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Estimating changes in metabolic power
from EMG
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Abstract

Metabolic rates can increase 21 times above resting levels during cycling with the majority attributed to muscular
contractions. Metabolic estimates attained through gas exchange parameters are limited by the respiration rate and
time delay with respect to these contractions. In contrast surface electromyography (EMG) contains instantaneous
muscle contraction information at higher temporal resolutions. An adequate metabolic power-EMG relationship has
not been established to use EMG as a metabolic estimate during dynamic activities. The purpose of this study was
to establish a metabolic power-EMG relationship during non steady-state conditions. Participants cycled at
workloads between 25 and 90% _VO2max while EMG and gas exchange were monitored. The EMG was resolved into
intensities and total EMG intensity was calculated as the sum of intensities across all muscles for each pedal cycle.
Metabolic power was estimated from gas exchange parameters and the mean total EMG intensity between breaths
was calculated and used as breath-by-breath values. Comparisons were made between breath-by-breath resolutions
of metabolic power and total EMG intensity. Different weighting coefficients were also applied to the EMG for each
muscle to analyze the effects of different muscle weightings on metabolic power estimations. There was a
significant correlation (r = 0.91) between estimates of metabolic power from EMG and gas exchange. Muscle
weighting had a significant effect on metabolic power determination with the highest and lowest correlated
estimates having the largest weightings on muscles proximal and distal to the knee respectively. This study
demonstrates that EMG contains important information about the metabolic costs of muscle contractions and
provides good predictions of metabolic changes during non steady-state conditions. Also, the importance of each
muscle is workload dependent with inappropriate weightings reducing metabolic estimations. These findings have
implications for future EMG applications as they provide more immediate, higher temporal resolution predictions of
changes in metabolic power.
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Background
Contracting muscles require energy and more energy is
needed as muscular force production increases. Meta-
bolic rates can increase 21 times above resting levels in
trained cyclists (Astrand & Rodahl 1986), which is pri-
marily attributed to the energy supplied to the
contracting leg muscles by aerobic and anaerobic
sources. Muscle contractions during dynamic activities
must therefore contain considerable information about
metabolic power.
Aerobic metabolism during isometric or dynamic activ-

ities is often estimated through indirect calorimetry using

oxygen and carbon dioxide gas exchange where the energy
utilized by the working muscles reflects the changes in
pulmonary oxygen uptake (Poole et al. 1992). Unfort-
unately measures of metabolic power based on gas
exchange are unable to resolve metabolic costs to a reso-
lution greater than the respiration rate. Consequently, in-
formation about muscular contractions that influence
metabolic power is neglected since these contractions can
occur more frequently than the respiration rate.
Changes in force during muscular contractions are pri-

marily achieved by altering the number of active motor
units and the motor unit firing rates. These changes can
be detected using surface electromyography (EMG),
which provides information about the active muscle by
measuring the electrical signals of the motor unit action
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potentials. Gait cycles can take less than a second during
high-speed movements and EMG fluctuates considerably
within this time. EMG therefore must contain informa-
tion about metabolic power at a higher temporal reso-
lution than gas exchange measures, yet it is unknown if
EMG can be used to estimate metabolic power changes
during non steady-state dynamic activities.
Previous studies looking at the relationship between

oxygen uptake ( _VO2) and EMG have shown evidence of a
linear relationship below the anaerobic threshold (Arnaud
et al. 1997; Bigland-Ritchie & Woods 1976; Jammes et al.
1998) and a non-linear relationship above the anaerobic
threshold (Hug, Decherchi, et al. 2004a). The non-linearity
of this relationship is partially explained by a greater in-
crease in EMG than _V O2 due to a larger reliance on an-
aerobic metabolism. We recently found a significant
monotonic increase in metabolic power (r = 0.86), esti-
mated from _VO2 that was associated with increased EMG
intensity (Wakeling et al. 2011). Mean values of _V O2 and
EMG intensity were calculated while cycling at or near
steady-state at a range of workloads from 25-90% max-
imum oxygen uptake ( _VO2max). Although this relationship
was significant it only indicates that metabolic power is re-
lated to EMG intensity during steady-state activity when
averaged over an extended time. The relationships at the
workload transitions were not investigated and the higher
temporal resolution of the EMG was ignored. Dynamic ac-
tivities are rarely performed at constant workloads except
during controlled experiments. It is therefore important to
assess the relationship between metabolic power and
EMG in non steady-state conditions.
Oxygen uptake kinetics in response to a stepwise change

