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Application of a deep learning algorithm
in the detection of hip fractures

Yan Gao,1 Nicholas Yock Teck Soh,2 Nan Liu,3 Gilbert Lim,3 Daniel Ting,4 Lionel Tim-Ee Cheng,5,6

Kang Min Wong,2,6 Charlene Liew,2,6 Hong Choon Oh,1 Jin Rong Tan,5 Narayan Venkataraman,7

Siang Hiong Goh,8 and Yet Yen Yan2,6,9,*

SUMMARY

This paper describes the development of a deep learning model for prediction of
hip fractures on pelvic radiographs (X-rays). Developed using over 40,000 pelvic
radiographs from a single institution, the model demonstrated high sensitivity
and specificity when applied to a test set of emergency department radiographs.
This study approximates the real-world application of a deep learning fracture
detection model by including radiographs with sub-optimal image quality, other
non-hip fractures, and metallic implants, which were excluded from prior pub-
lishedwork. The study also explores the effect of ethnicity onmodel performance,
as well as the accuracy of visualization algorithm for fracture localization.

INTRODUCTION

Hip fractures are a major public health problem, with global incidence increasing due to population aging

and estimated to reach 6.3 million by 2050.1 These fractures commonly occur in the elderly, with falls from

standing height the most frequent mechanism of injury.2,3 Mortality associated with hip fractures has re-

mained relatively high and largely unchanged in the past decade, with overall one-year mortality in North

America reported at approximately 27%.4,5 Of those who survive the initial hospitalization after a hip frac-

ture, a large proportion suffer from permanent disability, reduced independence, and social isolation.6,7

Up to 40% of patients are unable to walk independently one year after a hip fracture, and up to 20% will

be permanently institutionalized.8,9

Hip fractures can be divided into intracapsular (neck of femur) and extracapsular (trochanteric and subtro-

chanteric) types.10 The primary modality of diagnosis of these fractures remains conventional radiography,

which is relatively low-cost and readily available at emergency departments and urgent care facilities.11 The

frontal pelvic radiograph (PXR) is the most frequently performed projection and allows for evaluation of the

bony pelvis as well as both proximal femora.12 Computed tomography, magnetic resonance imaging, and

nuclear scintigraphy are options for further evaluation of suspected occult fractures.11 When interpreted by

radiologists, sensitivity of PXR for hip fracture is high, having been reported as between 90 and 98%, with

1.6–4% patients having occult fractures subsequently diagnosed on other modalities.11,13 However, many

medical facilities do not have round-the-clock radiology staff coverage, potentially contributing to delays

in image interpretation and diagnosis.14 Delayed diagnosis of hip fractures and resultant prolonged time to

hospital admission and corrective surgery have been demonstrated to increase patient mortality and

morbidity.15–17

There is potential for computer aided diagnosis (CAD) to fill such gaps in radiology expertise and availabil-

ity. Computed radiography and picture archiving and communication systems are commonplace in radi-

ology facilities today and are frequently integrated with radiology information systems and hospital elec-

tronic medical records.18 Beyond enabling the trends of remote work and teleradiology over the past

decades, they offer potential for implementation of deep learning in CAD.19,20 Deep convolutional neural

networks (DCNNs) are a class of deep learning algorithms which can accurately classify images and perform

object recognition.21 Rapid advancements in the field have been driven by availability of large image sets

for training and increasing computational power.21,22 In recent years, applications of DCNNs in CAD have

been explored as a tool to augment physicians and improve patient care. These implementations have

covered a wide range of image modalities and pathological conditions, from optical coherence tomogra-

phy in age-related macular degeneration to chest radiographs in detection of pneumonia.23,24 These
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studies have shown promising results, with sensitivity and specificity of some narrow CAD solutions

equaling or exceeding human diagnostic radiologists.25–27

Recent studies have explored the use of DCNN in CAD of hip fractures. A major hurdle in developing

highly accurate CAD solutions for medical image interpretation remains the availability of large volume

medical image sets with high-quality annotations. Most previous studies have either relied on relatively

small numbers of images, simple methods of annotation (e.g., point based annotation), and auto-

mated solutions for annotation, or utilized weak labels (e.g., presence or absence of pathology without

specifying location).28–35 Several prior studies with large training sets have a wide exclusion criterion

and exclude radiographs with implants, other non-hip fractures, poor positioning or suboptimal image

quality, potentially introducing selection bias.28,29,36 A few studies have also excluded specific sub-

types of hip fractures (e.g., trochanteric, sub-trochanteric), limiting the real-world utility of their

models.37,38 The absence of sub-group analysis between ethnicities and limited provision of patient

characteristics in these studies also may restrict the applicability of reported results to a real-world

population.

