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Abstract

Introduction: The development of an effective therapeutic HIV vaccine that induces immunologic control of viral replication,

thereby eliminating or reducing the need for antiretroviral therapy (ART), would be of great value. Besides the obvious

challenges of developing a therapeutic vaccine that would generate effective, sustained anti-HIV immunity in infected individuals

is the issue of how to best assess the efficacy of vaccine candidates.

Discussion: This review discusses the various outcome measures assessed in therapeutic HIV vaccine clinical trials involving

individuals receiving suppressive ART, with a particular focus on the role of analytical treatment interruption (ATI) as a way to

assess the virologic control induced by an immunotherapy. This strategy is critical given that there are otherwise no readily

available measures to determine the ability of a vaccine-induced immune response to effectively control HIV replication. The

various outcome measures that have been used to assess vaccine efficacy in published therapeutic HIV vaccine clinical trials will

also be discussed. Outcome measures have included the kinetics of viral rebound, the new viral set point and changes in the size

of the viral reservoir. Clinically relevant outcomes such as the CD4 decline, the time to resume therapy or the time to meet the

criterion to resume therapy, the proportion of participants who resume therapy and/or the development of clinical symptoms

such as acute retroviral syndrome are also measures of vaccine efficacy.

Conclusions: Given the lack of consistency between therapeutic HIV vaccine trials in how efficacy is assessed, comparing

vaccines has been difficult. It would, therefore, be beneficial to determine the most clinically relevant measure for use in future

studies. Other recommendations for future clinical trials also include studying compartments in addition to blood and replacing

ATIs with single-copy assays in situations in which the use of an ATI is not ideal.

Keywords: HIV; AIDS; analytical treatment interruption(s); clinical trials; outcome measure; therapeutic vaccine; vaccine

efficacy; viral reservoir.
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Introduction
The idea that HIV-positive individuals might benefit from

therapeutic immunization was first proposed by Jonas Salk

in 1987 [1]. The discovery since then of long-term non-

progressors and elite controllers whose immune systems

naturally control HIV infection without the need for anti-

retroviral therapy (ART) provides evidence for effective host-

mediated anti-HIV immunity, thus providing a rationale for

the development of therapeutic vaccines (reviewed in Refs.

[2�4]).
The development of an HIV therapeutic vaccine capable of

inducing control of HIV replication such that ART could be

eliminated is a major focus of HIV research [5�7]. While ART

has transformed HIV infection into a chronic, manageable

disease for most individuals who have access to it [8,9], ART

is associated with a number of disadvantages and limitations.

In addition to being a lifelong therapy [7,8,10], ART can be

toxic [8,9], is potentially associated with the development of

HIV drug resistance [9] and does not eliminate latent HIV in

viral reservoirs [6�9]. Finally, the high cost of ART makes

it unavailable to the majority of the world’s HIV-positive

individuals who live in resource-limited countries [8�11]. A
therapeutic vaccine would, therefore, circumvent many of

the limitations associated with ART.

Besides the obvious challenges of developing a therapeutic

vaccine that would induce effective, sustained anti-HIV

immunity in infected individuals is the issue of how to best

assess the efficacy of vaccine candidates [12]. In many clinical

trials of therapeutic HIV vaccines (Tables 1A�1E), assessing effi-
cacy involves comparing various outcome measures before

and after an analytical treatment interruption (ATI), which is

used to assess vaccine-induced, immune-mediated viral con-

trol [2,5].While therapeutic HIV vaccine clinical trials typically

include the CD4 count as a safety/clinical event, virologic

outcome measures vary from trial to trial, making it chal-

lenging to compare the results of different vaccine studies.
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Table 1A. Summary of the outcome measures of efficacy assessed in therapeutic HIV vaccine clinical trials with analytical treatment interruptions: protein or peptide subunit vaccines

Vaccine Study design Primary outcome measure(s)

Other relevant efficacy

outcome measures Main findings References

Vacc-4x (a mixture

of four p24-like

peptides)

Open, prospective RCT comparing low

vaccine dose vs. high vaccine dose (no

ATI during this phase of study)

� Safety � CD4 T cell count

� CD8 T cell count

The higher dose of the vaccine induced

stronger HIV-specific DTH and CD4 and

CD8 T cell responses than the lower dose.

[136]

Observation period of 26 weeks

following immunization period in Ref.

[136] that included two ATIs, one of four

weeks’ duration and one of 14 weeks

� Viral load ratio (end of study viral

load/pre-ART viral load set point)

� Immunogenicity

� CD4 T cell count

� CD8 T cell count

Participants with the highest DTH

responses before ATI had lower VL by the

end of the study compared to

participants with low DTH responses.

[137]

Long-term observation (1.5 years) after

immunization in Ref. [136]

� Percentage of participants who

resumed ART

� Immunogenicity

� CD4 T cell count

� pVL

Participants with the greatest DTH

responses following immunization were

less likely to require ART resumption

compared to low responders.

[138]

Observation period four years after

enrolling in Ref. [136]

� Time until ART resumption

� Immunogenicity

� CD4 T cell count

� CD8 T cell count

� pVL

� Percentage of participants who

resumed ART

Participants with the greatest DTH

responses following immunization

resumed ART later than low responders.

