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Abstract

Background: Exploration and modelling of heterogeneous treatment effects as a function of baseline covariates is
an important aspect of precision medicine in randomised controlled trials (RCTs). Randomisation generally guarantees
the internal validity of an RCT, but heterogeneity in treatment effect can reduce external validity. Estimation of
heterogeneous treatment effects is usually done via a predictive model for individual outcomes, where one searches
for interactions between treatment allocation and important patient baseline covariates. However, such models are
prone to overfitting and multiple testing and typically demand a transformation of the outcome measurement, for
example, from the absolute risk in the original RCT to log-odds of risk in the predictive model.

Methods: We show how reference classes derived from baseline covariates can be used to explore heterogeneous
treatment effects via a two-stage approach. We first estimate a risk score which captures on a single dimension some
of the heterogeneity in outcomes of the trial population. Heterogeneity in the treatment effect can then be explored
via reweighting schemes along this axis of variation. This two-stage approach bypasses the search for interactions
with multiple covariates, thus protecting against multiple testing. It also allows for exploration of heterogeneous
treatment effects on the original outcome scale of the RCT. This approach would typically be applied to multivariable
models of baseline risk to assess the stability of average treatment effects with respect to the distribution of risk in the
population studied.

Case study: We illustrate this approach using the single largest randomised treatment trial in severe falciparum
malaria and demonstrate how the estimated treatment effect in terms of absolute mortality risk reduction increases
considerably in higher risk strata.

Conclusions: ‘Local’ and ‘tilting’ reweighting schemes based on ranking patients by baseline risk can be used as a
general approach for exploring, graphing and reporting heterogeneity of treatment effect in RCTs.

Trial registration: ISRCTN clinical trials registry: ISRCTN50258054. Prospectively registered on 22 July 2005.
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Background
Randomised controlled trials (RCTs) provide the best
causal evidence base for estimating the population aver-
age treatment effect (ATE) for a given intervention. The
ATE can be used to support optimal decision making at
the population level. At the individual level, however, the
ATE is often unrepresentative of the true individual treat-
ment effect (ITE) for a large proportion of patients. This
may arise when the absolute treatment effect varies as a
function of the individual risk of a negative outcome (e.g.
treatment failure, death, severe adverse event, etc.). It has
been previously shown that the baseline risk of a nega-
tive outcome is often highly skewed in patient populations
for many diseases and conditions [1]. Hence the average
risk, on which the ATE is estimated, may not be a good
summary of the individual risk [2].
Due to the common occurrence of heterogeneity in

baseline risk, guidelines for the reporting and assessment
of RCT results have recommended the use of multivari-
able risk prediction tools for patient stratification [3–5].
Baseline predicted risk summarises patient variability into
a single dimension over which individuals can be com-
pared and average outcomes assessed. In the case that the
risk score summarises all of the information content in
the baseline covariates regarding the outcome, such that
the risk score is sufficient, i.e. the outcome is conditionally
independent of the covariates given the risk score, then
the risk score is known as a prognostic score [6]. Ideally
the risk score is a prognostic score, but this is not neces-
sary for the risk score to be a useful stratifying variable.
Risk scores provide a methodology for risk-based refer-
ence class forecasting and a principled way of assessing
personalised and heterogeneous treatment effects (HTEs)
[7]. Here, reference class forecasting refers to a predic-
tion approach whereby each individual is characterised by
a univariate (reference) score. We then predict the out-
come for a given individual by averaging over the observed
outcomes in a set of ‘similar’ individuals [8]. Similarity is
defined by the closeness of their reference scores. In our
context, we use the baseline risk to define the reference
class.
The assessment of HTEs, and thus the stability of trial

results, has classically been done by constructing para-
metric models targeting the ITE, conditioning on either
the baseline risk or key variables predictive of the out-
come [9]. However, estimating an ITE brings with it
two challenges, one foundational and one practical. The
foundational challenge is that the estimand of an ITE is
counterfactual, targeting the expected difference between
an observed (actual) outcome and an unobserved (poten-
tial) outcome that would have occurred had the individual
been given an alternative treatment. The practical chal-
lenge is that statistical methods targeting ITEs invariably
need to transform the outcome measurement to allow