The aim of this study is to develop and examine the performance of a DCNN solution, constructed on

DenseNet-121 architecture with pre-trained ImageNet weights, for CAD of hip fractures on PXRs, utilizing

a large image set of over 40,000 images and trained on TensorFlow using image-level labels and an image

classifier approach.39–41 All PXRs will be included in this study regardless of perceived image quality, pres-

ence of other non-hip fractures or metallic implants. In addition, the performance of Grad-CAM used as a

visual adjunct to highlight regions of interest within the images and examine validity of the algorithmwill be

evaluated.

RESULTS

Cohort characteristics

Of the 36,422 PXRs used for training (29,153 or 80%) and validation (7,289 or 20%) of the model, 2,672 (7.3%)

were positive for hip fracture Figure 1. In contrast, of the 3,761 PXRs in the hold-out test dataset, 463 were

positive for hip fracture (12.3%). Orthopedic implants in either proximal femur or the bony pelvis was pre-

sent in a larger proportion of training and validation set PXRs (34.3%) as opposed to training set PXRs

(10.3%). Both of these variations are related to differences in case-mix between the emergency department

versus ambulatory and inpatient settings.

Figure 1. Allocation of PXRs into training, validation and test datasets
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Demographics between the cohorts of PXRs in the training and validation sets compared to the hold-out

test set are as shown in Table 1, with differences in gender, ethnicity, age, hip fracture prevalence and pres-

ence of orthopedic implants related to the differences of these cohort characteristics in ambulatory, inpa-

tient and emergency department settings.

Model performance

Performance of the hip fracture detection model was evaluated with a hold-out test dataset of 3,761 PXRs

of which 463 (12.3%) were positive for hip fracture. Our hip fracture detection network achieved AUROC of

0.990 (95% confidence interval [CI]:0.986, 0.993) and AUPRC of 0.948 (95% CI: 0.926, 0.965). Using Youden’s

index, the operating point is determined to be 0.127.43 At this threshold, the model predicted 27 false neg-

atives and 121 false positives (Table 2). The model detected 7 of 7 undisplaced fractures (sensitivity 100%)

and 429 of 456 displaced fractures (sensitivity 94.1%).

Subgroup analysis of model performance was performed to examine performance parameters in the pres-

ence of orthopedic implants within the PXR (Table 3). Within the hold-out test set, there were 389 PXRs with

at least one implant, of which 32 (8.2%) were positive for hip fracture. Of the other 3,372 PXRs without im-

plants, 431 (12.8%) were positive for hip fracture.

Subgroup analysis of model performance was also performed to examine performance parameters between

the various ethnicities (Table 4). The hold-out test set included PXRs of 2,397 Chinese, 674Malays, 292 Indians,

and 395 others, of which 354 (14.7%), 56 (8.3%), 22 (7.5%) and 30 (7.6%) were positive for hip fracture.

Localization of predicted fractures with Grad-CAM

Grad-CAM heatmaps were generated for all 557 hip fractures predicted by our model. Of the 436 true pos-

itive hip fractures accurately predicted by our model, there were 101 (23.2%) instances where the model

identified an incorrect activation site. Fused heatmaps for the other 335 (76.8%) predicted fractures

Table 1. Comparison of characteristics between PXRs grouped by dataset cohorts

Characteristics

Datasets

Training and Validation Hold-out Test

Total number 36,442 3,761

Gender; n (%)

Male 14,532 (40) 1,734 (46)

Female 20,450 (56) 2,024 (54)

Not classified 1,460 (4) 3 (0)

Ethnicity; n (%)