in workload can be modeled as exponential processes distin-
guished by changes in arterial and venous blood oxygen
content (Jones & Poole 2005). This provides good predic-
tions of the oxygen uptake kinetics underlying the breath-by
-breath fluctuations. Adequate changes in cardiac output
and _VO2 to accommodate oxygen demands of the working
muscles are delayed compared to the EMG signal since the
altered venous blood oxygen content takes time to reach the
lungs. For example, Whipp and co-workers (1982) showed
that, in response to a stepwise increase in workload, there
exists a time delay of approximately 20 seconds accounting
for approximately 20% of the total increase in _V O2 before
the primary exponential rise towards steady-state.
The purpose of this study was to further define meta-

bolic changes based on EMG by establishing a significant
relationship between metabolic power and EMG on a
breath-by-breath basis in non steady-state conditions. It
was hypothesized that a significant relationship exists at a
greater temporal resolution than previously determined
and good estimates of changes in metabolic power would
be established from the EMG signal.

Results
The correlation between breath-by-breath temporal resolu-
tions of EMG intensity and metabolic power was
r = 0.80 ± 0.02, which improved to r = 0.85 ± 0.02 when ac-
counting for the time delay through cross-correlation. There
was a significant correlation (r = 0.91 ± 0.01) between meta-
bolic power determined from the EMG intensity using the
transfer functions (Eq. 1) and the metabolic power estimated
from _V O2 (Table 1; Figure 1). From the transfer function,
the mean time delay (tdelay) between the EMG signal and the
subsequent metabolic power was approximately 12 breaths,
which equates to 28.33 ± 4.31 s, with a mean β of 0.28 ±
0.07 and τ of 96.11 ± 2.57 breaths (Table 1).
Applying different weights to each muscle in the model

had a significant effect on the determination of metabolic
power as seen by the significantly different mean correla-
tions for the 100 highest (Hcor; see Methods) and 100 low-
est (Lcor) correlated muscle weighting combinations
(r = 0.93 ± 0.01 and r = 0.77 ± 0.04 respectively; Figure 2b).
Hcor had the highest mean weightings for vastus medialis
(VM; 0.55 + 0.08; Figure 2a), vastus lateralis (VL; 0.49 ±
0.04), semitendinosus (ST; 0.54 ± 0.04), biceps femoris
(BF; 0.60 ± 0.07) and gluteus maximus (GM; 0.62 ± 0.07),
while Lcor had the highest mean weightings for tibialis
anterior (TA; 0.72 ± 0.04; Figure 2a), medial gastrocnemius
(MG; 0.63 ± 0.03) and lateral gastrocnemius (LG; 0.63 ±
0.03). Significantly greater weightings were placed on VM,
VL, ST, BF and GM for Hcor than for Lcor and significantly
greater weightings were placed on TA, MG, LG and soleus
(Sol) for Lcor compared to Hcor. The weighting for rectus
femoris (RF) was not significantly different between Hcor

and Lcor.
The muscles with muscle bellies distal to the knee

(TA, MG, LG and Sol) displayed less range in EMG in-
tensity across workloads than those proximal to the knee

Table 1 Time delay, transfer function coefficients (τ and β)
and correlations for each subject to estimate metabolic
power from EMG

