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Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought
to arise as a result of inappropriately directed T helper type-2 (Th2) immune
responses of the lungs to otherwise innocuous inhaled antigens. Current
asthma therapeutics are directed towards the amelioration of downstream
consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum
immunosuppression (i.e. corticosteroids). However, few approaches to date
have been focused on the primary prevention of immune deviation. Advances
in molecular phenotyping reveal heterogeneity within the asthmatic population
with multiple endotypes whose varying expression depends on the interplay
between numerous environmental factors and the inheritance of a broad range
of susceptibility genes. The most common endotype is one described as
“type-2-high” (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin).
The identification of multiple endotypes has provided a potential explanation for
the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and
IL-13) and their receptors have often fallen short when they were tested in a
diverse group of asthmatic patients without first stratifying based on disease
endotype or severity. However, despite the incorporation of
endotype-dependent stratification schemes into clinical trial designs, variation
in drug responses are still apparent, suggesting that additional
genetic/environmental factors may be contributing to the diversity in drug
efficacy. Herein, we will review recent advances in our understanding of the
complex pathways involved in the initiation and regulation of type-2-mediated
immune responses and their modulation by host factors (genetics, metabolic
status, and the microbiome). Particular consideration will be given to how this
knowledge could pave the way for further refinement of disease endotypes
and/or the development of novel therapeutic strategies for the treatment of
asthma.
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Introduction
Asthma is a phenotypically heterogeneous inflammatory disease of 
the lungs generally characterized by airflow obstruction and airway 
inflammation. Advances in molecular phenotyping reveal hetero-
geneity within the asthmatic population with multiple endotypes1–3 
whose varying expression depends on the interplay between numer-
ous environmental factors and the inheritance of a broad range of 
susceptibility genes. Patients with a type-2-high profile are found in 
half of the mild asthmatic patients and are reported to be responsive 
to steroids3,4. The type-2-high asthma endotype is one of the most 
consistent endotypes to emerge3–9. This common subtype of asthma 
is characterized by the release of signature cytokines interleukin 
(IL)-4, IL-5, and IL-13 from cells of both the innate and the adap-
tive immune systems. These type-2 cytokines are targets for phar-
maceutical intervention, and a number of therapeutic options are 
under clinical investigation for asthma. These will be discussed in 
detail below. The identification of multiple endotypes has provided 
an explanation for the observations that therapies directed at these 
typical T helper type-2 (Th2) cytokines and their receptors have 
often fallen short when they were tested in a diverse group of asth-
matic patients without first stratifying based on disease endotype 
or severity. The stratification of patients in clinical trials based on 
specific endotypes has lent support for continued efforts to modify 
IL-4 and IL-13 pathways in type-2-high asthma, yet additional vari-
ation in treatment response is still apparent. These results suggest 
that regulation of type-2 cytokine production and responsiveness 
is more complex than was previously appreciated and that other 
genetic/environmental factors may be contributing to the diversity 
in drug response. As many ongoing efforts are designed to target 
the type-2 immune response, it is critical to fully understand the 
intricacies of regulation of this arm of the immune response. In this 
review, we will discuss new insights into the mechanisms by which 
IL-4- and IL-13-mediated inflammation is initiated, enhanced, per-
petuated, or inhibited, with a focus on new players that modulate 
IL-4 and IL-13 responses. Although we will touch briefly on IL-5 
as an additional important Th2 cytokine in promoting the allergic 
inflammatory response, we will focus our comments here on IL-4 
and IL-13. We will highlight how some of the new pathways that 
influence IL-4 and IL-13 responses might potentially be harnessed 
for therapeutic benefit to downregulate type-2 immune responses in 
type-2-high asthmatics.

Role of canonical Th2 pathways in allergic 
inflammation
The Th2 immune response is characterized by the expansion of 
CD4+ T cells producing the prototypical Th2 cytokines IL-4, IL-13, 
and IL-5. Although IL-9 was originally thought to be produced by 
Th2 cells, more recent studies suggest that it is primarily produced 
by a unique CD4+ T cell subset referred to as Th910,11. More recent 
studies show that other cell types such as type-2 innate lymphoid 
cells (ILC2s), mast cells, and eosinophils also produce these type-
2-associated cytokines. These cytokines act on multiple cell types 
and trigger the hallmark features of a type-2 immune response, 
including the synthesis of immunoglobulin (Ig)E, eosinophilia, 
mast cell activation, mucus cell hyperplasia, and macrophage 
polarization. Although a type-2 immune response is critical in 
host defense against helminth infections, inappropriate activation 

of type-2 responses against otherwise innocuous antigens leads to 
allergic responses in different barrier organs, such as the skin, gut, 
and lungs.

Aberrant production of the prototypical type-2 cytokines IL-4 
and IL-13 has long been associated with the pathogenesis of 
allergic disorders12,13. The overproduction of mucus resulting in 
airway obstruction in asthma is an effect of IL-4/IL-13 action on 
goblet cells, inducing mucin gene expression, hyperplasia, and  
hypertrophy14. IL-4 and IL-13 also have direct effects on airway 
smooth muscle cells that may explain the hypercontractility of these 
cells in the airways of asthmatics15. IL-4 and IL-13 also induce 
chemokine release from airway smooth muscle cells16. The activity 
of IL-4 and IL-13 on the structural cells of the lung such as vascu-
lar endothelial cells and airway epithelial cells elicits the expres-
sion of adhesion molecules, chemokines, and transforming growth 
factor (TGF)-β production. These molecules direct the influx of 
circulating inflammatory cells, such as eosinophils, basophils, and 
others, to the lung tissue and airway lumen and induce lung tissue 
remodeling. Neutrophils also migrate into the lungs during aller-
gic inflammation, but they are particularly elevated in patients with 
severe asthma. These patients are different from the type-2-high 
endotype and their disease is believed to be driven by Th17-medi-
ated inflammation. As such, they are also typically unresponsive 
to the IL-4-/IL-13-directed therapies discussed in the previous 
section and to treatment with corticosteroids. IL-4 enhances the 
capacity of dendritic cells (DCs) to stimulate T cell secretion of 
Th2 cytokines, whereas IL-13 enhances the capacity of DCs to sup-
press T cell secretion of interferon (IFN)-γ in mice17. Both IL-4 and 
IL-13 increase DC antigen uptake18,19 and cell migration into the 
lymph nodes where they prime naive T cells to differentiate into 
Th2 cells20. B cell class switching to production of IgE is driven 
by IL-421,22 and by IL-13 in human but not in mouse B cells, which 
lack IL-13 receptor α1 (IL-13Rα1)23. Fibroblast responses to IL-4 
and IL-13 contribute indirectly to the lung remodeling that occurs 
in chronic asthma by eliciting the production of adhesion molecules 
and chemokines as well as cytokines that then stimulate epithelial 
cells to secrete TGF-β124.