Chinese 23,398 (64) 2,397 (64)

Malay 5,881 (16) 674 (18)

Indian 2,447 (7) 292 (8)

Others 3,252 (9) 395 (11)

Not classified 1,464 (4) 3 (0)

Age in years; mean (std dev) 68.0 (22.3) 65.4 (26.7)

Performed in; n (%)

Emergency Department 15,042 (41) 3,761 (100)

Ambulatory or Inpatient 21,400 (59) 0 (0)

Hip Fracture; n (%) 2,672 (7.3) 463 (12.3)

Neck of Femur 1,371 (3.8) 225 (6.0)

Trochanteric 1,239 (3.4) 213 (5.7)

Subtrochanteric 391 (1.1) 81 (2.2)

Atypical fracture 16 (0.0) 2 (0.1)

Orthopedic implant; n (%) 12,489 (34.3%) 389 (10.3%)
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demonstrated activation area correctly located at the actual hip fracture, as assessed by two consultant

musculoskeletal radiologists. Interestingly, it was observed that Grad-CAM heatmaps frequently outlined

the lateral femoral neck even in the presence of unequivocal cortical disruption and fracture line.

Figures 2 and 3 demonstrate examples of Grad-CAM heatmaps in true positive predicted fractures. Figure

4 demonstrates an example of Grad-CAM heatmaps in true positive predicted fractures delineating the

lateral cortical outline of the proximal femur.

DISCUSSION

Misinterpretation of PXRs can contribute to missed diagnosis and delay surgical repair, and hip fractures

represent an ideal target for DCNN solutions for CAD.44 This study utilized a DCNN and relied on a com-

bination of independent board certified musculoskeletal radiologist reads, index radiology reports and

subsequent advanced imaging reports (where available) to determine ground-truth labeling, similar to pre-

vious literature.29

This study demonstrates the ability for a DCNN solution to identify hip fractures on PXRs with extremely

high accuracy. The study included 40,203 PXRs and the model achieved AUROC of 0.990 (95% CI: 0.986,

0.993) and AUPRC of 0.948 (95% CI: 0.926, 0.965) when applied to the hold-out test set comprising emer-

gency department radiographs. These results are comparable with previous large volume studies by Gale

et al.,29 Oakden-Rayner et al.,27 Kitamura et al.,36 and Cheng et al.,28 who reported AUROC values between

0.98 and 0.99, and is markedly improved compared to earlier smaller studies which reported relatively low

sensitivity and specificity below that of human radiologists.31–33 The model also achieved high sensitivity

and specificity of 94.2% and 96.3% respectively, and extremely high negative predictive value (NPV) of

99.2%. These parameters compare favorably to the mean sensitivity and specificity of 89.3% and 87.5% re-

ported by a recent meta-analysis of 18 studies with a total of 39,598 radiographs.34 The high sensitivity and

negative predictive value of our model underscores the potential for DCNN CAD solutions like ours to be

particularly useful in urgent or emergency care settings, where emphasis is on avoiding missed diagnoses.

Amajor strength of this study was its inclusion of all PXRs performedwithin the recruitment period, regardless of

perceived technical and diagnostic difficulty, existence ofmetallic implants or presence of other radiographically

identified pathologies, for example pelvic fractures or bone tumors. This contrasts with most previous studies

which excluded certain subsets of PXRs or pathologies. For example, Cheng et al. and Kitamura et al. excluded

PXRs deemed to have poor image contrast, positioning errors, foreign body interference and those with other

fractures.28,36 Gale et al. and subsequently Oakden-Rayner et al. excluded PXRs with metallic implants.27,29 Mur-

phy et al. and Bae et al. excluded certain types of hip fractures (trochanteric and/or subtrochanteric).37,38

Although the effects of these exclusions are difficult to confidently predict, they potentially introduce selection

Table 2. Performance of hip fracture detection model on hold-out test dataset

Ground truth

Model Predictions for Hip Fracture

Predicted Absent Predicted Present

Hip Fracture Absent 3177 (True Negative) 121 (False Positive)

Hip Fracture Present 27 (False Negative) 436 (True Positive)