Subject Time delay τ β Correlation

1 34.56 100 0.30 0.88

2 16.90 100 0.10 0.88

3 13.20 99 0.20 0.87

4 17.32 79 0.10 0.87

5 48.12 100 0.35 0.93

6 23.65 87 0.25 0.94

7 20.55 100 0.70 0.92

8 34.93 100 0.45 0.94

9 45.72 100 0.05 0.95

Mean 28.33 96.11 0.28 0.91

SEM 4.31 2.57 0.07 0.01

The time delay is the time adjustment from the measurement of the EMG
signal to the subsequent change in gas exchange parameters calculated from
the transfer function.

Blake and Wakeling SpringerPlus 2013, 2:229 Page 2 of 7
http://www.springerplus.com/content/2/1/229



(VM, RF, VL, ST, BF and GM; Figure 3). The muscles
proximal to the knee showed little change in EMG in-
tensity below 60% _VO2max and large increases above 60%
_V O2max. In most muscles EMG intensity for the 60% _V
O2max condition did not follow the best-fit curve and was
significantly higher than the 55% _VO2max condition.

Discussion
The primary finding of this study was the significant cor-
relation (r = 0.91) between estimates of metabolic power
from gas exchange and EMG intensity at a higher
temporal resolution than the previously established rela-
tionship between metabolic power and EMG intensity
(r = 0.86; (Wakeling et al. 2011)). This was important as
it included workload transitions as found in non steady-

state conditions. This indicates that breath-by-breath
EMG intensities provide a good estimate of changes in
metabolic power.
The time-shifted correlation between metabolic power

and EMG intensity (r = 0.85) revealed an improved
relationship over the initial breath-by-breath correlation
(r = 0.80). The tdelay from the measured EMG signal to the
subsequent _VO2 realized at the mouth was approximately
12 breaths or 28.33 ± 4.31 seconds. This is reasonable
given the time delay of approximately 20 seconds attrib-
uted to the delay in the transport of blood from the work-
ing muscles to the lungs (Whipp et al. 1982). The EMG
signal therefore contains metabolic information closer in
time to the actual energy use than gas exchange since the
tdelay is only apparent because the estimated metabolic
power was measured at the mouth.
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Figure 1 Estimates of metabolic power. Metabolic power (grey) calculated from oxygen uptake and estimated metabolic power (black),
calculated from the EMG signal using the transfer function (Eq. 1), for one participant (subject 6). The transfer function was optimized with a time
delay of 23.65 s, β of 0.25 and τ of 87 breaths resulting in a correlation of r = 0.94.
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Figure 2 Muscle weighting coefficients and resultant metabolic estimates correlated with the metabolic estimates from V
:
O2.

(A) Mean ± SEM weighting coefficients for each muscle for the highest (Hcor; grey) and lowest (Lcor; white) 100 correlated estimates of metabolic

power. (B) Mean ± SEM correlations between metabolic estimates from _VO2 and both Hcor (r = 0.93 ± 0.01) and Lcor (r = 0.77 ± 0.04). The
correlation and weighting coefficients for Hcor and Lcor for each muscle were significantly different except for rectus femoris (RF) as indicated (NS).
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Due to the breath-by-breath fluctuations in both _V O2

and EMG (Figure 4), the activation constants of the trans-
fer functions do not possess significant physiological infor-
mation. Instead these optimized values smooth the
metabolic estimate and highlight the underlying kinetics
in order to maximize the correlation. This has a similar ef-
fect to previous methods for modeling oxygen uptake
using exponential functions that highlight the underlying
kinetics of the breath-by-breath fluctuations (Jones &
Poole 2005). There is no physiological explanation to indi-
cate that these fluctuations are directly related to the con-
tractions of the individual muscles, and therefore evident
in the EMG signal, since they represent ‘white noise’ and
are not important to the overall gas exchange kinetics
(Lamarra et al. 1987) and metabolic estimations. This im-
plies that the fundamental information about metabolic
power is contained in the EMG signal and the transfer
function (Eq. 1) operates to emphasize the essential fea-
tures despite the unrelated noise.
The maximum allowable value of τ in the transfer