[139]

RCT � Percentage of participants who

met the criteria to resume ART

� Percent change in CD4 T cell count

between the start of the ATI and

the last CD4 T cell count before

ART was resumed or the end of

the study if ART was not resumed

� Time to restart ART

� CD4 T cell count

� CD8 T cell count

� Pre-ART viral load set point

(when available)*

� Viral load set point during ATI*

*substudy

The vaccine had no effect on the

proportion of participants who resumed

ART or on changes in the CD4 T cell count

during the ATI. However, vaccinated

participants had significantly reduced

viral load set points during ATI compared

to controls.

[111]

TUTI-16 (synthetic

HIV-1 Tat

epitope)

RCT � Safety � Prevention of viral rebound

following ATI

� CD4 T cell count

The vaccine did not prevent viral rebound

following ATI.

[140]

LFn-p24C (subtype

C HIV Gag protein

p24 fused to a

detoxified

anthrax-derived

polypeptide)

Open label, single-arm study; phase 1A:

three immunizations; phase 1B:

booster�ATI

� Safety � CD4 T cell count

� Percentage of participants who

did not experience viral rebound

Immunized participants had significantly

higher CD4 T cell counts compared to

historical controls 12 months after

enrolment in phase 1A and 30% of

participants did not experience any viral

rebound following ATI in phase 1B.

[141]
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Discussion
The current state of non-HIV therapeutic vaccines

Only a few therapeutic vaccines are currently licensed world-

wide and most of them are used to treat cancer [13]. In 2010,

the US Food and Drug Administration (FDA) approved

sipuleucel-T (Provenge†) to treat hormone-refractory pros-

tate cancer [14]. A therapeutic vaccine for ovarian cancer has

been approved in Dubai [13], while another one was recently

given fast track designation by the FDA [15]. Two different

therapeutic vaccines for renal cell carcinoma have been

approved, one each in Russia and South Korea [13]. In the

meantime, phase III clinical trials have been or are being

conducted to assess the efficacy of candidate therapeutic

vaccines against a variety of malignancies including cancers

of the breast [16,17], pancreas [18�20], liver [21], lung [22�
27], kidneys [28], skin [29�32], prostate [33], stomach or

oesophagus [34] and brain [35�38].
Zostavax† is a therapeutic vaccine that reduces the freq-

uency and severity of shingles, which is caused by the reac-

tivation of the varicella zoster virus that causes chickenpox

[39]. Zostavax is the first example of a vaccine with clinical

efficacy against an established infection [40]. The success of

Table 1B. Summary of the outcome measures of efficacy assessed in therapeutic HIV vaccine clinical trials with analytical treatment

interruptions: inactivated HIV vaccines

Vaccine Study design

Primary outcome

measure(s)

Other relevant

efficacy outcome

measures Main findings References

Remune†

(inactivated

HIV-1 particles)

Open label,

non-randomized,

two-arm study

(immunized vs.

unimmunized)

� Immunogenicity

� pVL

� CD4 T cell count Immunization-induced HIV-specific

immune responses that correlated

with CD4 T cell counts and with viral

control during ATI.

[142]

Remune†�ART

intensification with

ddI, hydroxyurea

and GM-CSF

Proof-of-concept,

single-arm study

� Immunogenicity

� Viral load decrease:

the difference between

the viral load plateaus

of the first two ATIs

� CD4 T cell count

� Percentage of

CD4 T cells

Following ART intensification�

Remune†, HIV-specific IFN-g
secretion increased between the first

two of three ATIs, while viral load

decreased significantly, although

there was no correlation between

these two observations.

[143]

Table 1C. Summary of the outcome measures of efficacy assessed in therapeutic HIV vaccine clinical trials with analytical treatment

interruptions: DNA vaccines

Vaccine Study design

Primary outcome

measure(s)

Other relevant

efficacy outcome

measures Main findings References

DNA vaccine encoding the HIV-1

Nef, Rev and Tat proteins

RCT Changes in immune

responses of previously

immunized HIV-positive

participants following ART

initiation.

� CD4 T cell count

� CD8 T cell count

� pVL

In a substudy in which

participants had undergone

ATI, there was no significant

change in HIV-specific

responses during or after ATI.

[144]

VRC-HIV DNA 009-00-VP

(a four-plasmid mixture

encoding modified envelope

constructs from HIV-1 subtypes

A, B and C and a subtype B

Gag-Pol-Nef fusion protein)

RCT;

participants

initiated ART

during early

HIV infection

� Safety

� Immunogenicity

� CD4 T cell count

� Viral load set point

following ATI

The vaccine was safe but not

immunogenic and had no

effect on the viral set point

during ATI.

[104]

DNA vaccine consisting of seven

plasmids encoding HIV-1 Gag

(subtypes A and B), Env

(subtypes A, B or C), RT or Rev

RCT � HIV-specific epitope

reactivity

� Immunogenicity

� Time to ART resumption

� CD4 T cell count

� Viral load rebound

following ATI

� Viral load set point

following ATI

Although immunogenic, the

vaccine did not affect the

viral set point during ATI or

the time to resume ART.

[145]
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Table 1D. Summary of the outcome measures of efficacy assessed in therapeutic HIV vaccine clinical trials with analytical treatment interruptions: viral vectors

Vaccine Study design Primary outcome measure(s) Other relevant efficacy outcome measures Main findings References

MVA-Nef (modified vaccinia

Ankara virus encoding the

HIV-1 LAI Nef gene)

Single-arm study � Safety

� Immunogenicity

� Time to viral rebound following ATI

� Time to peak viremia following ATI

� Peak viremia following ATI

� Number of participants who resumed ART

The vaccine was safe and immunogenic but

did not prevent viral rebound during ATI.