Performance Parameters

AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV

0.990 (95% CI: 0.986, 0.993) 0.948 (95% CI:0.926, 0.965) 96.1% 94.2% 96.3% 78.3% 99.2%

Table 3. Subgroup analysis of model performance in presence of orthopedic implants

Performance Parameters (Orthopedic Implants Present/Absent)

AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV

Implant present 0.969 (95% CI: 0.926, 0.998) 0.914 (95% CI: 0.822, 0.983) 0.954 0.875 0.961 0.667 0.988

Implant absent 0.991 (95% CI: 0.988, 0.994) 0.950 (95% CI: 0.927, 0.968) 0.959 0.947 0.961 0.779 0.992
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bias and possibly undermine the robustness of developed algorithms. Hence, results reported in such studies

may be overly optimistic or not generalizable to excluded patient populations, limiting the algorithms’ potential

real-world use.45 This study’s broad inclusion of all PXRswhile still achieving comparably high performance lends

credibility to this study’s results, their generalizability and clinical applicability of the developedmodel, although

the clinical utility of this algorithm requires external validation.

Another strengthof this studywas its utilizationof a hold-out test set comprisingexclusivelyofemergencydepart-

mentPXRs, as opposed to radiographsperformed inother ambulatoryor inpatient settings. Thiswas adeliberate

decision to better approximate the potential real-world use scenario of such a model, where in routine clinical

practice, the majority of patient falls and injuries occur outside of the hospital, and patients with suspected hip

fractures predominantly present to emergency departments or urgent care facilities.46 Comparatively, a sizable

proportion of PXRs performed in the inpatient and ambulatory settings may be for follow-up of prior injuries or

post-surgical implants. This is supported by the study’s findings, with PXRs performed in the emergency depart-

ment having a higher prevalence of hip fractures and lower prevalence of surgical implants.

Subgroup analysis of PXRs with orthopedic implants found that model performance was slightly lower when

an implant was present in the radiograph, but still relatively comparable with AUROC of 0.969 (versus 0.991

when no implant was present) and AUPRC of 0.914 (versus 0.950 when no implant was present). Nonethe-

less, NPV remained extremely high at 0.988 (versus 0.992 when no implant was present). This study differs

from previous work in examining differences in model performance in detecting hip fractures in the pres-

ence of orthopedic implants. These results suggest that DCNN solutions can maintain excellent perfor-

mance even in the presence of implants.

By virtue of geographical location, this study enrolled PXRs from a multi-ethnic local population. Considering

recent studies demonstrating the ability of artificial intelligencedeep learningmodels to predict ethnicity from

medical images where human interpreters cannot, the authors were interested to examine if this model would

perform differently based on ethnicity.47 Nevertheless, sub-group analysis of model performance on the test

set demonstrated sustained high model performance across the different ethnic groups aside from lower

AUPRC in the Indian ethnic group possibly attributed to its small sample size. This study differs from previous

work in examining the potential effect of ethnicity in the context of deep learning solutions for hip fracture

detection and is the largest study to be conducted in an Asian population.

Grad-CAM allows the visualization of input image areas considered most important by the model in its pre-

dictions. While traditionally used for localization and identifying model bias,48 prior studies have suggested

Grad-CAMmay assist physicians in identifying pathologic regions and improve user confidence by providing

insight into the ‘black box’ model.49,50 In this study, examination of Grad-CAM heatmaps showed that in

76.8%, class-discriminative regions correctly localized the fracture site. While relatively accurate, this is lower

than the up to 95.9% concordance rate reported by prior studies.27,28 The authors postulate that this may be

related to other studies’ exclusion of PXRs deemed to be of poor quality, including foreign bodies or with

other fractures, compared to this study’s comparatively wider inclusion criteria. Furthermore, this study found

that Grad-CAMheatmaps have a tendency to outline the outer femoral neck despite the presence of a cortical

disruption and fracture line, as opposed to delineating Shenton’s line as observed by Oakden-Rayner et al.27

(Figure 4). In several instances, the Grad-CAM heatmaps failed to localize the hip fracture entirely (Figure 2), in

keeping with findings from other studies.27,42 Given its unpredictable localization, Grad-CAM should be inter-

preted with caution. Future studies may wish to evaluate the effect of these heatmaps in user confidence and

combined physician-model performance.