The eosinophilia observed in asthma and allergic diseases is par-
tially controlled by the Th2 cytokine IL-5. IL-5 is critical for the 
genesis (in the bone marrow)23, growth24,25, and survival of eosi-
nophils. Eosinophils are a key target of therapeutic strategies in the 
treatment of allergic disease because of their ability to cause tissue 
damage and inflammation following the activation and release of 
a toxic mixture of their different granule proteins in inflamed tis-
sue. IL-5 acts on eosinophils by binding to its receptor (IL-5R), 
which is a heterodimer composed of two chains: one α subunit 
(which binds IL-5) and one β subunit (which is implicated in signal  
transduction)25. Accordingly, blocking IL-5 with antibodies has  
been useful at lowering peripheral and sputum eosinophil counts 
in asthmatics. While several studies indicate that anti-IL-5  
treatment had no effect on improvement in quality of life meas-
ures in asthmatics compared to placebo controls26, others have 
demonstrated that patients have fewer exacerbations concomitant 
with reduction in blood eosinophil counts27. Beyond blocking IL-5, 
blocking the IL-5 receptor has also been an important therapeutic 
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target against asthma. Currently, two anti-IL-5 antibodies are FDA 
approved for use in asthmatics older than 12 years of age27, and a 
third antibody, which binds the IL-5Rα, is now in phase III clini-
cal trials28. However, as mentioned above, blocking IL-5 alone is 
not sufficient to decrease asthma severity. Future trials combining 
the blockade of IL-5/IL-5R together with other therapies will pro-
vide more robust strategies to improve quality of life in asthmatic 
patients.

Lung macrophages (alveolar and interstitial macrophages) are  
critical regulators of lung homeostasis and the inflammatory 
response to inhaled allergens29. Similar to T cells, lung macrophages 
that encounter IL-4 and IL-13 polarize into a distinct phenotype, 
formerly known as “alternatively activated” or M2 macrophages. 
M2 macrophages express arginase I (ARG1) and other hallmark 
M2 gene products, such as YM1 and Found in Inflammatory Zone 
(FIZZ)1 in mice30. This is in contrast to Th1 cytokines, viruses, 
and microbes that induce skewing to M1 macrophages and that  
express inducible nitric oxide synthase (iNOS), IL-1β, tumor 
necrosis factor (TNF)-α, and other pro-inflammatory mediators31. 
Although both M1 and M2 macrophages are found in the lung 
during the course of allergic inflammation, M2 macrophages are 
increased in the lungs of asthmatics compared to healthy controls, 
and their abundance correlates with declines in lung function32–38. 
Mouse models of allergic inflammation recapitulate the observa-
tions in humans39–42. Adoptive transfer experiments revealed that 
the transfer of IL-4Rα-sufficient macrophages, but not IL-4Rα-
deficient macrophages, into RAG2–/– mice was sufficient for the 
development of allergen-driven lung eosinophilia40.

M2 macrophages are thought to promote allergic lung inflamma-
tion through the secretion of angiogenic and pro-fibrotic factors, 
including vascular endothelial growth factor, insulin-like growth 
factor (IGF)-I, TGF-β1, matrix metalloproteinases (MMPs), 
acidic mammalian chitinase (AMCase), BRP-39/YKL-4043, and 
FIZZ144–46, that have the potential to promote lung remodeling. 
M2 macrophages also produce many inflammatory cell-recruiting 
chemokines (CCL11, 24, and 26, YM1, and others) that recruit 
eosinophils, basophils, T cells, and other immune cell types to the 
inflamed lung. Lastly, M2 macrophages have immunomodulatory 
properties also through direct and indirect effects on T cells, airway 
epithelium, and DCs47–49. Since alveolar macrophages are one of the 
“first responders” to inhaled allergens and owing to their key role in 
immunomodulation and maintaining homeostasis, modifying their 
phenotype and function is an attractive concept for intervention.

In the section below, we will describe how IL-4 and IL-13 regulate 
most of the features of allergic inflammation through their interac-
tion with the IL-4/IL-13 receptor complexes and downstream sign-
aling in multiple cell types. We will also highlight how new insights 
into these processes could provide opportunities for the develop-
ment of therapeutic intervention in asthmatics.

IL-4 and IL-13 cytokine receptor regulation
IL-4 and IL-13 are functionally and structurally related cytokines 
that have both overlapping and unique biological responses owing, 
in part, to the utilization of a combination of shared and unique 
receptors12,50,51. IL-4 is recognized by two types of membrane 

receptors, type I (IL-4Rα and the common gamma-chain [γc]) and 
type II (IL-4Rα and IL-13Rα1), while IL-13 is recognized only 
by the type II IL-4 receptor. IL-13 is also bound with incredibly 
high affinity by IL-13Rα2, which exists in membrane-bound and 
soluble forms. IL-4 promotes and maintains the polarization of 
Th2 cells through ligating the type I IL-4R52, whereas IL-13 has 
no effect on T cells because of their lack of IL-13Rα1 expression. 
On the other hand, IL-13 is thought to be more important in the 
induction of the physiological aspects of allergic asthma, including 
airway hyper-responsiveness (AHR), mucus hypersecretion, airway 
smooth muscle alterations, and subepithelial fibrosis, than IL-452,53. 
The exact molecular mechanism(s) by which these two cytokines 
regulate distinct features of the allergic response and how their 
contributions, either individually or in concert, induce the patho-
physiological manifestations of disease remain to be fully uncov-
ered. Recent discoveries of differences in utilization/assembly and 
affinity of IL-4 and IL-13 for the type-2 receptor and the regulation 
of the receptors along with the discovery of unique ILC2s which 
preferentially produce IL-13, and not IL-4, are beginning to shed 
light on these mysteries12. Moreover, the identification of new cel-
lular and molecular pathways affecting the regulation of IL-4/IL-13 
receptor chains is painting a very complex picture in which a series 
of intricate feedback loops serve to keep the expression of type-
2 inflammation in check. Understanding this delicate balance and 
how it is disturbed in asthma may inform the development of novel 
therapeutic approaches for the treatment of asthma.

IL-4Rα
Given the importance of IL-4Rα in triggering Th2 inflammation54,55 
and the strong association between polymorphisms in this gene and 
asthma risk56–58, understanding the mechanisms by which IL-4Rα 
expression is controlled is critical. In this regard, recent studies 
suggest a role for STUB1 (STIPI homology and U-box-containing 
protein 1), a chaperone-dependent E3 ubiquitin ligase59 which 
interacts with IL-4Rα and targets it for proteasomal degradation 
to regulate signaling. STUB1-deficient mice show spontaneous air-
way inflammation, alternative M2 activation, and increased serum 
IgE levels, which was correlated with increased IL-4Rα expression. 
Interestingly, STUB1 mRNA levels are up-regulated in the airways 
of subjects with asthmatic and chronic obstructive pulmonary dis-
ease (COPD), suggesting that elevation of STUB1 expression may 
serve as a possible feedback mechanism in an effort to dampen  
IL-4Rα signaling60. The development of strategies to modulate 
STUB1 activity may represent a promising approach for targeting 
IL-4-/IL-13-dependent allergic inflammation.

Several therapeutic strategies aimed at blocking IL-4Rα-initiated 
signaling have been attempted. These approaches include treatment 
with a variant IL-4R protein and with several individual monoclonal 
antibodies directed against IL-4Rα. First, a variant of the IL-4 pro-
tein, pitrakinra, that contains two amino acid changes that allow 
it to bind the IL-4Rα-chain, without allowing it to complex with 
either the γC or the IL-13Rα1 chains, has shown some promise. 
In an allergen challenge study, treatment with nebulized pitrakinra 
resulted in a decrease in the late-phase allergic response measured 
by FEV161. A larger follow-up study of symptomatic moderate-to-
severe adult asthmatics using corticosteroids revealed that although 
there was no therapeutic benefit for the entire population treated with 
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pitrakinra compared to placebo, there was a significant reduction in 
asthma exacerbations in a pre-specified subset of subjects with high 
blood eosinophil counts62. A later study revealed a pharmacologic 
interaction between therapy and variation (IL4RA Q576R) within 
the gene encoding the IL-4Rα chain (IL-4RA), identifying an 
asthma subgroup that was more responsive to pitrakinra63. Another 
strategy to block IL-4Rα signaling has been to treat with human-
ized high-affinity monoclonal antibodies directed against IL-4Rα 
(AMG-317, dupilumab). A randomized controlled phase IIA trial 
showed that treatment with dupilumab (SAR231893/REGN668, 
NCT01312961) prevented asthma exacerbations when long-acting 
β-agonists and inhaled corticosteroid were withheld in patients with 
moderate-to-severe asthma as compared to placebo5. Phase III stud-
ies are underway which should provide more definitive information 
regarding the efficacy of blocking the IL-4Rα in asthma.