However, in the majority of participants, viral

load during ATI and CD4 T cell counts were

improved compared to pre-ART levels.

[146]

MVA.HIVA (modified vaccinia

Ankara virus encoding clade A

HIV-1 Gag p24/p17 and a

multi-CTL epitope)

Extension of a single-arm

study by Dorrell et al. [147];

in this extension study,

participants were boosted

then underwent an ATI

� IL-10 production

� Immunogenicity

� Criteria for ART resumption (pVL and CD4

T cell count)

Vaccination did not increase IL-10 levels.

However, IL-10 levels did increase during ATI

and were correlated with pVL.

[148]

MVA-B (modified vaccinia Ankara

virus encoding monomeric

gp120 and the clade B fused

Gag-Pol-Nef polyprotein)9

disulfiram

RCT � Safety and immunogenicity � Kinetics of viral load rebound following ATI

� Time and criteria to resume ART

� Cell-associated HIV-1 RNA

� HIV-1 proviral DNA levels

The vaccine was safe and immunogenic but

did not significantly affect viral load rebound

after ATI or the size of the viral reservoir,

whether given alone or with disulfiram.

[149]

ALVAC-HIV vCP1452 (a

recombinant canarypox virus

encoding HIV-1 Env, Gag and

protease and part of the Nef

and RT proteins)

RCT � pVL at the end of the ATI � CD4 T cell count

� Percentage of CD4 T cells

� Kinetics of viral load rebound

� Viral load set point following ATI

ATI, but not vaccination, contributed to

enhanced viral control.

[150]

RCT � Immunogenicity � Time to resume ART (viral rebound

�50 000 copies/ml following ATI)

� CD4 T cell count

� HIV-1 DNA in PBMCs

Although immunogenic, the vaccine-induced

immune responses were associated with

reduced time to resume ART and greater viral

rebound.

[151]

RCT � Safety

� Immunogenicity

� Viral load set point during

ATI

� CD4 T cell count

� Percentage of CD4 T cells

The mean viral load set point during ATI did

not differ between the two vaccine groups

(second vaccine group received autologous

DC loaded with ALVAC vCP1452).

[152]

ALVAC vCP1452� rgp160 Two-arm study (vaccinated

participants from a

previous study vs.

unvaccinated participants);

participants initiated ART

during early HIV infection

� Time to viral rebound after

ATI

� Initial rate of viral rebound

after ATI

� Peak viremia during ATI

� CD4 T cell count ATI was followed by viral rebound in all

subjects and was not affected by vaccination.

[105]
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Table 1D (Continued )

Vaccine Study design Primary outcome measure(s) Other relevant efficacy outcome measures Main findings References

ALVAC-HIV vCP14529IL-2 RCT � pVL at Weeks 11 and

12 post-ATI

� Viral load set-point during ATI

� Peak viral load during ATI

� CD4 T cell count

� CD8 T cell count

� Disease progression, opportunistic

infections or acute retroviral syndrome

after ATI

Immunization with ALVAC resulted in a

statistically significant reduction in viral

rebound following ATI. The addition of IL-2 to

ALVAC increased CD4 T cell counts but did

not further reduce viral rebound.

[153]

ALVAC-HIV vCP14529Remune† RCT; participants initiated

ART during acute HIV

infection

� Percentage of participants

with pVL51000 HIV-1 RNA

copies/ml at 24 weeks

post-ATI

� CD4 T cell count

� CD8 T cell count

� Cell-associated HIV-1 DNA and RNA

� Viral load set point during ATI

� Percentage of participants with pVL 5400

HIV-1 RNA copies/ml during entire ATI

period

� Time to reach pVL�1000 HIV-1 RNA

copies/ml after ATI

Although immunogenic, the vaccines did not

induce virologic control during ATI.

[106]

RCT � Time to viral rebound �50

HIV-1 RNA copies/ml

� Safety

� CD4 T cell count

� Viral load 12 weeks after ATI

� Viral load set point following ATI

� Time to ART resumption

� Time to meet criteria to resume ART

ALVAC9Remune† was associated with an

increased time to meet the predefined

criteria to restart ART and tended to delay

viral rebound, but did not reduce the viral set

point during ATI.

[120]

Viral reservoir substudy of

Ref. [120]

� Size of the viral reservoir � CD4 T cell count ALVAC9Remune† did not affect the size of

the viral reservoir.

[154]

ALVAC-HIV vCP1433 (a

recombinant canarypox virus

encoding part of HIV-1 Env,

Gag, protease and multiple

immunodominant Nef and Pol

CTL epitopes)

Single-arm study � Percentage of participants

who remained off ART 44

weeks after the initiation of

the ATI among those having

at least one HIV-specific

T cell response during the

vaccination period

� CD4 T cell count

� Percentage of participants who resumed

ART (pVL�50,000 copies/ml within

eight weeks of ATI or two consecutive

measurements�10,000 copies/ml

any time after eight weeks

of ATI)

� CD4 and/or CD8 HIV-specific immune

responses

11% of the participants with at least one

HIV-specific T cell response during

vaccination remained off ART 44 weeks

after the initiation of ATI.

