). Color coding is the same as in A. The simulation

settings are the same as in Fig. 1 of the parent manuscript.

(TIF)

Figure S2 The distribution of V(h) of Eq. (4). The two plots

correspond to the two columns of V. Only first 10 of the 272

components are shown. The two red lines show the distributions

when h is located at each of the true source locations.

(TIF)

Figure S3 The MUSIC metric with SNR = 2 shown as a

function of source index (left) and its spatial distribution in the

z = 40 mm plane (right). The two independent sources are

correctly identified.

(TIF)

Figure S4 The eigenvalue distribution of D(h) and the data

correlation matrix R. The eigenvalues are shown as function of the

eigenvalue index. The red lines show the distribution of D(h) when

h matches the two true source locations. The black lines show the

distribution of D(h) at the remaining 928 locations. The blue line

shows the distribution of R. The simulation settings are the same

with that in Fig. 1 of the parent manuscript. The range of the

eigenvalue index is 1–10 on the left panel and 5–10 on the right

panel.

(TIF)

Figure S5 The INN metric with SNR = 2 as a function source

index (left) and its spatial distribution in the z = 40 mm plane

(right). The metric peaks at the locations of the two independent

sources.

(TIF)

Figure S6 The MUSIC cost function with SNR = 2 for

correlated sources shown as a function source index (left) and its

spatial distribution in the z = 40 mm plane (right). The locations of

the sources (r~0:99) are indicated by white stars. Instead of

identifying the two true sources (the two small crosses), MUSIC

mistakenly detected a false source (indicated by the largest cross in

the right map) placed between the two sources.

(TIF)

Figure S7 The INN metric as a function source index (left) and

its spatial distribution in the z = 40 mm plane (right).The metric

peaks at the true locations of the two correlated sources.

(TIF)

Figure S8 The eigenvalue distribution of D(h) and the data

correlation matrix R. The eigenvalues are shown as a function of

the eigenvalue index. The red lines show the distribution of new

matrix D(h) when h is exactly at the two true source locations. The

black lines show the distribution of D(h) at the remaining 928

locations. The blue line shows the distribution of eigenvalues of the

original correlation matrix R. The green line shows the

distribution of D(h) when h at the false source location identified

by MUSIC in Fig. S6. The simulation settings are the same as in

Fig. 1 of the parent manuscript. The ranges of the eigenvalue

indices are 1–10 (upper panel) and 4–5 (lower panel).

(TIF)
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