IL-13Rα1
As discussed above, the role of IL-13Rα1 in mediating Th2 inflam-
mation such as in AHR, mucus production, and fibrosis is well 
known64,65. IL-13Rα1–/– mice did not develop AHR nor mucus 
production and had decreased IgE titers in a schistosomal egg  
antigen-induced model of allergic lung inflammation66. Similarly, 
challenging the IL-13Rα1–/– mice with IL-13, IL-4, or OVA resulted 
in no mucus production and protection from AHR64. These stud-
ies demonstrate the critical role of IL-13Rα1 in the generation  
of AHR and mucus production. The development of the fibrotic 
response is also dependent on IL-13Rα1 in both the schis-
tosomal and the allergic lung inflammation models of Th2  
inflammation64,66. In response to worm or allergen challenge, 
IL-13Rα1-deficient animals had decreased expression of char-
acteristic matrix remodeling genes and collagen deposition in 
their livers66 and profibrogenic mediators such as TGF-β in their  
lungs64. However, recent studies highlight a protective role for  
IL-13Rα1 in regulating fibrosis in a bleomycin-induced injury 
murine model. Karo-Atar et al. demonstrated that IL-3Rα1 defi-
ciency resulted in a dysregulation in homeostasis and increased 
fibrosis due to exaggerated tissue repair67. Although bleomy-
cin-elicited lung inflammation and injury is not a typical allergic  
inflammatory response, these results suggest a role for the  
IL-13Rα1 as a sink for excess cytokine during the wound-healing 
response. This role could also be important in allergic inflamma-
tion, since IL-13Rα1-deficient mice have increased circulating 
IL-13 and soluble IL-13Rα264. Another interesting study demon-
strated that the integrin Mac-1 binds to IL-13Rα1 to downregu-
late macrophage IL-13 signaling, M2 polarization, and foam cell 
formation68. Macrophages from the Mac-1-deficient mice had  
elevated M2 polarization, even in the absence of IL-13. Whether 
low Mac-1 expression could contribute to the abundance of M2  
macrophages in asthmatic lungs is unknown. This work suggests 
that the interaction between Mac-1 and IL-13Rα1 may be exploited 
for the regulation of IL-13 signaling and M2 polarization of  
macrophages in the lung.

Because IL-13R (type II IL-4R) mediates the effects of IL-13 
on structural (non-hematopoietic) cells, the clinical efficacy of a 
number of antibodies directed against IL-13 (IMA-638, IMA-026) 
has been evaluated in asthma. The results have been mixed. First, 
Wyeth evaluated the efficacy of two separate humanized anti-IL-13 

IgG1 monoclonal antibodies (IMA-638 [NCT00339872]; IMA-026 
[NCT00725582]) in asthma clinical trials. Interestingly, after aller-
gen exposure, only treatment with IMA-638, which recognizes the 
IL-13 epitope that interacts with IL-4Rα, significantly reduced both 
the early and the late-phase asthmatic response. On the other hand, 
IMA-026, which binds to the epitope on IL-13 that is critical for 
binding to both IL-13Rα1 and IL-13Rα2, efficacious69. Similarly, 
a more recent clinical trial utilizing another anti-IL-13 IgG1 mono-
clonal antibody (GSK679586, GlaxoSmithKline), which inter-
feres with binding of IL-13 to both IL-13Rα1 and IL-13Rα2, did 
not result in any benefit in severe asthmatic patients over placebo  
controls70. Thus, it appears that blocking the interaction of IL-13 
with IL-4Rα may be more effective than inhibiting binding to either 
IL-13Rα1 or IL-13Rα2.

Based on the inconsistent results of the previous studies, a study 
was designed to compare the effects of blocking IL-13 in asthma 
patients who were pre-identified as exhibiting an IL-13 signature  
in vivo70. In this randomized, double-blind trial of asthmatic  
patients with poorly controlled disease, patients were stratified 
into either Th2-high or -low subgroups based on their baseline 
Th2 status (IgE levels, blood eosinophil counts, and periostin) 
and treated subcutaneously with either placebo or 200 mg of the 
humanized IgG4 anti-IL-13 monoclonal lebrikizumab (Genentech,  
NCT00930163). Even in the presence of steroid treatment,  
lebrikizumab treatment resulted in an improvement in FEV1 in 
patients with a Th2-high phenotype but had no significant impact 
on FEV1 in patients with a Th2-low phenotype. These results 
demonstrate that blocking IL-13 in patients with a documented  
IL-13 signature may provide significant clinical benefit. As  
steroid treatment may have complicated the interpretation of the 
effects of IL-13 inhibition in the original study, a subsequent 
phase II randomized, double-blind, placebo-controlled study of 
lebrikizumab (NCT00971035) in asthmatic patients not receiving  
inhaled corticosteroids was conducted71. In this study, lebrikizumab 
treatment did not show significant improvement in disease (pre-
bronchodilator FEV1 values), despite effectively inhibiting Th2 
biomarkers (IgE levels and exhaled nitric oxide [FeNO]). Surpris-
ingly, these results suggest that IL-13 blockade may be effective 
in the context of steroid treatment but may not block disease in 
patients with mild disease (non-steroid dependent). Phase III stud-
ies are underway which should provide further clarification of the 
potential utility of IL-13 blockade in patients with uncontrolled 
asthma.

IL-13Rα2
IL-13Rα2 was previously described as a decoy receptor that coun-
teracted IL-13-mediated signaling72,73 owing to its negligible cyto-
plasmic domain. Although IL-13Rα2 does not have a signaling 
domain, recent studies have shown that IL-13Rα2 engages with 
TMEM219 and that this interaction also contributes to the decoy 
function of IL-13Rα274. However, several lines of evidence sug-
gest that the role of IL-13Rα2 in regulating inflammation may be 
more complex. For example, Fichtner-Feigl et al. reported that sig-
naling through this receptor was involved in TGF-β1 production75 
and activation of the mitogen-activated protein kinase (MAPK) 
pathway76. Consistent with a role for IL-13Rα2 in promoting 
allergic inflammation, Chen et al. reported that allergen-driven 
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AHR and eosinophilic inflammation were attenuated, rather than 
enhanced, in IL-13Rα2-deficient mice77. Normal allergic inflam-
matory responses were restored by lung epithelial overexpression of 
membrane IL-13Rα2 in IL-13Rα2-deficient mice, suggesting that 
membrane-bound and soluble forms of IL-13Rα2 may mediate dif-
ferent functions. Supporting a positive role for IL-13Rα2 in asthma 
is the recent finding that sputum levels of IL-13Rα2 are associ-
ated with poor lung function, Th2 cell gene expression, and airway 
obstruction in the airways of asthmatics78. Collectively, these stud-
ies suggest that IL-13Rα2 is an important regulator of IL-13-medi-
ated responses: the directionality of its effects are likely dependent 
upon whether it is found in a soluble or membrane-bound form. 
Lastly, as will be discussed below, IL-13Rα2 has been shown to 
have other binding partners besides IL-13, such as chitinase 3-like 
1 (Chi3l1)74. The complex role of IL-13Rα2 in regulating IL-13-
mediated signals suggests that approaches to inhibit IL-13 could be 
a double-edged sword depending on whether or not they impact the 
ability of IL-13Rα2 to bind IL-13, which might result in the loss of 
the inhibitory functions of IL-13Rα2.