[155]
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Table 1D (Continued )

Vaccine Study design Primary outcome measure(s) Other relevant efficacy outcome measures Main findings References

ALVAC-HIV vCP1433�HIV Lipo6-T

followed by three cycles of IL-2.

The Lipo-6T vaccine is a mixture

of the tetanus toxoid TT-830�

843 class II restricted universal

CD4 T cell epitope and five

HIV-1LAI peptides: Gag 17�35,

Gag 235�284, Nef 66�97, Nef

116�145 and Pol 325�355.

RCT � Percentage of participants

who responded to both HIV

p24 and at least one of 11

HIV peptides

� CD4 T cell count

� HIV-1 DNA in PBMC

� HIV-specific CD8 T cell responses (IFN-g
production)

� Percentage of participants experiencing

virologic success following ATI

� Viral load set point during ATI

� Time to virologic failure

The vaccines induced both HIV-specific CD4

and CD8 T cell responses. Vaccine-induced

immune responses predicted virologic

control during ATI.

[109]

RCT; participants

initiated ART during

acute HIV infection

� Percentage of participants

with a CD4 T cell response to

HIV p24 or to one HIV

peptide at Week 36

� HIV-specific CD8 T cell responses

� Percentage of participants with virologic

success at study end

� Time without ART

� HIV-1 DNA in PBMC

� CD4 T cell count

Vaccination did not induce CD4 T cell

immune responses, had a transient impact

on CD8 T cell IFN-g responses and had no

effect on viral rebound during ATI.

[107]

rFPV vaccines (recombinant

fowlpox virus that encodes HIV

Gag/Pol9human IFN-g)

Extension study of an RCT by

Emery et al. [156] in which

participants who had

initiated ART during acute

HIV infection received

placebo or rFPV9human

IFN-g; in this extension

study, participants received a

booster and then underwent

ATI one week later.

� Time-weighted mean area-

under-the-curve change

from baseline log pVL until

ART resumption

� Kinetics and rate of pVL rebound

� Median time to ART resumption

Immunization with rFPV Gag/Pol� IFN-g,
but not with rFPV Gag/Pol or placebo, was

associated with a trend toward reduced

plasma viral load following ATI.

[108]

Replication-defective adenovirus

5 HIV-1 Gag

RCT � Time averaged area-under-

the curve analysis of pVL

during ATI

� Viral load set point after ATI

� CD4 T cell count The vaccine did not significantly affect viral

rebound kinetics during ATI.

[157]

Follow-up study of Ref.

[157]

� pVL set point (mean of the

ATI weeks 12 and 16 pVL)

� Immunogenicity The majority of the initial viral suppressors had

been vaccinated; this suppressionwas transient.

[158]

Retrospective analysis of

Ref. [157]

� Cell-associated HIV-1 DNA

and RNA

� Residual viremia (SCA)

� Immunogenicity Vaccination had a modest, transient impact

on residual viremia.

[159]
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Table 1E. Summary of the outcome measures of efficacy assessed in therapeutic HIV vaccine clinical trials with analytical treatment interruptions: autologous dendritic cell vaccines

Vaccine Study design Primary outcome measure(s) Other relevant efficacy outcome measures Main findings References

Autologous monocyte-derived

dendritic cells loaded with heat-

inactivated autologous HIV-1

RCT � Safety

� Percentage of participants with a set

point pVL decrease of 0.5 log10 HIV-1

RNA copies/ml after the second ATI

� Dynamics of pVL rebound after the second ATI

� compared to the first ATI

� CD4 T cell count

� CD8 T cell count

� CD4/CD8 ratio

Vaccination resulted in transient, partial virologic

control.

[160]

RCT � Safety

� Change in pVL set point during ATI

(Week 24)

� Percentage of participants with a

decrease in pVL]1 log10 at Week 24

� pVL set point changes at Weeks 12, 36 and 48

(during ATI)

� Percentage of participants with a decrease in pVL]1

log10 at Weeks 12, 36 and 48 (during ATI)

� Percentage of participants with a decrease in pVL]0.5

log10 at Weeks 12, 24, 36 and 48 (during ATI)

� Percentage of participants who restarted ART

� CD4 T cell count

Vaccination resulted in a significant but transient

reduction in viral load during ATI, which was

associated with increased HIV-1-specific T cell

responses.

[110]

Viral reservoir

substudy of Ref.

[110]

� Total and integrated HIV-1 DNA in CD4 T

cells

� Immunogenicity

� CD4 T cell count

� CD8 T cell count

Vaccination had no effect on the size of the viral

reservoir during the vaccination period, although

vaccine-induced T cell responses transiently delayed

the replenishment of the viral reservoir after ATI.

[112]

Autologous monocyte-derived DCs

loaded with seven HIV-1-derived

CTL epitope peptides

Single-arm study � Safety

� Immunogenicity

� CD4 T cell count

� Serum HIV-1 RNA

� Viral load rebound after ATI

� Viral load set point during ATI

Vaccination was safe and immunogenic in some

participants but did not reduce the viral load set

point during ATI.