function (Eq. 1) was 100 breaths, yet six subjects had op-
timized values at this maximum (Table 1). Values greater
than 100 breaths were also tested to ensure the resultant
correlations were maximized. No subjects displayed ap-
preciable gains in correlation (no difference in r values
to the four significant digits reported) with values of τ
above 100 breaths. The aim of this study was not to
identify specific transfer function constants, but to show
a significant relationship between metabolic power esti-
mated from gas exchange and EMG. This was accom-
plished within the constraints imposed on the constants.
There were 3.19 ± 0.27 pedal cycles per breath across

all workloads, which provides a small measure of
smoothing, similar to a moving average, for the breath-
by-breath EMG intensities when compared to the cycle-
by-cycle values. Even at 25% _V O2max, with the lowest
mean respiration rate of 23.83 ± 1.75 breaths per

minute, there were only 4.15 ± 0.36 pedal cycles per
breath. This level of data reduction maintains the im-
portant information of the EMG signal while reducing
the amount of noise (Figure 4). Determination of an in-
stantaneous measure of metabolic cost remains elusive,
but these data and the small number of pedal cycles be-
tween breathes suggests that cycle-by-cycle EMG inten-
sity with a time resolution of approximately 0.70
seconds would also provide a reasonable estimate of the
_VO2 kinetics and therefore the metabolic power.
Similar to previous findings (Ericson 1986; Hug &

Dorel 2009; Hug, Bendahan, et al. 2004b; Lawrence &
De Luca 1983), some muscles displayed non-linear rela-
tionships between the EMG signal and force or work-
load (Figure 3). This shows that the importance of each
muscle is workload dependent. Different weightings
were applied to each muscle in order to evaluate its sig-
nificance to the estimation of metabolic power. Given
the importance of the larger knee extensor muscles in
cycling (Ericson 1986; Hug & Dorel 2009), it was pre-
dicted that a reduced muscle set would provide as accur-
ate predictions of metabolic changes as the entire set of
muscles. In fact combinations of all muscles resulted in
the best estimates and inappropriate weighting resulted
in significantly reduced estimations (Figure 2). These re-
sults provide insight into the most important muscles
for accurate metabolic predictions and imply that each
muscle has a different role in metabolic power depend-
ing on the relative workload intensity. Therefore, when
cycling involves a range of workloads, as is the case in
this study, it is particularly important to include EMG
from many muscles to attain an accurate account of
metabolic power.
Muscles proximal to the knee, which include the mus-

cles considered to be the primary power producers in
cycling (VL and VM, (Ericson 1986)), were more heavily
weighted in Hcor. Eliminating muscles distal to the knee
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Figure 3 Mean ± SEM EMG intensity for each workload between 25 and 90% V
:
O2max. (A) Muscles distal to the knee (TA, MG, LG, Sol; grey

lines) show relatively little change in EMG intensity across workloads and muscles proximal to the knee (VM, RF, VL, ST, BF and GM; black lines)

show relatively large increases in EMG intensity at workloads above 55% _VO2max. (B) Mean (black lines) ± SEM (grey lines) across all muscles with
muscle bellies distal (dashed line) and proximal (solid line) to the knee.
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volume of oxygen uptake ( _VO2; blue line) responses. The cycle-by-cycle figure shows the individual pedal cycles (vertical lines) and the cycle-by-cycle
variation in the EMG that is matched well with variation in power output at this temporal resolution. Moving from cycle-by-cycle to the breath-by-breath
temporal resolution (mean EMG and power output between breaths) the EMG and power output curves are smoothed since there were 3.19 ± 0.27
pedal cycles per breath across all workloads. Also shown is the time delay (dashed lines) of 28.33 ± 4.31 seconds between a change in the EMG signal