New twists on IL-4 and IL-13 signaling pathways
Canonical signaling of IL-4 and IL-13 results in signal transducer 
and activator of transcription (STAT)6 phosphorylation and tran-
scriptional activation of STAT6-dependent genes79. However,  
STAT6signaling in response to IL-4 and IL-13 does not always 
explain all features of Th2-mediated inflammation. A second 
pathway that is differentially activated by IL-4 and IL-13 could 
explain some of the subtleties between the two cytokines. Spe-
cific activation of both IL-4R complexes by either IL-4 or IL-13 
can also trigger insulin receptor substrate (IRS)-2 activation. IRS 
activation results in the growth-promoting, proliferative effects 
of IL-4 as well as activating the AKT target of rapamycin (TOR) 
pathway and gene expression downstream. However, the differ-
ence lies in the magnitude of IRS-2 activation by IL-4 compared 
to IL-13. IL-4 engagement of IL-4R type I triggers IRS-2 activa-
tion particularly robustly, significantly enhancing IL-4-induced 
responses such as M2 macrophage polarization over that elicited by  
IL-1379,80. This was due to the presence of the γc chain in type  
I IL-4R complexes that is not found in the type II IL-4R. Thus,  
IRS-2 was concluded to be an amplifier of IL-4-induced M2 mac-
rophage polarization, yet new evidence suggests a more complex 
role for the IRS-2 molecule. The absence of IRS-2 increased  
IL-4-induced M2 gene expression in murine bone-marrow- 
derived macrophages and stronger allergic lung inflammation  
in vivo. This novel regulatory role for IRS-2 was STAT6 inde-
pendent81 and suggests that IRS-2 activation may participate in a  
negative feedback inhibitory loop through the TOR complex to 
decrease IL-4 signaling. This will be discussed further in the  
metabolism section of this review.

In contrast, when IL-4-induced IRS-2 activation was prolonged 
through knockdown of the negative regulator suppressor of 
cytokine signaling (SOCS)1 in vitro, enhanced M2 polarization 
of human monocytes was observed82. Furthermore, dysregulation 
of IRS-2 signaling in monocytes from allergic asthmatics was 
associated with increased M2 macrophage polarization owing to 
the lack of SOCS1 induction and increased SOCS3 expression82. 

SOCS3 was also highly induced in M2 macrophages at the site 
of contact hypersensitivity (CHS) to control MMP-12 expression 
and CHS pathology83. Taken together, differential expression of 
SOCS1 and SOCS3 in healthy versus inflammatory conditions sug-
gests that an important balance exists between these molecules to 
maintain homeostasis in macrophages. A similar paradigm exists 
in T cells. SOCS3 and SOCS5 are mainly expressed in Th2 and 
Th1 cells, respectively, and reciprocally inhibit Th1 and Th2  
differentiation84. When dysregulation of the balance between dif-
ferent SOCS proteins occurs, pathological Th2 or M2 polarization 
results. Numerous examples of dysregulation of SOCS expression  
in eosinophils85, airway smooth muscle86, skin87, and T cells88 
have been documented in allergic inflammation. Single nucleotide  
polymorphisms (SNPs) in the SOCS1 promoter are associated with 
adult asthma and total serum IgE in children89. Hence, restoring 
SOCS function to ameliorate inflammatory conditions could be 
considered as a future therapeutic strategy for asthma, as it has been 
in the setting of autoimmunity90.

Downstream regulation of allergic inflammation
IL-4 and IL-13 activation of their receptors on a variety of structural 
and hematopoietic cells leads to the transcription of a wide variety 
of mediators, which mediate the pathophysiological manifestations 
of allergic disease, several of which have recently received consid-
erable attention.

Chitinases
Several chitinase (chitin-degrading enzymes) genes are induced by 
type-2 cytokines in humans and mice including AMCase, YKL-40  
(Chi3l1), breast regression protein (BRP)-39, and YM1/2 in  
mice91. Chitin is a highly abundant polysaccharide in nature and is  
an essential component of many organisms that drive type-2  
immune responses (fungi, arthropods [house dust mites, crabs, and 
shrimp], and parasites). The functions of chitin are highly depend-
ent upon its size: chitin has been shown to induce eosinophilic 
lung infiltration92 and elicit IL-33 production from epithelial  
cells93,94. The role of AMCase, the only IL-13-induced chitinase with 
chitinase enzymatic activity, in asthma has been conflicting95. In 
contrast, many, but not all, studies suggest that YKL-40 is increased 
in severe asthma and/or neutrophilic asthma96. Epithelial cells are 
thought to be the primary producers of YKL-40, and mechani-
cal stress has been shown to be a trigger of YKL-40 secretion 
through an epidermal growth factor receptor (EGFR)- and MEK1/ 
2-dependent pathway97. YKL-40 has been reported to regulate 
a number of functions in the lung including IL-8 production98, 
MUC5AC production99, and the proliferation of bronchial smooth 
muscle cells100. Recent studies demonstrated that the mouse  
homolog of YKL-40, Chi3l1, binds to and signals via IL-13Rα2. 
The same group later demonstrated that the membrane protein 
TMEM219 is a binding partner of IL-13Rα2. Interestingly, block-
ade of TMEM219 or IL-13Rα2 phenocopied one another in their 
ability to decrease Chi3l1-stimulated epithelial cell HB-EGF pro-
duction, macrophage MAPK/ERK and protein kinase B (PKB)/
AKT activation, oxidant-induced apoptosis, and lung injury. These  
studies demonstrate that an important regulatory loop exists among 
IL-13, Chi3l1, and IL-13Rα2, although the precise role of these  
interactions in asthma pathogenesis remains to be determined.
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FIZZ1
Although FIZZ1 (Retnla) was identified as a marker of Th2  
inflammation101,102, recent reports suggest the opposite. The increase 
in abundance of FIZZ1 in allergic diseases was interpreted as 
promoting Th2 responses101,103, yet Lee et al. demonstrated that  
overexpression of FIZZ1 did not induce alterations in lung histol-
ogy and lung function. In contrast, Retnla-overexpressing mice 
exhibited a reduction in lung inflammation following allergen sen-
sitization and challenge104. This new evidence suggests a negative  
regulatory role for FIZZ1, agreeing with studies showing that mice 
lacking FIZZ1 developed exacerbated lung inflammation after 
Schistosoma mansoni (Sm) eggs challenge compared with their 
wild-type counterparts105. Therefore, the elevated expression of 
FIZZ1 appears to mediate negative regulation of Th2 inflammation 
in the lung.

New pathways regulating type-2 cytokine production
Activation of the Th2 pathway is initiated from a complex inter-
action between the innate and adaptive immune responses.  
Although the critical role of antigen-presenting cell interactions 
with CD4+ T cells in the differentiation of naïve T cells into type-2 
cytokine-producing cells has long been appreciated,new informa-
tion is emerging regarding the complex regulation of DC–T cell 
interactions that result in Th2 immune responses. Moreover, our 
understanding of the role of epithelial-derived cytokines in the 
direction of Th2 differentiation and in the regulation of non-T cell 
sources (ILC2s) of type-2 cytokines is rapidly expanding.