[161]

ANRS HIV-LIPO-5 (autologous

monocyte-derived DCs loaded with

five HIV-1-antigen peptides

[Gag(17�35), Gag(253�284),
Nef(66�97), Nef(116�145) and
Pol(325�355)], each covalently

linked to a palmitoyl-lysylamide

moiety)

Single-arm study � Safety � ART resumption

� CD4 T cell count

� Serious non-AIDS events

� AIDS-defining events

� Maximum viral load during ATI

The vaccine was safe and induced HIV- specific CD4 T

cell responses that were associated with a trend

toward reduced maximum viral load during ATI.

[162]

Autologous monocyte-derived DCs

loaded with ALVAC-HIV vCP1452

RCT � Safety

� Immunogenicity

� Viral load set point during ATI

� CD4 T cell count

� Percentage of CD4 T cells

The mean viral load set point during ATI did not differ

between the two vaccine groups (another vaccine

group received ALVAC-HIV vCP1452 independently

of DC).

[152]

Autologous monocyte-derived DCs

loaded with mRNA encoding HIV-1

Tat, Rev and Nef

Single-arm study � Safety � CD4 T cell count

� CD8 T cell count

� Kinetics of viral rebound during ATI

� Duration off ART

The vaccine was safe and immunogenic. Although

6/17 participants remained off ART 96 weeks post-ATI,

there was no correlation between HIV-specific immune

responses and time off ART.

[163]

RCT: randomized controlled trial; ATI: analytical treatment interruption; VL: viral load; ART: antiretroviral therapy; pVL: plasma viral load; IFN-g: IFN-gamma; ddI: didanosine; GM-CSF: granulocyte-macrophage colony-stimulating factor;

Nef: HIV negative regulatory factor; Rev: HIV regulator of expression of virion proteins; Tat: HIV transactivator of transcription; Gag: HIV group antigens; Pol: HIV precursor of reverse transcriptase, protease and integrase; Env: HIV

envelope; RT: HIV reverse transcriptase; DCs: dendritic cells; IL-2: interleukin-2; rFPV: recombinant fowlpox virus; IL-10: interleukin-10; CTL: cytotoxic T lymphocytes; PBMC: peripheral blood mononuclear cells; SCA: single-copy assay.
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this vaccine provides hope that it might be possible to induce

clinically beneficial immunity against other viruses that

establish chronic infections.

The development of therapeutic vaccines to treat other

chronic infections in humans is an area of active research.

The various pathogens, other than HIV, against which thera-

peutic vaccines are currently being or have been assessed

in various clinical trials include cytomegalovirus [41�43],
hepatitis B [44�61] and hepatitis C [62�76] viruses, human

papillomavirus [77�90], herpes simplex virus 2 [91�93],
Mycobacterium tuberculosis [94,95], Trypanosoma cruzi [96]

and Leishmania [97]. Encouraging results have been obtained

in some of these trials [43,47,48,59,63�66,68,76,79�82,84,86].

The current state of therapeutic HIV vaccines assessed in

clinical trials

The features that might make a therapeutic vaccine effective

and the inherent challenges of making such a vaccine have

been recently described in a number of excellent reviews

[3,6,98�102]. Minimally, a therapeutic vaccine should improve

the benefits of existing ART regimens, simplify these regi-

mens or allow for periodic ART interruption [6,98�100].
Ideally, a therapeutic vaccine would eliminate the need for

ART, either by eradicating virus (a sterilizing cure) or by in-

ducing an immune response capable of controlling virus

replication (a functional cure) [6,98�100,102].
Therapeutic vaccination would be of particular value for

HIV-positive individuals residing in resource-limited countries

in which access to ART is limited [98]. In these settings, the

HIV epidemic is fuelled by the higher rate of new infections

relative to the rate at which newly infected individuals receive

ART [98,99]. An effective therapeutic vaccination could,

therefore, help control the epidemic. Therapeutic vaccines

would also be invaluable to those who struggle with daily,

lifelong ART compliance [98].

Over the course of more than two decades, more than

four dozen therapeutic HIV vaccine candidates have been

evaluated in clinical trials for safety, immunogenicity and,

in some cases, for efficacy. The results of these trials have

shown limited success (reviewed in Refs. [3,6,99�102]) with
respect to their ability to control HIV replication or maintain

CD4 T cell counts in the absence of ART [99,102,103]. While

the majority of these trials involved therapeutic vaccination

of individuals who initiated ART during chronic HIV infection,

vaccination of individuals who initiated ART during acute or

early infection was also ineffective [104�108]. In one of these

studies, the dynamics of viral rebound following vaccina-

tion and ATI were similar to those observed in studies of

chronically infected individuals who discontinued ART [105].

A few randomized, controlled clinical trials by Levy et al.

[109], Garcia et al. [110] and Pollard et al. [111] have,

however, produced somewhat encouraging results.

In a trial assessing the effects of receiving two vaccines,

ALVAC-HIV vCP1433 and Lipo6-T, followed by IL-2 adminis-

tration, Levy et al. [109] observed that a significantly greater

proportion of vaccinated HIV-positive participants had a

lower viral set point 12 weeks after stopping ART, compared

to unvaccinated controls. The times to viral rebound and to

resume therapy were also significantly delayed in the

vaccinated participants.

Garcia et al. [110] observed that therapeutic vaccination

of HIV-positive participants with an autologous dendritic cell

vaccine loaded with autologous, inactivated HIV-1 resulted

in a decrease in the viral load set point following ATI.