Table 4. Subgroup analysis of model performance in different ethnic groups

Performance Parameters (Ethnicity Subgroups)

AUROC AUPRC Accuracy Sensitivity Specificity PPV NPV

Chinese 0.987 (95% CI: 0.981, 0.991) 0.952 (95% CI: 0.937, 0.967) 0.953 0.932 0.956 0.788 0.988

Malay 0.997 (95% CI: 0.993, 1.000) 0.975 (95% CI: 0.946, 0.995) 0.985 0.964 0.987 0.871 0.997

Indian 0.993 (95% CI: 0.983, 1.000) 0.851 (95% CI: 0.659, 1.000) 0.986 0.909 0.993 0.909 0.993

Others 0.997 (95% CI: 0.991, 1.000) 0.972 (95% CI: 0.930, 1.000) 0.975 0.933 0.978 0.778 0.994
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This study utilized a large volume of 40,203 PXRs annotated with image-level labels for DCNN training.

Compared to object detection algorithms, which have conventionally utilized bounding boxes to provide

location supervisory signals, this study adopted an image classification approach with image-level labels.

This allowed for a less labor-intensive process of annotation, which could be performed by just 2 radiolo-

gists. Such an approach is consistent with other recent studies, which have either used image classifiers or

automated and simple methods of location annotation (e.g., point based annotation) for object detec-

tion.28–31 Earlier studies using strongly supervised object detection with bounding box annotations of loca-

tion supervisory signals have been limited to small numbers, with less favorable results.32

Beyond image labeling and training supervision, this network also demonstrates that prediction of hip frac-

tures on PXR can be achieved with high accuracy when using the entire radiograph as the input, without the

need for a separate localization network solution to first identify the hip joint, as in the work by Gale et al.29

This study also demonstrates the ability to achieve comparable performance without the implementation

of model pre-training, as in Cheng et al.’s work where a separate image set of limb radiographs was used to

pre-train the algorithm.28

The authors were able to develop their own DCNNmodel using the publicly available DenseNet-121 archi-

tecture, along with PXRs and radiology reports obtained from a single tertiary institution. The entire study

was carried out over a period of 12 months. The favorable performance achieved by this model demon-

strates that it may be feasible for institutions to develop their own deep learning algorithms for computer

aided diagnoses, based on patterns of local prevalence and local imaging parameters.

Limitations of the study

Limitations of this study include the inability to directly compare performance of our model against other

models, particularly due to heterogeneity in inclusion criteria where patients with metallic implants and other

non-hip fractures were often excluded from other studies. Performance of our model was also not externally

validated using dataset from other institutions, to evaluate for generalizability. This may be of concern as our

study benefitted from relative technical homogeneity of the PXR inputs, with all the radiographs performed

using either one of two digital radiography systems from the same manufacturer (Philips Healthcare,

Netherlands). Future studies may consider external validation such as in the work of Oakden-Rayner et al.,27

and potentially comparison of different models using a common external test set. Finally, this study did not

compare the performance of our network directly with physician performance.

Conclusions

In conclusion, this study demonstrates that a DCNN solution for CAD of hip fractures (neck of femur,

trochanteric, and subtrochanteric) on PXRs developed using an image classifier approach can achieve

good performance with high sensitivity, specificity and negative predictive value. This is possible even

when including all PXRs regardless of technical quality, metallic implants or other concomitant pathology,

unlike most previous work, and underscores the potential for DCNN solutions to reduce missed or delayed

Figure 2. True positive predicted hip fracture with incorrect heatmap activation at the contralateral limb
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diagnoses of hip fractures, particularly in the urgent and emergency care settings. This study also demon-

strates that it is feasible for institutions to develop their own deep learning models based on local imaging

parameters and disease patterns.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Study cohort and data

B Labeling of PXRs and image pre-processing

Figure 3. True positive predicted hip fractures with heatmap activation correctly located

(A) Intertrochanteric fracture.

(B) Femoral neck fracture.