DC–T cell interactions
Antigen presentation to naïve T cells is an essential step in the 
development of adaptive immune responses. Recent studies have 
identified a member of the tumor-associated macrophage (TAM) 
family receptor tyrosine kinase, TYRO3, as an important nega-
tive regulator of DC–T cell interactions and consequently the  
magnitude of type-2 immune responses106. Specifically, TYRO3-
deficient mice or neutralization of its orthologue in human DCs 
resulted in the enhancement of type-2 immunity. Interestingly, 
the TYRO3 agonist protein S1 (PROS1) is specifically induced  
in CD4+ Th2 cells by IL-4. PROS1, in turn, ligates the rheostat 
TYRO3 on PDL2+ DCs to limit the intensity of type-2 responses. 
Importantly, multiple intronic variants in TYRO3 were associated 
with asthma106. Modulation of this self-limiting process intrinsic to 
type-2 immunity provides a novel opportunity to inhibit allergic 
responses.

Little is known about the signals from DCs that drive Th2 immune 
responses. New studies show that specific subsets of DCs may con-
tribute to this process. Gao et al. have shown that PDL2+ DCs are 
able to enhance proliferation and cytokine production by effector 
and memory CD4+ T cells, but not in naïve cells, compared with 
PDL2– DCs107. Other studies using in vivo depletion approaches 
have demonstrated an important role for CD301b+ but not for 
CD207+ dermal DCs in driving Th2 differentiation in both OVA-
specific transgenic CD4+ T cells and during infection with Nippos-
trongylus brasiliensis108. These novel studies suggest that depletion/
inhibition of specific DC subsets is a potential therapeutic approach 
to suppress the initiation of Th2 immune responses.

T cell receptor regulation
T cells play a determinant role in adaptive responses. They are 
able to recognize an infinite diversity of antigens through the  
T cell receptor (TCR) with concomitant activation of the T cell109. 
As mentioned above, different polarized T helper cell environments 
participate in the different asthma phenotypes, highlighting the 
importance of T cell subset differentiation in allergic inflammation. 
Few T cell intrinsic factors have been identified which govern Th2 
differentiation. Newly described mechanisms have been identified 
that downregulate TCR signaling specifically in Th2 cells. DEN-
ND1B, a guanine nucleotide exchange factor110, downmodulates 
TCR expression in Th2 cells. Yang et al. demonstrated that in vitro-
differentiated Dennd1b–/– Th2 cells have increased TCR-mediated  
responses when compared to Dennd1b+/+ Th2 cells without  
changes in Th1 or Th17 responses. This specific effect on Th2 cells 
may be due to a delayed surface TCR downmodulation upon acti-
vation, resulting in increased TCR signaling. This appears to have 
direct relevance to asthma, as SNPs at the human DENND1B locus 
have been associated with increased Th2 responses and asthma in 
young children111.

E3 ubiquitin ligase regulation of Th2 cells
Recent studies suggest that E3 ubiquitin ligases are critical regu-
lators of T cell activation and cytokine production. For example, 
overexpression of Grail, an E3 ubiquitin ligase, has been associated 
with suppressed IL-2 and IL-4 production in T cells112. Mechanisti-
cally, Grail regulates Th2 cytokine production by interacting with 
STAT6, targeting it for ubiquitination and degradation. Accord-
ingly, Grail-knockout mice are more susceptible to allergen-driven 
asthma113. Another E3 ubiquitin ligase, casitas B cell lymphoma 
(Cbl)-b, which is involved in regulating CD28 signal strength dur-
ing TCR ligation, has also been shown to be important in the regula-
tion of allergic inflammation114. Cbl-b-deficient mice have enhanced 
Th2 cytokine production and delayed resolution of allergen-induced 
airway inflammation. Interestingly, no changes in IgE levels were 
noted. Modulation of this class of molecules may provide a unique 
approach to asthma therapy.

Th17 pathway regulation of Th2-mediated inflammation
In addition to the prototypical Th2 cytokines, other previously 
unrelated cytokines, such as IL-17, have now been demonstrated 
to modulate Th2 immune responses. Understanding the molecu-
lar mechanism(s) of IL-17’s modulatory role in Th2 responses is 
of interest, since “mixed” Th2/Th17 T cell populations are present 
in some asthmatic patients in vivo115,116. Co-exposure of mice to 
IL-13 and IL-17 enhanced all aspects of the allergic phenotype 
compared to IL-13 treatment alone115. This was associated with 
an IL-17-mediated increase in IL-13-induced STAT6 activation in 
both mouse fibroblasts and primary human nasal epithelial cells 
(NECs)117. Conversely, specific suppression of Th2 cytokines in the 
house dust mite (HDM) model of allergic asthma enhanced Th17 
responses, and “Th2-high” and “Th17-high” disease was mutually 
exclusive in some asthmatic patients118. These contradictory studies 
highlight that the exact mechanism(s) dictating the balance between 
Th2 and Th17 responses remain unclear. Careful immunophenotyp-
ing of patients prior to IL-17- or IL-4-/IL-13-based therapies will 
be essential, as disturbance of the Th2/Th17 balance may worsen 
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the disease in some individuals. Blockade of IL-17RA with broda-
lumab, a human anti-IL-17RA monoclonal antibody, in subjects with 
inadequately controlled moderate-to-severe asthma taking regular 
inhaled corticosteroids did not have a significant impact on asthma. 
However, there was a positive effect on the asthma control ques-
tionnaire score in the high-reversibility subgroup (post-bronchodila-
tor FEV1 improvement >20%)119. As the significance of this effect 
is currently not known, further studies are required to unravel the 
complexities of the contribution of IL-17 to asthma pathogenesis.

IL-31
IL-31 is constitutively expressed by non-hematopoietic cells such 
as the lung epithelium and is also selectively produced by activated 
CD4+ T cells skewed towards Th2 cytokine production120. IL-31RA 
is a gp130-like type-1 cytokine receptor that pairs with OSMRB 
to form a functional signaling receptor for IL-31. IL-4 and IL-13 
increase the expression of the membrane-bound form of IL-31RA 
through the type II IL-4R, altering IL-31-mediated signaling in 
macrophages. IL-31 has been shown to be elevated in Th2-medi-
ated diseases such as atopic dermatitis121 and is positively associated 
with asthma severity122. Consistent with a role for IL-31 in asthma, 
Yu et al. showed that SNPs in IL-31 were significantly correlated 
with total serum levels of IgE in patients with asthma123. Despite the 
preponderance of evidence suggesting that IL-31 promotes type-2 
inflammation, Perrigoue et al. showed that IL-31R activation limited 
the magnitude of Th2 cytokine-dependent inflammatory responses 
to intestinal helminth infection124. Taken together, these studies 
highlight important interactions between Th2 cytokines and IL-31 
signaling pathways; however, further studies are needed to delin-
eate the exact role that IL-31 plays in mediating type-2 immune 
responses and whether this will be a useful target for therapy in 
type-2-high asthmatics.

Alarmins as initiators of type-2 inflammation
Although Th2 cytokine production has long been recognized as a 
pivotal contributor to allergic inflammation, the mechanisms initiat-
ing Th2 cell differentiation and cytokine production has long eluded 
investigators. Recent studies have identified several epithelial-
derived molecules such as thymic stromal lymphopoietin (TSLP), 
IL-25, and IL-33 as early initiators of Th2 inflammation in both 
mice and humans. These cytokines have been described as “epi-
thelial-derived alarmins” that activate and potentiate the innate and 
humoral arms of the immune system in response to cellular damage. 
Each of the three epithelial-derived alarmins has been implicated in 
the pathophysiology of allergic asthma. A better understanding of 
the roles that these epithelial-derived alarmins play in disease and 
how they influence airway immune responses may allow the devel-
opment of novel therapeutics for asthma treatment.