Unfortunately, the decrease in the viral load induced by vac-

cination was transient. Furthermore, vaccination did not

prevent the CD4 T cell count decline after interruption of

ART. It was subsequently reported that, although no change

was observed in the size of the viral reservoir during the

vaccination period, vaccine-induced T cell responses transi-

ently delayed the replenishment of the viral reservoir after

ATI [112].

Pollard et al. [111] observed that the Vacc-4x vaccine,

which contains a mixture of conserved Gag peptide domains,

was able to significantly reduce the viral load following ATI,

resulting in a new viral load set point. However, vaccination

did not affect the change in the CD4 T cell count following

ATI, nor did it affect the proportion of participants who

resumed therapy or the time until therapy was resumed.

The role of ATIs in assessing the efficacy of therapeutic HIV

vaccines

ART may be interrupted as part of a structured treatment

interruption (STI) or as part of an ATI. The main goals of

the STI are to reduce ART-associated burden (reviewed in

Refs. [4,113�115]) and/or to induce HIV ‘‘autoimmunization’’

(reviewed in Refs. [3,4,114,116]), whereas the purpose of the

ATI is to assess the efficacy of an experimental therapeutic can-

didate [12]. STIs and ATIs are discussed in further detail below.

STIs have been used in the past to address the ART-

associated issues of toxicity, cost and resistance (reviewed

in Refs. [4,113�115]). Another goal of the STI was to allow

for viral rebound, resulting in ‘‘autoimmunization’’ with

increased exposure to HIV antigens (reviewed in Refs. [3,4,

114,116]). It was hypothesized that the resulting viremia

would boost the anti-HIV immune response sufficiently to

induce viral control, thus avoiding ART resumption. Unfortu-

nately, the various clinical trials that assessed the immuno-

logical benefits of STIs failed to show any benefits (reviewed

in Refs. [4,114]), while the SMART study showed that treat-

ment interruptions can increase morbidity and mortality [117].

When ART is interrupted, plasma HIV RNA levels typically

first become detectable within days or weeks [118�120],
reach a peak and then decrease to a steady state level, or viral

set point [121]. Exceptions to the occurrence of viral rebound

following therapy interruption do occur and may be more

frequent in those who are treated during acute primary infec-

tion [122], although the exact immune mechanisms respon-

sible for this degree of viral control are currently unknown.

The ATI is an intentional interruption of ART that is

included in controlled clinical trials of therapeutic vaccines

(reviewed in Refs. [2,4,5,115,123]). The ATI is a frequently

used strategy for assessing HIV therapeutic vaccine efficacy

[12]; it is considered by some to be the ‘‘gold standard’’ [5].

This strategy, which is used to assess the virologic control

induced by an immunotherapy given while the individual is

still taking suppressive ART [2,115,123] is necessary because
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there are currently no laboratory assays that measure the

ability of the immune system to effectively control HIV

replication [2,99,123]. In addition to assessing the kinetics of

viral rebound [2,99], ATIs also allow for the assessment of a

potentially new viral set point as well as CD4 T cell dynamics

following treatment interruption [115,123].

The SMART study revealed that HIV-positive participants

who interrupted ART experienced an increased risk of de-

veloping AIDS and non-AIDS events compared to participants

who continued therapy [117]. However, it also showed that

individuals having high CD4 counts (�500 cells/ml), high CD4

nadir (�200 cells/ml) and undetectable virus levels (B50

copies/ml) can safely undergo treatment interruptions in

carefully monitored clinical trials without increasing their risk

of death and non-AIDS events or developing viral resistance

[115,124�126]. It was recently shown that chronically in-

fected individuals having undetectable virus levels and pre-

served CD4 counts, including those with low CD4 nadir, can

also safely undergo treatment interruptions if the interrup-

tions are short, that is if treatment is reinitiated upon

detection of viral rebound [127].

Despite the safety of ATIs, the increased viral load that

occurs following treatment interruption can occasionally

be associated with the development of an acute retroviral

syndrome [128,129] or thrombocytopenia [130], as well as

with an increased risk of HIV transmission by individuals

involved in high-risk activities [131].

Alternatives to ATIs

In studies that include an ATI, therapy is typically reintro-

duced either at the end of a fixed period of treatment inter-

ruption (e.g. 16 weeks), during which time a new viral set

point is usually achieved, or when specific virologic, im-

munologic or clinical outcomes are met. A new, alternative

treatment interruption strategy in clinical trials of HIV im-

munotherapies is the monitored antiretroviral pause (MAP),

which reintroduces ART as soon as viral rebound occurs [123].

The advantage of the MAP is that, by reintroducing ART as

soon as viral rebound occurs, the risk is reduced compared to

the risk associated with an ATI. However, since the MAP does

not allow a new viral set point to be established, this strategy

cannot be used to determine whether the immunotherapy

being tested improved virologic control by the immune

system. Thus, whether an ATI or a MAP should be used in

a clinical trial of an HIV immunotherapy depends on the

scientific question being asked, with the MAP lending itself

to assess therapies designed to measure the time to viral

rebound, which may be a surrogate measure of the size of

the viral reservoir, while the ATI should be used to assess

therapies designed to improve immune control of HIV. It

should be noted, however, that it has not yet been established

whether the time to viral rebound following ATI is, in fact, a

surrogate measure of the size of the viral reservoir [132].