(C) Subtrochanteric fracture.

ll
OPEN ACCESS

iScience 26, 107350, August 18, 2023 7

iScience
Article



B Dataset preparation

B Model training and selection

B Model evaluation and statistical analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS
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RESOURCE AVAILABILITY

Lead contact

� Further information and requests for resources should be directed to and will be fulfilled by the lead

contact Yet Yen Yan (yan.yet.yen@singhealth.com.sg)

Materials availability

� Iteration of the trained deep learning model is available on request from the lead contact.

� There are restrictions to the availability of patients’ medical images used in training of the deep

learning model due to institutional and legal regulations over patient confidentiality and imaging.

Data and code availability

d Patients’ medical images used in training of the deep learningmodel in this study cannot be deposited in

a public repository due to institutional and legal regulations over patient confidentiality and imaging. To

request access, contact the lead contact.

d This paper utilizes publicly available code in development of the deep learning model.40 Iteration of the

trained deep learning model available on request from the lead contact.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

� This paper uses de-identifiedmedical images of patients who had pelvic radiographs performed at a

single institution within the study period.

� Description of overall age, gender and ethnicity of the patient population is described in Table 1 of

the manuscript.

� Waiver of full ethical deliberation was provided by the host institution’s Centralised Institutional Re-

view Board (CIRB), with the study conducted using deidentified data.

METHOD DETAILS

Study cohort and data

Frontal pelvic radiographs (PXRs) performed across ambulatory, inpatient and emergency department set-

tings at a single tertiary teaching hospital between January 2016 and December 2020 were included in this

study. All PXRs were acquired using DigitalDiagnost C90 and DigitalDiagnost 4 High Performance digital

radiography systems (Philips Healthcare, Netherlands). Waiver of full ethical deliberation was provided by

the institution’s Centralised Institutional Review Board (CIRB), with the study conducted using only deiden-

tified data.

A total of 40,203 PXRs were extracted from the institution’s radiology picture archiving and communica-

tions system, of which 18,803 were performed in the emergency department and 21,400 were performed

in the ambulatory or inpatient setting. The radiologist’s report for each included PXR was also extracted

along with radiology reports for any subsequent examinations performed for the patient in the following

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

DenseNet-121 Huang et al.39 arXiv:1608.06993

Tensorflow Abadi et al.41 arXiv:1605.08695
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6 months. This included reports for subsequent radiographs as well as other modalities such as computed

tomography or magnetic resonance imaging where available.

Labeling of PXRs and image pre-processing

All 40,203 PXRs and their accompanying radiology reports were de-identified with any post-contempora-

neous labels on these images removed. Presence of a hip fracture was defined as any fracture involving the

proximal femora. This included intracapsular (neck of femur) and extracapsular (trochanteric or subtrochan-

teric) fractures.

To determine ground truth labels for each PXR (i.e., hip fracture present or absent), all PXRs were individ-

ually read by 2 board-certified consultant musculoskeletal subspecialty radiologists (YYY and JRT with 10

and 7 years of radiology experience respectively) blinded to the accompanying radiology reports. PXRs

with hip fractures were labeled positive, while those without hip fractures were labeled negative. In in-

stances where diagnosis of hip fracture was in doubt, the accompanying PXR report and radiology reports

for all imaging performed in the following 6 months were reviewed for any mention of a hip fracture. Final

decision on presence or absence of a hip fracture was made by consensus between the 2 musculoskeletal

radiologists.

PXRs included in this study were formatted in 16-bit monochrome and ranged from 1512 x 2042 pixels to

2899 x 3254 pixels. To reduce image heterogeneity and computational complexity, all PXRs were uniformly

padded to square shapes and resized to 512 x 512 pixels.

Dataset preparation

A total of 40,203 PXRs were included in this study. Among the 18,803 PXRs performed in the emergency

department, 3,761 (20%) were first randomly selected to form the hold-out test dataset for subsequent

evaluation of our hip fracture detection model. A test set consisting only of emergency department

PXRs was deliberately chosen to better approximate the potential real-world use scenario, where pa-

tients with suspected hip fractures present almost exclusively to emergency departments or urgent

care facilities.