and power output and the subsequent change in _VO2. (B) A global perspective over 110 seconds moving from raw EMG sampled at 2000 Hz to cycle-
by-cycle temporal resolution at approximately 1.58 Hz at 95 pedal revolutions per minute (rpm) to breath-by-breath temporal resolution at approximately
0.50 Hz at 30 breaths per minute (bpm). This clearly shows the cycle-by-cycle variation of the EMG and power output that is reduced moving to breath-

by-breath resolution, while the primary features of the underlying kinetics are preserved. The processed EMG, power output and _VO2 values have been
normalized to the mean across the 110 seconds of data, while the raw EMG is normalized to the absolute maximum.
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with the lowest weights (TA and Sol) did not improve the
metabolic estimations as these muscles had high relative
EMG intensities at lower workloads (Figure 3). The EMG

intensities for the 60% _V O2max condition are inflated for
all muscles (Figure 3) since they occurred after the 75% or
90% conditions for some participants. The 75% and 90%
conditions occurred with respiration exchange ratios
greater than one (Blake et al. 2012) indicating a greater
contribution of anaerobic energy sources. With the 60%
condition taking place after these workloads and no rest
between conditions, there was likely increased fatigue,
which is associated with higher levels of EMG intensity
(Edwards & Lippold 1956; Petrofsky 1979). These inflated
values decrease the curvature of the best-fit relationship of
EMG intensity across all workloads, especially for those
muscles proximal to the knee (Figure 3). Despite these
limitations the EMG signals contained substantial infor-
mation about the metabolic power as evidenced by the
significant correlation between the metabolic power esti-
mations (r = 0.91).
Normalization of the EMG signals to the mean across

all trials for each subject and each muscle presents a
limitation to the interpretation of the EMG-metabolic
cost relationship. This method weights all muscles the
same and ignores metabolic differences of the structural
and contractile properties of the individual muscles.
Interestingly, imposing 5000 different weighting combi-
nations to the muscle EMG signals only increased the
metabolic power estimation correlation from r = 0.91 to
r = 0.93 (Hcor). Changing the weightings is equivalent to
using different normalization values for each muscle,
and so the 5000 weighting combinations represented
5000 ways to normalize the muscles. The normalization
method chosen for this study resulted in close to the
best possible normalization for predicting metabolic
power from EMG for this cycling task. However, an in-
appropriate set of normalization could result in poor re-
sults as shown by the significantly reduced correlation of
Lcor (r = 0.77; Figure 2).

Conclusions
This study shows that breath-by-breath changes in EMG
across ten leg muscles can be used as a good estimate of
changes in metabolic power in non steady-state condi-
tions. Estimations of metabolic changes on a cycle-by
-cycle basis may also be reasonable given that breath-by
-breath resolution acts as a moving average of approxi-
mately three to four pedal cycles, thereby maintaining
the important features of the data. This has implications
for future studies and applications involving EMG from
large muscle groups during dynamic activities as it pro-
vides higher temporal resolution and more real-time

predictions of changes in metabolic power than gas ex-
change measures. Also, metabolic power estimated from
gas exchange is used in calculations of mechanical effi-
ciency, which implies that breath-by-breath changes in
EMG can also be used to investigate the relationship of
mechanical work and metabolic power.

Methods
Nine competitive male cyclists (age = 41.8 ± 2.7 yr,
mass = 77.2 ± 2.2 kg, height = 1.81 ± 0.01 m, _VO2max =
64.65 mL kg-1 min-1 , yearly mileage = 9428 ± 1913 km;
mean ± SEM) participated in the study. The participants
gave their informed written consent, and the ethics com-
mittee in accordance with the Office of Research Ethics
at Simon Fraser University approved all procedures.
The cycling protocol and data collection was completed