for contextual modelling, such as transforming to the
log-odds scale under logistic regression, or proportional
hazards for time-to-event data. These transformations
inevitably make results dependent on parametric model
assumptions and link functions concerning the effect of
patients’ baseline covariates on their outcomes. More-
over, when testing for evidence of clinically significant
variation in the ITE, considerable care must be taken
not to overfit to the data, especially when considering a
large number of potential predictor variables [10]. Over-
fitting to data can suggest heterogeneity when none exists
or can identify spurious associations between covariates
and ITEs. Correction for multiple testing and overfit-
ting invariably reduces the power to detect true HTEs.
Changing or transforming the outcome measure in order
to accommodate modelling assumptions complicates the
communication of results if the original trial reports the
treatment effect on the absolute scale yet subsequent ITEs
are reported on a transformed measure.
Here we promote a non-parametric (model-free) ref-

erence class forecasting approach to the estimation and
assessment of HTEs using baseline risk to determine the
reference class. In particular we construct the reference
class through a sample reweighting scheme, and use this
to explore for treatment effect variation in target popu-
lations different to the one collected through the RCT.
Targeted treatment effects can then be estimated for these
new populations. Two conceptually different target pop-
ulations can be defined. Firstly, there is one which allows
for the estimation of a counterfactual ITE. This can be
done through ‘local’ reference classes centred around an
individual of interest. Secondly, there is one which allows
the estimation of the ATE in a ‘tilted’ population with dif-
ferent risk distributions to that of the RCT. We denote
these as conditional average treatment effects (CATEs).
The latter may be particularly useful if the risk profile of
the trial population systematically underestimates or over-
estimates the profile of risk of the population for which
the intervention is aimed. The CATE can then be used to
explore stability of the RCT outcome with respect to this
variation in population risk. The ITE and the CATE corre-
spond to different sample reweighting schemes. We show
how different reweighting schemes correspond to differ-
ent bias-variance trade-offs for the reference class estima-
tor, and we provide guidelines on graphing of results. It is
important to note that estimands from reference classes
target the same units of treatment effect as those defined
in the original RCT. This allows for direct comparison
between estimates. This is not true in general for HTE
models, which, as noted above, may have to transform
the outcome prior to modelling, for example, transform-
ing an absolute effect to the log-odds scale for a binary
response. We note that providing individualised predic-
tions through locally weighted averaging has a rich history
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in the field of kernel smoothing methods, for example, the
Nadaraya-Watson estimator [11–13].
For illustration we consider the single largest trial of

life-saving interventions in severe malaria, demonstrating
that the superiority of parenteral artesunate over par-
enteral quinine stems from its very large effect in the most
severely ill patients.

Methods
Multivariable risk-based ranking of trial individuals
In the following we consider RCT data of the form
{xi, yi, ti}Ni=1, where xi is a vector of baseline patient covari-
ates for the ith patient, and yi is their observed outcome
after receiving a randomised treatment allocation indi-
cated by ti. We are interested in pairwise comparisons
between two treatment arms T0 and T1.
We assume that it is possible to construct a priori a ‘risk

quantile mapping’ Q : X →[ 0, 1] for the outcome yi. This
function Q maps each subject in the trial to their corre-
sponding empirical risk quantile, agnostic of treatment.
Thus, Q(xi) = 0 denotes the subject least at risk of the
negative outcome, and Q(xj) = 1 the subject most at risk.
In practice this mapping could be derived by estimating a
function f : X → Y using data from a different source
(this could include observational data, as the risk is agnos-
tic of the treatment received); computing f (xi) for each
subject; and then mapping f (xi) onto the empirical risk
distribution for theN subjects in the trial. For most condi-
tions, there will exist either an already validated risk score
or external data on which to build a risk-based ranking [1].
If this is not the case, it is also possible to build an internal
risk model by ‘retrodiction’: fitting the function f to the
trial data at hand. Simulation studies suggest that these
internal models introduce little bias into the procedure
[14].We note that a risk quantile mapping can be based on
almost any type of outcome data. For example, a propor-
tional hazards (Cox) model fit to time-to-event data can
produce a risk quantile mapping by using the estimated
linear combination of predictors.
We can then use the risk quantile mapping to con-