Of the remaining 36,442 PXRs in our study, 29,153 (80%) and 7,289 (20%) were randomly allocated for

training and validation of our model respectively (Figure 1).

Model training and selection

DCNNs are a subset of deep neural networks commonly used in object detection and image classification.

Images are received as inputs andmultiple convolutional, activation, pooling and fully connected layers are

utilized to produce an image classifier. This study employed a DenseNet-121 architecture with pre-trained

ImageNet weights,39 which was then trained on the training set of 29,153 PXRs. DenseNet-121 was selected

due to its comparatively fewer parameters and faster training time coupled with similar performance

compared to other CNNs.42

Model training was performed via stochastic gradient descent using the adaptive moment estimation

(Adam) optimiser, for 100 epochs at a learning rate of 0.0001.40 The loss function for optimization was bi-

nary cross-entropy loss: L = � 1
N

PN
i = 1yi logðpðyiÞÞ + ð1 � yiÞlogð1 � pðyiÞÞ, where i is the number of im-

ages in the training set and yi = 1 if it is a fracture and 0 otherwise. pðyiÞ is given by the sigmoid activation

function with proper initial bias. Due to the highly unbalanced positive and negative classes, initial bias was

set to the log of ratio between number of negative images and number of positive images in the training

set, which is approximately 2.5. A larger batch size of 32 was employed to ensure that each batch included

positive images. A network diagram is shown in Figure. During training of themodel, augmentation of PXRs

was performed with random operations of zoom (10%), horizontal and vertical translations (100, �100

pixels), horizontal flips, rotations (15�, �15�) and brightness jittering (25%). As per Oakden-Rayner et al.,

it was shown that each augmentation technique contributed to absolute AUC improvement of around

0.01.27 On our dataset, augmentation improves the overall area under precision-recall curve (AUPRC) by

about 0.04.
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Model validation was performed using the validation set of 7,289 PXRs, with model parameters selected

from the epoch (epoch 66) with highest AUPRC. Changes in accuracy, loss, and AUPRC during the training

process are shown in Figure. The network was trained using TensorFlow on a workstation with NVIDIA

Quadro TRX 6000 GPU with 32 GB DDR4.40 Training time was approximately 40 h for 100 epochs.

Architecture diagram of the DCNN
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Model evaluation and statistical analysis

The trained model was evaluated using the test set of 3,761 PXRs, (with 463 or 12.3% positive for hip frac-

ture), using parameters of accuracy, sensitivity (recall), specificity, positive predictive value (precision) and

negative predictive value, with their respective formulae as listed below: Accuracy = TP+TN
TP+TN+FP+FN

Sensitivity = TP
TP+FN Specificity = TN

TN+FP PPV = TP
TP+FP NPV = TN

TN+FN. Where TP = true positive, TN = true

Negative, FP = false positive and FN = false negative. These together with area under receiver operating

characteristics (AUROC) and area under precision-recall curve (AUPRC) were used to compare the model

against prior published work on automated hip fracture detection.

In instances where the model predicted a hip fracture, Grad-CAM heatmap was produced and overlaid on

the associated PXR. Fused images were individually reviewed by the 2 board certified musculoskeletal radi-

ologist to assess if the fractures had been correctly localized by the model.

QUANTIFICATION AND STATISTICAL ANALYSIS

� The trained model was evaluated using the test set of 3,761 PXRs, (with 463 or 12.3% positive for hip

fracture), using parameters of accuracy, sensitivity (recall), specificity, positive predictive value (pre-

cision) and negative predictive value. These together with area under receiver operating character-

istics (AUROC) and area under precision-recall curve (AUPRC) were used to compare the model

against prior published work on automated hip fracture detection.

Performance in the training and validation datasets

(A) Accuracy change during training.

(B) Loss change during training.

(C) AUPRC change during training.
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� In instances where the model predicted a hip fracture, Grad-CAM heatmap was produced and over-

laid on the associated PXR.

� Descriptive statistics were used to summarize population characteristics. Categorical variables were

summarized using frequencies (percentages), and continuous variables using mean (standard devi-

ation) after assessing for normality.
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