as described previously (Blake et al. 2012). Briefly, partici-
pants cycled at a freely chosen cadence (94.7 ± 1.1 rpm)
continuously for 18 minutes in three minute intervals at
25, 40 and 55% of the power output at _VO2max in random
order followed by 60, 75 and 90% _VO2max, also in random
order, while breath-by-breath oxygen and carbon dioxide
gas exchange (Vmax 229 metabolic cart, Sensormedics,
Yorba Linda, California) and EMG from 10 leg muscles
(tibialis anterior (TA, MG, LG, Sol, VM, RF, VL, ST, BF
and GM)) were recorded. The EMG recording was com-
pleted using bipolar Ag/AgCl surface electrodes (10mm
diameter, 21mm spacing) and was amplified (factor of
1000), band-pass filtered (bandwidth 10-500 Hz; Biovision,
Wehrheim, Germany) and recorded at 2000 Hz through a
16-bit A/D converter (USB-6210, National Instruments,
Austin, TX). The EMG was resolved into intensities using
wavelets (Von Tscharner 2000) and normalized to the
mean intensity for each participant for each muscle across
all conditions. The EMG intensity is a measure of the
power of the EMG signal in the frequency range 10-500
Hz. Total EMG intensity was calculated as the sum of the
EMG intensities from each muscle for each pedal cycle
and thus was termed the cycle-by-cycle value (Figure 4).
Breath-by-breath total EMG intensities were deter-

mined by taking the mean total EMG intensity of those
pedal cycles between each breath (Figure 4). Pedal cycles
containing breath measurements were included in the
following breath. Metabolic power was calculated from
the gas exchange parameters using caloric equivalents of
oxygen (Foss et al. 1998). For each subject Pearson cor-
relation coefficients were calculated between the breath-
by-breath measures of EMG intensity and metabolic
power. Also cross-correlation was used to determine the
correlation coefficient when accounting for the time
delay between the onset of EMG and subsequent gas ex-
change measure of metabolic power. Metabolic power
(P in Eq. 1) was also estimated from the EMG intensity
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using a bilinear differential equation (Zajac 1989) that
has been used previously to determine the active state of
a muscle from its EMG excitation (Lee et al. 2011). The
transfer functions accounted for and were defined by the
time delay (tdelay), time constant of rise in metabolic
power (τ) and ratio of rise and decay of metabolic power
(β). These constants were determined such that they
maximized the correlation between estimations of meta-
bolic power from gas exchange and EMG intensity sub-
ject to the following constraints: 0 ≤ τ ≤ 100 breaths,
0 ≤ β ≤ 2 and 0 ≤ tdelay ≤ 100 breaths.

d
dt

P tð Þð Þ þ 1
τ

βþ 1−β½ �EMG t−tdelay
� �� �� �

P tð Þ

¼ 1
τ

� �
EMG t−tdelay

� � ð1Þ

Variation in the structural and contractile properties of
different muscles may be reflected in energy require-
ment differences not identified in the EMG signals since
each muscle is normalized to its own mean for each sub-
ject across all trials. Therefore, in a subsequent analysis,
different weighting coefficients were applied to the EMG
intensity from each muscle to analyze the effect of
muscle weighting on the correlation between the estima-
tions of metabolic power from the EMG and gas ex-
change. Random weightings were assigned to the
individual muscles in 5000 different combinations for
each subject. These were then used in the transfer func-
tion, re-optimizing for the coefficients (τ, β and tdelay), to
predict metabolic power and re-calculate the estimated
metabolic power correlations. In order to evaluate the
differences in the individual muscle weighting coeffi-
cients that produced the best and worst metabolic power
correlations, mean weightings of the 100 highest (Hcor)
and lowest (Lcor) correlated muscle combinations were
compared. Two-sided t-tests were conducted between
Hcor and Lcor weighting coefficients for each muscle to
determine if the mean values were significantly different.
Statistical tests were considered significant at p ≤ 0.05
and results are reported as mean ± SEM.
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