struct a reference class. The risk mapping removes the
need for multiple testing of interactions between the ran-
domised treatment and single baseline covariates. The use
of risk-based reference classes for exploring HTEs has
been advocated previously, but it was limited to quintile
or quartile subgroups [3–5]. We now consider a general
approach using the risk-ranked individuals to estimate
ITEs and CATEs. The approach advocated here relies crit-
ically on the quality of the risk mapping: the better the
quantile mapping (i.e. the better it is at discriminating
between low- and high-risk individuals), the better it will
be for visualising HTEs if they are present.
In the following, for simplicity we assume that the sub-

ject index i has subsequently been sorted according to the

risk prediction, withQ(x1) = 0 andQ(xN ) = 1. In general,
and in the absence of ties, Q(xi) = i−1

N−1 .

Local smoothing estimation of a risk-based ITE using
reference class forecasting
By ranking trial subjects from those ‘least at risk’ to those
‘greatest at risk’, it is possible to use a sliding window
approach to estimate the ITE for each subject. For subject
i, the set of risk-adjacent subjects determines the reference
class used to predict the ITE for subject i. This gener-
alises the concept of partitioning subjects into quintile or
quartile subgroups [11].
Mathematically, the adjacency can be quantified using

localised reweighting kernels. Local kernels target a spe-
cific individual focussed at their quantile of risk qi for the
ith subject by considering the treatment outcome of other
individuals in a local neighbourhood of risk-adjacent indi-
viduals, with q’s close to qi. These local reference classes
are parameterised by their bandwidth (radius) γ ∈[ 0, 1],
which defines the proportion of subjects in the window
‘close’ to subject i, which are used to estimate the ITE
of the ith subject. This in turn characterises the effec-
tive sample size of the reference class forecasting method.
The simplest local reference class forecasting weighting
scheme uses the ‘boxcar’ function that gives equal weight
to all subjects in the local window when estimating the
ITE (see Fig. 1 for an example). For a window of width
γ , we can estimate the ITE of treatment T1 versus T0 in
subject i as:

ITE(qi) = C
{∑

k
wkyk1(tk = T1) −

∑
k

wkyk1(tk = T0)

}

(1)

where C = (
∑

k wk)
−1 and wk = 1 for subjects in the win-

dow around subject i and wk = 0 outside of the window,
i.e.:

wk =
{
1, for i − �γ /N� ≤ k ≤ i + �γ /N�
0, otherwise (2)

Equation (1) defines the ITE of subject i using outcome
data from all subjects whose baseline risk quantile is inside
an interval of width 2γ centred around the ith subject.
For the subjects in the lowest and highest risk quantiles,
for whom there are not �γ /N� risk-adjacent subjects on
each side, we take the convention to define the ITE as that
of the subjects �γ /N� and N − �γ /N�, respectively. This
convention preserves symmetry at the risk ‘tails’ (high-
est and lowest risk individuals). We note that γ must be
large enough such that for each subject i there is at least
one risk-adjacent subject inside the risk quantile interval
of width 2γ for both treatment arms (at least one received
T0 and at least one received T1). Otherwise, the treatment
effect is not estimable.
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Fig. 1 Two local kernel weighting schemes for ITE estimation and one global reweighting scheme for CATE estimation, as compared to ATE
estimation. The ITE and CATE reweighting schemes represented all reduce the effective sample size of the original data and target an average risk
corresponding to the 25th risk quantile. The scale of the y-axis is chosen so that the sum of the weights is equal to the effective sample size, or
equivalently that the effective sample size is equal to the area under the curve. The effective sample sizes as a percentage of the original data are
shown in the legend