Recently, single-copy reverse transcriptase (RT)-qPCR as-

says with single-copy sensitivity (i.e. the single-copy assay

(SCA) for HIV-1 RNA) were used to detect virus in the plasma

of individuals who had undergone myeloablation and auto-

logous stem cell transplantation for the treatment of

lymphoma [133]. Since these patients had undetectable

plasma viremia by standard methods, it was hypothesized

that their lymphoma treatment had resulted in HIV eradica-

tion; the results of the SCA, however, proved otherwise.

Therefore, in this setting, SCA was used to guide the deci-

sion regarding whether to interrupt ART; because virus was

detected using this assay, ART was not interrupted and the

viral rebound that would have otherwise occurred was

avoided. However, had the SCA failed to detect virus, then

an ATI would have been warranted. The use of these highly

sensitive assays has been suggested as an additional ap-

proach to the assessment of therapeutic vaccine efficacy [5].

The inclusion of such assays into future clinical trials of HIV

immunotherapeutics could expedite these trials if only sub-

jects with undetectable viral load by SCA proceeded on

to ATI. However, such an alternative approach would need to

be validated first by concurrent analysis in clinical trials in

which it can be determined that SCA results predict virologic

rebound following ATI [5]. In the interim, or until some other

strategy is validated, treatment interruptions, the current

gold standard for assessing therapeutic vaccine efficacy [5],

will continue to play a crucial role in the evaluation of HIV

therapeutic vaccines and should only be replaced with some

other strategy if treatment interruption must be avoided.

It was recently shown that the ex vivo antiviral capacity of

CD8� T cells [134] predicts the rate of CD4 T cell loss in early

HIV infection and is inversely correlated with viral load set

point [135]. It has been suggested, therefore, that this assay

[134] be included as a read-out in clinical trials of therapeutic

vaccines. However, whether this accurately measures vaccine-

induced immunologic control of viral replication remains to

be established [135].

Read-outs of therapeutic HIV vaccine studies that

incorporate ATIs

More than four dozen therapeutic HIV vaccine candidates

have been evaluated in clinical trials for safety, immunogeni-

city and, in some cases, for efficacy. Tables 1A�1E summarizes

the outcome measures of efficacy that have been assessed in

published vaccine trials that include ATI.

Since the correlates of viral suppression/immunological

response that should be used to assess the therapeutic

benefits of vaccines are not well defined [7,99,135,164�166],
the surrogate measure(s) used as the primary end point(s) to

assess the clinical benefits of therapeutic vaccine candidates

vary from trial to trial.

The virologic outcome measures assessed following vacci-

nation and ATI may include the time to detectable viremia,

the peak level of viremia, the new viral set point, the time to

reach the new viral set point, the time to reach a certain viral

load threshold, the viral load at a predefined time following

ATI and changes in the size of the viral reservoir.

Of these read-outs, it has been suggested that the new

viral set point is the most relevant clinical assessment of

the antiviral efficacy of a therapeutic vaccine (reviewed in

Ref. [5]). Whereas the new viral set point, the peak level

of viremia and the time to rebound are all affected by the

strength of the host’s anti-HIV immune response, the peak

level of viremia and the time to rebound may also be

affected by the number of susceptible target cells and the
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size of the viral reservoir, respectively. It has also been

suggested that the new viral set point established after

immunotherapy and ATI should be the primary end point of

clinical trials for assessing the effectiveness of anti-HIV

immunotherapies; a difference of at least 0.5 log copies/ml

between the experimental and control arms of a study is

probably clinically significant, as determined by the results

obtained in studies of antiretrovirals (reviewed in Ref. [2]).

One disadvantage of using the new viral set point as a pri-

mary end point, however, is that it may miss important

virologic and immunologic events that occur early in the

immune response to the vaccine [165]. Another disadvantage

is that the establishment of a new viral set point may be

delayed, thus extending the length of treatment interruption

and its associated risks.

Another primary end point that is commonly used in HIV

therapeutic vaccine clinical trials is the time to detectable

virus or the time to viral rebound (i.e. the time to achieve

a viral load �50 copies/ml) following an ATI. However, an

accurate assessment of this requires frequent viral load moni-

toring [165]. While this outcome would seem to be clinically

relevant, its value is unknown since this measure does not

appear to correlate with other virologic outcome measures.

In a therapeutic vaccine trial of ALVAC-HIV vCP1452 by

Jacobson et al., the time until viral rebound did not correlate

with any of the other virologic measures assessed, such as

the new viral load set point [150]. As a result, it has been

suggested that the time to viral rebound is probably not an

appropriate outcome measure for assessing the effectiveness

of HIV therapeutic vaccines [2]. Similarly, our own study of

ALVAC-HIV vCP1452 with or without Remune† failed to find

a correlation between the time to viral rebound and the new

viral set point, nor with the magnitude of the viral rebound

[120]. A correlation was observed, however, between the

time to viral rebound and the time to restart therapy, as well

as the time to meet the criteria to do so. In the one other

trial in which vaccination was found to delay the time to viral

rebound (this trial involved ALVAC-HIV vCP1433 and Lipo-6T),

no assessments were made for correlations with other

virologic outcome measures [109].