TSLP. The role of TSLP in allergic lung inflammation has garnered 
considerable interest. Early studies of mice overexpressing TSLP 
in airway epithelial cells resulted in spontaneous lung inflamma-
tion, enhanced eosinophilia, goblet cell metaplasia, perivascular 
fibrosis, and AHR125. Moreover, Han and colleagues found that 
overexpression of TSLP in the lung induced an alternatively acti-
vated phenotype in pulmonary macrophages and increased BAL 
cell recruitment126. Support for a role for TSLP was confirmed in 
studies utilizing Tslpr–/– mice in a model of lung inflammation127. 

Interestingly, TSLP effects were not direct but were dependent on 
IL-13126. Consistent with the mouse studies, therapeutic antibody 
blocking of TSLP resulted in a reduction of lung eosinophils in a 
cynomolgus monkey model of allergic lung inflammation128. TSLP 
also synergizes with IL-25 and IL-33 to promote inflammation and 
lung fibrosis induced by Schistosoma. Only antibody blockade of 
all three cytokines suppressed Th2-mediated fibrosis, although this 
approach did not work in a model of chronic HDM-induced aller-
gic lung inflammation129. These results suggest that fibrosis may 
be induced in the lung through multiple pathways. TSLP seems 
to play a more important role in the gut, where it is constitutively  
expressed in both mice and humans. In the gastrointestinal 
tract, TSLP is not only an important enhancer of inflammatory 
Th2 responses130–132 but also a key player in the maintenance of  
homeostasis by controlling inflammatory responses against  
parasites133–137 and Th1 and Th17 responses138,139. Therefore, the 
function of TSLP is complex, both promoting and controlling 
inflammation in a tissue-dependent manner. Support for a role 
for TSLP in human disease has recently been provided in a study 
of a human anti-TSLP monoclonal antibody (AMG 157), which 
binds TSLP and prevents receptor interaction. In a double-blind,  
placebo-controlled study, AMG 157 attenuated both early and  
late allergen-induced bronchoconstriction and indices of airway 
inflammation in allergic asthmatic subjects140. Although these 
results are promising, further studies are required.

IL-25. IL-25, also named IL-17E, is a cytokine able to enhance  
Th2 immune responses. It was first described as a product of 
“highly polarized” murine Th2 cells in the presence of IL-4/ 
anti-IL-12 monoclonal antibodies141. However, more recent stud-
ies indicate that IL-25 can be produced by a great variety of 
cells including eosinophils, basophils, mast cells, macrophages, 
epithelial cells, and Tuft cells, among others142, highlighting its 
importance as an initiator of Th2 responses. For example, during  
N. brasiliensis infection, hyperplasia of Tuft cells—the only IL-
25-releasing cell—occurs in the small intestine. A feed-forward 
system mediated through IL-25 release by Tuft cells activates 
ILCs to release IL-13, which in turn regulates the number of Tuft  
cells143. Interestingly, Tuft cells express taste receptors such as 
bitter and umami receptors, which are G-protein-coupled recep-
tors (GPCRs), that participate in the release of acetylcholine when 
activated144. This has been associated with changes in nutrient and 
metabolite levels in the gut lumen, which could help Tuft cells  
detect danger signals, such as the presence of helminths145, and  
initiate a protective Th2 immune response. The signaling and  
functional responses to helminths at the gut epithelial barrier 
show remarkable similarity to the lung in that bitter taste receptors 
and early alarmin signaling may work together to coordinate the 
immune response to inhaled antigens. Blockade of the IL-25 
receptor, IL-17RA, in bronchial rings from donors with asthma  
significantly reduced acetylcholine-induced contraction com-
pared to that seen in donors without asthma146. One of the major  
triggers of asthma exacerbations, rhinovirus infection, was shown 
to induce significantly greater expression of IL-25 mRNA expres-
sion in bronchial epithelial cells from asthmatics compared to  
those in non-atopic, non-asthmatic healthy individuals147. Although 
these studies suggested that blocking IL-17RA in asthma might be 
promising, studies with the anti-IL-17RA monoclonal antibody 
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brodalumab have failed to show benefit in asthma119, implying that 
blocking IL-25 alone is insufficient to modify disease.

IL-33. Another alarmin that has risen to prominence in recent years 
is IL-33, a novel cytokine discovered almost 10 years ago148. The 
importance of IL-33 in allergic disease was initially identified 
through a genome-wide association study (GWAS). The GABRIEL 
consortium, the largest GWAS meta-analysis involving more than 
26,000 subjects, demonstrated significant association between 
asthma and a SNP (rs1342326) on chromosome 9 flanking the IL33 
gene. Polymorphisms in the IL33 gene were among the top three 
SNPs to correlate with asthma149. Similarly, strong associations 
between variants of the gene encoding the unique IL-33 receptor, 
suppression of tumorigenicity (ST2) or IL1RL1, and asthma risk 
have been observed150. The identification of IL-33 and its receptor 
as asthma susceptibility genes has opened up a fruitful new field 
of study that has exponentially increased our understanding of the 
mechanisms driving aberrant type-2 immune responses.

IL-33 has been shown to be an important regulator of type-2 
cytokine production and the pathogenesis of allergic diseases. 
In several mouse models of asthma, IL-33 activates lung-resi-
dent ILC2s and initiates airway type-2 inflammation20,151. Simi-
larly, administration of rIL-33 to mice through a variety of 
routes resulted in tissue eosinophilia, goblet cell hyperplasia, 
and elevations in type-2 cytokines152. The timing of expression of  
IL-33 in the lung is thought to be critically important to the devel-
opment of skewed Th2 immune responses. It has been reported 
that shortly after birth, ILC2s, eosinophils, basophils, and mast 
cells spontaneously accumulate in the developing lung in an  
IL-33-dependent fashion153. Upon encounter with allergens  
during early lung development, the changes are further boosted, 
promoting Th2 cell skewing. Thus, enhanced neonatal Th2 cell 
skewing in response to exposure to inhaled allergens results  
from postnatal hyper-responsiveness of the IL-33 axis during a 
period of maximal lung remodeling.

IL-33 is a member of the IL-1 family of cytokines, which is consti-
tutively expressed in the nucleus of a variety of cells in both mice 
and humans148. Because of its localization within the nucleus, it is 
thought to function as a nuclear receptor, although its exact function 
in the nucleus is unknown. In addition to potential nuclear func-
tions, IL-33 is released primarily from endothelial and epithelial 
cells and binds its functional receptor on a variety of cells, includ-
ing mast cells, eosinophils, and ILC2s154. Unlike other IL-1 family 
members, IL-33 does not require cleavage by caspase 1 for release 
from the cell or to initiate signaling via ST2155; however, it can be 
inactivated by either caspase-3 or caspase-7. On the other hand, 
cleavage by extracellular proteases (chymase and tryptase), com-
monly produced by inflammatory cells such as mast cells present 
during allergic reactions, results in three major forms of “mature” 
IL-33. These cleaved versions of IL-33 are up to 30-fold more 
potent as activators of ILC2s ex vivo compared with full-length 
human IL-33156.

Despite the importance of IL-33 to the initiation of an allergic 
response at mucosal surfaces, the molecular mechanisms respon-
sible for its expression and extracellular release are poorly under-
stood. IL-33 transcription is believed to be initiated from one of 

two non-coding exons that are associated with constitutive or 
induced production of IL-33157. A recent study suggested that the 
RNA-binding protein Mex-3B regulates IL-33 expression in airway  
epithelial cells via binding to the IL-33 3’ UTR and increasing  
IL-33 expression by inhibiting miR-487b-3p-mediated repression  
of IL-33158. The importance of Mex-3B to the regulation of IL-33  
in allergic inflammation is demonstrated in Mex-3B-deficient  
mice, which are protected against allergen-induced airway 
inflammation due to the induction of IL-33. Moreover, it was 
shown that inhalation of an anti-sense oligonucleotide targeting  
Mex-3B suppressed the development of allergic airway inflamma-
tion in mice.