The boxcar kernel is known to be problematic, as it
varies in a non-smooth way as subjects enter into and
leave the kernel, as illustrated in supplementary Figure S1.
A better approach is to use a window that gradually
down weights the influence of subjects in the estimate
as subjects move away from the prediction point at qi.
A smoother, improved reference class forecasting method
uses the Epanechnikov kernel, again defined on the risk
quantiles of radius of width γ around the subject i, with
the weight given as:

wk =
{

3
4

(
1−(

|i−k|
�γN� )

2
)
, for i −�γ /N�≤ k ≤ i + �γ /N�

0, otherwise
(3)

We use the same convention at the edges of the risk dis-
tribution for the subjects i < �γ /N� and i > N − �γ /N�.
Under an Epanechnikov reweighting scheme, the weights
slowly decay as a function of the distance from the ith
datapoint. Both the boxcar and Epanechnikov kernels,
centred around the 25% risk quantile, are illustrated in
Fig. 1.
These ‘local’ reference class forecasting methods are

symmetrical around the prediction for the subject i; i.e.
they use an equal number of datapoints each side of i.
However, they both can be adapted so that the band-
width varies, exploiting the maximum possible informa-
tion around the subject i and preserving symmetry. For
example, at the median risk quantile, a varying bandwidth

method would use all the data. We denote these maxi-
mal bandwidth local reference classes, and define the size
of the window of information around the ith subject as
min(i,N − i), where the parameter γ now specifies the
minimal value that this window can take.

Estimation of a risk-based CATE using reference class
forecasting with exponential tilting
Local reweighting schemes provide a principled approach
for determining an ITE for a given subject in the trial up to
a certain accuracy, with a certain bias-variance trade-off
(see the next section). A different goal is to estimate popu-
lation ATEs but in populations with a different risk distri-
bution to that of the original trial. Often external popula-
tions for which the intervention is intended may differ to
those of the trial due to issues such as non-representative
inclusion criteria, selection bias or geographical cluster-
ing.We denote the estimation of the expected effect under
a different population as a conditional average treatment
effect (CATE). One interesting, and identifiable, external
population can be made by tilting the original sample set
through reweighting the contribution from each subject.
Exponential tilting of the population weights is one exam-
ple. Under this scheme we can consider estimating the
ATE in an external tilted population that contains more
higher risk subjects (or more lower risk ones) as compared
with the original trial. In this scheme the ith subject with
baseline covariates x is attributed a weight proportional to
eλQ(x) in the estimate of the external ATE, where the free
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parameter λ determines the overall effective sample of the
scheme and how far ‘tilted’ the weights are to the highest
risk subjects (λ > 0) or the lowest risk subjects (λ < 0).
The choice of λ = 0 recovers the original ATE. The ratio
of the relative weight w1 (the lowest risk subject) to the
relative weight wN (the highest risk subject) is thus e−λ.
This is akin to estimating the ATE in a population whose
participants are recruited with probability eλQ(x) relative
to the original trial population.
A CATE could be directly targeted at a population of

interest, for example, the set of all screened but excluded
subjects (e.g. exclusion due to co-morbidities). One could
directly construct the set of weights that target this exter-
nal population, as the internal validity of the RCT may
not apply to the excluded population. We can target the
external population by selecting a set of weights such
that the weighted distribution of risk in trial participants
approximates as best possible the distribution of risk in
the external population.

Effective sample size and bias-variance trade-off
Reference class estimators using reweighting schemes—
whether they are global or local—provide unbiased esti-
mators of the targeted treatment effect in the ‘local’
or ‘tilted’ population, but have increased variance with
respect to that of the ATE estimated from the original
RCT. This is a consequence of the reduced effective sam-
ple size within the reference class. The effective sample
size can be thought of as the number of subjects (each
given weight 1) required to obtain the same accuracy of
estimation as in the reweighted population. As a func-
tion of the weights wi, the effective sample size is given by
(
∑N

i=1 wi)2/
∑N

i=1 w2
i . The effective sample size is equal to

N when all weightswi are equal to 1 and is strictly less than
N otherwise. The effective sample size is directly related
to the power to detect HTEs using a reweighted reference
class. The more distinct the class, the lower the effective
sample size, and thus the lower the power to reject the null
hypothesis for any given HTE size.
For local reference classes, the effective sample size

decreases with decreasing bandwidth of the kernel. This
relates to a bias-variance trade-off in estimating the ITE
at a reference quantile. The more localised the kernel, the
lower the bias to estimate the target ITE, but the greater
the standard error of the estimate, which is a function of
the square root of the effective sample size. For instance,
a kernel that only includes xi at a reference point has
zero bias for the unique ITE but infinite variance of the
estimate, as only one outcome is observed.