The CD4 count, which is routinely used to determine the

risk of opportunistic infection [167], is typically included

in trials of HIV therapeutic vaccines. In addition to monitor-

ing the change in the absolute CD4 count, changes in the

percentage of CD4 T cells, the CD4:CD8 ratio, the time to

decline to a predefined level or the change in the slope

of the CD4 count have also been assessed in clinical trials of

HIV therapeutic vaccines. However, this is not an ideal

primary outcome as it requires waiting for a decline in the

CD4 count.

In addition to virologic and immunologic outcomes, some

studies of therapeutic HIV vaccines include the assessment

of clinical outcomes. These outcomes include the develop-

ment of clinical events, including symptoms of acute retro-

viral syndrome after ATI [128,129] or the time until either

ART is resumed or the criteria for ART resumption is met.

In addition, the proportion of participants who do or do not

resume ART may also be determined.

Therapeutic HIV vaccines and their potential role in an HIV

cure strategy

One of the research priorities recently identified by the

International AIDS Society (IAS) Global Scientific Strategy

‘‘Towards an HIV Cure’’ working group is the development of

a therapeutic HIV vaccine capable of boosting the immune

system of the infected host to control HIV replication in the

absence of ART, thus producing a functional cure [7] similar

to that experienced naturally by long-term non-progressors

and elite controllers (reviewed in Refs. [7,99,166]). According

to this IAS working group, a therapeutic vaccine should be

directed to conserved HIV epitopes and either 1) elicit a

humoral response consisting of neutralizing anti-HIV anti-

bodies that would a) prevent cell-to-cell transmission or

b) recognize virus-producing cells for destruction by antibody-

dependent cellular cytotoxicity; or 2) induce a strong cyto-

toxic cellular response for the destruction of cells producing

virus before virus progeny is released [7]. These strategies

should lead to a sustained reduction in the number of cells

actively transcribing virus and induce an immune selective

pressure that would lead to loss of viral fitness and replicative

potential.

The persistence of the viral reservoir is considered to be

the major obstacle to curing HIV infection [3,6,7,10]. In fact,

when ART is interrupted, the viral rebound that occurs within

days or weeks is the result of reseeding from viral reservoirs

[11]. Furthermore, high levels of HIV DNA, a surrogate

marker of the size of the viral reservoir, are correlated with

quicker viral rebound following ART interruption [126]. The

few trials of therapeutic vaccines that have assessed the

change in the size of the viral reservoir did not observe

any significant effect [106,112,149,154,159,168�172]. Five of

these studies assessed whether vaccination induced any

changes in the size of the viral reservoir by measuring pro-

viral DNA, either by co-culture assay [154,168,171] or by PCR

[149,169]. One of the advantages of assessing changes in the

size of the viral reservoir as a read-out of therapeutic vaccine

efficacy is that this outcome measure can be made in trials

that do not include an ATI [168], thus minimizing the

risks that may be associated with treatment interruptions.

Disadvantages of using this outcome measure, however,

include the fact that no single assay accurately measures the

size of the viral reservoir [173,174] and the lack of strong

correlations between assays [174].

Conclusions and future directions
The development of a therapeutic HIV vaccine would be a

valuable alternative to the use of expensive, toxic, lifelong

ART regimens. The results of dozens of clinical trials perfor-

med over more than two decades to assess the safety,

immunogenicity and, in many cases, the efficacy of various

HIV therapeutic vaccines have been published, and more

trials are underway. Besides the obvious challenges of

developing a successful therapeutic vaccine is the issue of

how to best assess the efficacy of vaccine candidates [12].

Currently, the inconsistent assessment of different outcome

measures in different trials makes it difficult to compare the

relative efficacies of the various vaccine candidates.
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In its ‘‘Towards an HIV Cure’’ recommendations, the IAS

recommends that future clinical trials of therapeutic HIV in-

clude studying compartments in addition to peripheral blood,

such as the gastrointestinal tract and lymph nodes, both sites

of HIV infection and immune responses [7]. Other sugges-

tions for future trials include measuring immune control of

viral replication by using highly sensitive SCA in situations in

which the use of ATI is not ideal.

Given that immune activation predicts HIV disease pro-

gression independently of the CD4 count and viral load, it has

also been recommended that, when assessing the efficacy

of an HIV immunotherapy such as therapeutic vaccination,

concurrent changes in immune activation markers, vaccine-

specific responses and viral replication should be assessed

during treatment interruption [175].

It is apparent that despite significant efforts made, the

therapeutic vaccine candidates studied to date have been

associated with limited clinical benefit [3,6,99]. Continued

efforts will be required, therefore, to develop and test a

safe and effective therapeutic HIV vaccine that will help end

the global HIV epidemic. Future work may be influenced by

promising prophylactic simian immunodeficiency virus (SIV)

vaccines. In one study, virus levels became undetectable

following initial viremia in half of the macaques vaccinated

prior to SIV challenge [176], while in another SIV/macaque

study, one-third of the monkeys that became infected fol-

lowing SIV challenge ultimately became elite controllers [177].

Thus, despite being designed as preventative SIV vaccines,

both appeared to induce therapeutic benefits. These simian

vaccines may, therefore, provide some valuable insight into

the design of effective therapeutic HIV vaccines.

Finally, while the characteristics of a successful therapeutic

HIV vaccine are currently unknown, standardizing which

outcome measures should be used in future clinical trials

to evaluate vaccine efficacy would certainly be beneficial.
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