As IL-33 lacks a traditional signal sequence159, it was originally 
thought to be released primarily by damaged or necrotic cells160. 
However, a more complex picture is emerging in which it can be 
released from both human and mouse living cells both constitutively 
and following exposure to a variety of stimuli161,162. Under homeo-
static conditions, pools of IL-33 become active locally to sustain 
basal physiology by activating ST2+ cells. In response to a number 
of perturbations, such as allergen exposure, it can be induced 
through multiple pathways in the absence of cell death depending 
on the nature of the stimulus. For example, common allergens such 
as Alternaria alternata and HDM induce IL-33 secretion through a 
mechanism dependent on DUOX-1-mediated activation of the epi-
thelial EGFR and the protease calpain-2 through a redox-dependent 
mechanism involving cysteine oxidation of the EGF and the tyro-
sine kinase Src163. Consistent with the importance of this pathway to 
allergic disease, NECs from allergic asthmatic patients were shown 
to express more DUOX-1 and IL-33 compared to non-asthmatic 
individuals. Several studies also suggest that extracellular ATP can 
induce the secretion of IL-33164. Alternative splicing resulting in 
cytoplasmic IL-33 has also been proposed as a potential mechanism 
of extracellular release165. Consistent with these findings, splice 
variants of human IL33 have been recovered from primary cells; 
however, the physiological relevance of these variants is currently 
unknown166. IL-33 is clearly a key player in the initiation of aller-
gic inflammation, suggesting that it would be an excellent target 
for biologic therapy. However, as it also plays a role in other non- 
Th2-mediated inflammatory diseases167,168, a more detailed under-
standing of the plethora of IL-33’s actions is required prior to  
targeting it in allergic individuals.

Impact of cellular metabolism on Th2-mediated 
inflammation
In recent years, the role of metabolism in regulating the function 
of immune and non-immune cells that are important in asthma has 
been uncovered. Balancing nutrient utilization and metabolism is 
critical for cells to meet energy needs required to survive, prolifer-
ate, and perform their specific functions (i.e. cytokine secretion). A 
variety of metabolic mediators such as arginine, extracellular lac-
tate, and cyclic adenosine monophosphate (cAMP)/ATP have been 
implicated in various aspects of the asthmatic phenotype. Recent 
evidence suggests that the integration of these metabolic functions, 
sensing of the external nutrient milieu, and immune cell polariza-
tion occurs through the PI3K/AKT/mammalian TOR (mTOR) 
pathways169,170. While the importance of immune cell metabolic 
remodeling in different physiological settings is not fully under-
stood, there is a growing realization that inappropriate metabolic 

Page 9 of 19

F1000Research 2017, 6(F1000 Faculty Rev):1014 Last updated: 28 JUN 2017



function underlies many aberrant immune responses and that repro-
gramming cellular metabolism may provide a therapeutic avenue to 
alter immunity171,172.

Arginine metabolism
Arginine is a key substrate in the citrulline–NO and tricarboxylic 
acid cycles. However, little is known about how mitochondrial 
arginine metabolism modulates inflammation. Elevated expression 
of the arginine-metabolizing enzymes iNOS and arginase were 
found in the airway epithelium of asthmatics. Xu et al. described 
a mechanistic role for arginine metabolism in asthma. Greater 
arginine flux increased oxidative metabolism in airway epithelium, 
resulting in lower STAT6 and hypoxia-inducible factor signaling, 
which are both important drivers of asthma173. Arginase 1 is also a 
critical regulator of ILC2 metabolismin the lung. Elevated ARG1 
expression was noted specifically in ILC2s from the lung tissue of 
patients with COPD and idiopathic pulmonary fibrosis. Deletion 
of Arg1 specifically in ILC2s resulted in the attenuation of type-2-
mediated lung inflammation in mice due to diminished ILC2 pro-
liferation and cytokine production. This work has shed new light 
on how arginine metabolism may influence allergic inflammatory 
responses174. Since ILC2s are one of the major producers of the 
cytokines that initiate Th2 immune responses in allergic inflamma-
tion, the modulation of arginine metabolism may provide a promis-
ing avenue for the regulation of these low-frequency cells, thereby 
preventing the initiation of Th2 inflammation.

Lactate
Recent studies have demonstrated that lactic acid produced by  
tumor cells induces an M2-like polarization with enhanced 
Arg1 expression in murine TAMs compared with peritoneal  
macrophages175. Similarly, a recent study by Selleri et al. dem-
onstrated that the presence of lactate during the differentiation 
of human monocytes to DCs induced a M2 macrophage phe-
notype. These M2 macrophages induced Th2 polarization. This 
effect was due to a decrease in oxidative phosphorylation, lower 
basal respiration, and more polarized mitochondrial membrane 
potential as well as higher spare respiratory capacity176. This lac-
tate-induced M2 phenotype is consistent with the lactic acidosis 
observed in patients with severe asthma177,178 and the observation 
that asthmatics have more M2 macrophages in their lungs than do  
non-asthmatics38,179. Furthermore, lactic acid has been shown to 
delay NF-κB activation and suppress LPS-induced TNF-α secre-
tion in monocytes, promoting an M2 macrophage phenotype180,181. 
However, opposite effects have been attributed to lactate, the salt 
form of lactic acid, in that it enhanced LPS-mediated inflammatory 
responses in macrophages182. Recent studies have shown that lactic 
acid negatively regulates IL-33-mediated cytokine and chemokine 
production in murine bone-marrow-derived mast cells and primary 
human mast cells, resulting in the suppression of inflammation183.  
Accordingly, lactic acid and lactate might be playing different  
roles in M2 polarization and asthma depending on the local 
pH. A better understanding of the conditions that induce either  
systemic or localized changes in airway pH may inform the  
development of more effective strategies to control asthma.

mTORC
mTOR complex (mTORC)-activated pathways have emerged as 
critical regulatory nodes for the polarization of T cells184,185 and 
macrophages186. The TORC1 pathway is crucial for the develop-
ment of Th17 polarization in naïve murine T cells, but not the 
other Th profiles187, linking the opposing regulation between Th2 
and Th17 responses. This points to the mTOR pathway as a pos-
sible target for effective therapy to ameliorate Th2/Th17 mixed 
asthma phenotypes. Exploring the mTOR pathway for type-2-high 
asthmatics should be approached with caution, however, given the 
uncertainty surrounding equivocal data on the Th2/Th17 balance 
discussed above.

Regulation of macrophage polarization following the TORC1/2 
dichotomy established for T cells has been an attractive concept. 
IL-4-dependent M2 macrophage differentiation is associated with 
mTORC2/STAT6 activation and increased fatty acid oxidation 
and oxidative phosphorylation188. In contrast, constitutive activa-
tion of mTORC1 due to myeloid-specific deletion of its negative 
regulator tuberous sclerosis complex 1 leads to decreased M2 
macrophage polarization by attenuating IL-4-induced AKT activa-
tion and M2 gene expression189,190. This correlates with the novel 
role of TORC1-activated p70S6K1 and GRB10 as key negative  
regulators of IL-4-induced IRS-2 signaling and M2 macrophage 
polarization191. The balance between mTORC1 and mTORC2 
in controlling macrophage polarization was also highlighted by  
studies in mice with a myeloid-specific deletion of rapamy-
cin-insensitive companion of mTOR, a subunit of mTORC2.  
Lacking functional mTORC2 resulted in exaggerated responses 
to LPS and other TLR ligands and decreased M2 macrophage  
markers192. Taken together, these studies highlight the importance 
of mTOR complexes in dictating M2 polarization. In addition, 
they point to possible targets, such as p70S6K or GRB10, that  
could be used therapeutically to downmodulate IL-4-mediated 
inflammatory responses and M2 macrophage polarization and to 
control type-2-high asthma.

cAMP/ATP
cAMP also alters cellular phenotype. Bone-marrow-derived  
DCs from mice deficient in the production of cAMP triggered 
Th2 polarization of CD4+ T cells. These mice developed spon-
taneous elevations in total IgE, resulting in severe Th2-mediated  
lung inflammation. Exposure to the cell-permeable cAMP ana-
log 8-CPT-cAMP (CPT) decreased their ability to induce Th2 
responses193. However, the role of cAMP in inflammation is 
more complex and could be cell specific. Mucus production by  
bronchial epithelial cells depends not only on IL-13 stimulation 
but also on signaling through the β2-adrenoceptor (β2AR). New 
research shows that epinephrine activation of β2AR and ERK1/2, 
JNK, and cAMP signaling is necessary for mucin production.  
These findings may explain the side effects of chronic β2AR  
agonist use in asthma194.

In addition to cAMP, ATP has also been demonstrated to  
regulate inflammation. Through the utilization of a mouse model 
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of OVA-induced lung inflammation, it was demonstrated that the 
P2X4 receptor (P2X4R) was upregulated in inflamed mouse lungs. 
Moreover, through binding to P2X4R, ATP enhanced the expres-
sion of α-smooth muscle actin195 and proliferating cell nuclear  
antigen196 in the lungs of allergically challenged mice. Overexpres-
sion of these two proteins is an indicator of cell proliferation in 
asthma. Furthermore, P2X4R antagonists decreased cell recruit-
ment and mucus production in OVA-challenged mice. Taken 
together with ATP’s role in IL-33 release mentioned above, these 
studies suggest an important role for ATP in the regulation of  
airway inflammation and airway remodeling197.

The microbiome as a modifier of Th2 inflammation
There has been an increased appreciation of the role of the gut 
and lung microbiota in shaping the Th2 response in asthma. The  
beneficial effects of exposure to certain bacterial products at key 
times in immune system development have been demonstrated 
to reduce the development of asthma in epidemiological stud-
ies of infant breastfeeding, vaginal delivery, exposure to certain 
pets in the home198–200, the number of siblings in the home201, and  
exposure to farm dust in utero202. Early life antibiotic use203,204, 
lack of breastfeeding205, or cesarean birth206 are associated with 
an increased risk of developing asthma. While no specific patho-
gens have been associated with the protective effect of these expo-
sures against disease, recent studies in human asthmatics have  
suggested that alterations in the diversity of the gut and lung  
microbiome may be associated with an increased risk of develop-
ing asthma207,208.

In a recent study in which the effects of the gut microbiome  
were investigated at the level of genera, the relative abundance of 
Lachnospiraceae, Veillonella, Faecalibacterium, and Rothia were 
found to be decreased in the gut in the first 100 days of life in  
children who later went on to develop atopic asthma209. Of note, 
the differences in relative abundance of these genera were no  
longer present at 1 year of age. The contribution of these spe-
cies to asthma pathogenesis was further demonstrated in an 
experimental mouse model. Asthma was induced in germ-free 
mice that were colonized with the gut microbiome of a child 
with severe atopic allergy and very low relative abundance of  
Lachnospiraceae, Veillonella, Faecalibacterium, and Rothia. The 
effect was reversed with supplementation with the four protec-
tive bacterial genera. If replicated, these findings would provide a  
strong basis for a causal link between these four bacterial genera 
and the development of atopic asthma. These results are consistent 
with multiple studies suggesting that there is a critical time period 
in early life when gut flora imbalances have the most influence  
on allergic inflammation209–211.

Studies in experimental animal models have shed some light  
on the potential mechanism(s) by which the shifts in phylogenic 
groups condition the immune system. For example, an intrigu-
ing study showed that the susceptibility of newborn mice to the 
development of HDM-driven BAL eosinophilia and AHR was  
associated with a lung microbial pattern dominated by Firmi-
cutes and gammaproteobacterial phyla212. Interestingly, over the 
first few weeks of life, the balance of lung phyla shifted towards 
a dominant Bacteroidetes pattern. This shift in the lung microbi-
ota was associated with a reduction in responsiveness to allergen  
exposure and an increase in the population of PD-L1-dependent  

T-regulatory cells. Thus, these studies suggest that the establish-
ment of a Bacteroidetes-dominated airway microbial pattern  
early in life is required to populate the lung with T-regulatory  
cells which provide sustained protection against the development of 
aeroallergen-induced airway inflammation.

Further support of the concept that gut colonization with  
Bacteroidetes is associated with protection against the develop-
ment of the asthmatic phenotype was provided by a study in mice 
in which a high-fiber diet protected them from the aeroallergen-
induced asthma phenotype, concomitant with a shift towards pre-
dominant gut colonization with Bacteroidetes212. The protection 
afforded by the high-fiber diet was mediated via short-chain fatty 
acid-induced alterations in bone marrow hematopoiesis character-
ized by enhanced generation of macrophage and DC precursors 
and subsequent recruitment to the lungs of DCs with an impaired  
ability to promote Th2-cell differentiation. Mechanistically, the 
authors showed that the effects of one of the short-chain fatty 
acids (propionate) on the asthma phenotype were mediated via the  
GPCR 41 (GPR41). These three products of the fermentation of 
dietary fiber are absorbed by the host, where they circulate and 
communicate with the immune system by binding to host cell  
receptors. Indeed, short-chain fatty acids, such as butyrate and 
acetate, have been shown to regulate mucosal T-regulatory cell 
differentiation and function213. In humans, decreased fecal short-
chain fatty acids at 3 months of age have been observed in subjects 
who went on to develop atopy and wheeze at 3 years of age, and  
germ-free mice inoculated with the microbiome of a child  
with atopic wheeze had lower levels of the short-chain fatty acid 
butyrate than did control mice214.

Taken together, these results suggest that diet and the gut micro-
biome shape the immunological environment in the lung and 
that a disrupted microbiota could possibly have detrimental 
effects. Importantly, these results suggest that microbiota-based 
interventions could be used to influence the likelihood of devel-
oping allergies. However, the timing of administration of such  
therapies is critical and would likely have to be given in the  
“window of opportunity” in early life to be effective. Further 
research is now required to fully dissect the role of the microbiome 
in disease and ultimately pave the way for the emergence of new 
therapeutic strategies in combating these conditions.

Conclusion
A better understanding of both canonical and newly appreci-
ated pathways of regulation of allergic inflammation will inform 
the development of strategies to better control asthma and its  
consequences in Th2-high asthmatics. The new players that 
we have discussed in this review, such as the role of epithelial-
derived cytokines in type-2 cytokine production (TSLP, IL-25, and  
IL-33), the identification of novel ligands for the IL-13 recep-
tor IL-13Rα2, the role of E3 ubiquitin ligases in T cell differen-
tiation, and the role of cellular metabolism in type-2 immune  
responses, highlight the tremendous complexity of the pathways 
and feedback loops that regulate IL-4/IL-13 production, their recep-
tors, their signaling pathways, and their downstream consequences 
(summarized in Figure 1). Some of these effects are uncovered 
only in the setting of specific polymorphisms or the presence or  
absence of other host factors (age as well as gut and lung micro-
biome). An appreciation of this complexity reinforces the  
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