Properties of reweighting schemes under no heterogeneity
It is interesting to note that, under an assumption of ‘no
treatment effect heterogeneity’, any weighted average of
the outcomes is an unbiased estimator of the ATE, albeit

with increased variance. If we consider the event ‘no HTE’
as a null hypothesis, then, under this null, the reweighted
reference class ITEs will be distributed around the ATE
with a variance determined by the effective sample size.
This provides for a formal testing framework able to reject
this null hypothesis at a certain level of significance, α,
should there be an HTE under an alternative hypothesis.

Case study: the HTE of parenteral artesunate for
the treatment of severe falciparummalaria
Severe falciparummalaria is a medical emergency charac-
terised by potentially lethal vital organ dysfunction. Mor-
tality is high even in the presence of effective treatment
and is strongly dependent on the number and the severity
of complications at presentation. Severe malaria repre-
sents a spectrum of illness where risk of death is highly
predictable from baseline hospital admission covariates.
The best prognostic covariates are the presence of coma,
the concentrations of base deficit and blood urea nitrogen
and also the total parasite biomass [15]. The operational
definition of severe malaria as given by the World Health
Organisation (WHO) [16] provides cutoffs that allow for
efficient triage of patients at the highest risk of death,
and standardisation of clinical studies of novel interven-
tions in this clinically important subgroup. However, due
to the multifactorial nature of the illness, estimating HTE
within this subgroup is well suited for a multivariable risk
modelling approach.
A key recent advance in the last decade in the treatment

of severe malaria has been the introduction of parenteral
artesunate. This has been shown to reduce mortality by
up to 30% compared to parenteral quinine [17, 18]. In
this section we illustrate our approach to reference class
forecasting using the single largest study ever conducted
in severe malaria, which compared artesunate to qui-
nine in African children (AQUAMAT) [18]. The results
of this trial led to parenteral artesunate becoming the
WHO recommended treatment worldwide for severe fal-
ciparum malaria. In endemic countries where there is
currently no evidence of widespread clinically significant
artemisinin drug resistance (i.e. everywhere except South-
east Asia [19]), there is no a priori reason to believe
that there are any severe malaria patients who do not
benefit from artesunate over quinine. However, character-
ising heterogeneity in the treatment effect of artesunate
is important for understanding the unique pharmacody-
namics underlying its superiority. This is especially impor-
tant in light of emerging resistance to the artemisinin
derivatives in Southeast Asia [20]. Characterising the rela-
tionship between baseline risk and treatment effect also
provides a rational approach for defining study inclusion
criteria in order to maximise power at a given sample size.
The following illustrates our suggested approach to

assessing HTEs from RCT data and showing how this
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heterogeneity should be graphically visualised with the
help of a multivariable risk model. We first constructed
a multivariable risk model of death from severe malaria
using data from more than 4000 patients from multiple

randomised and observational studies (mostly Asian
adults) [17, 21–27]. For all patients in this training
dataset, risk of in-hospital mortality was then estimated
using a mixed-effects logistic regression model, with the

Fig. 2 A graphical comparison of four approaches to reference class forecasting of ITEs (thick blue lines with the pointwise 95% confidence intervals
[CIs] shown as shaded blue areas) for patients enrolled in the AQUAMAT study [18]. In each panel the ATE (95% CI) from the original trial (n = 5483) is
shown by the dashed red line (red shaded area). The left column shows fixed bandwidth predictors (fixed effective sample sizes approximately equal
to one fifth of the original sample size), and the right column shows varying bandwidth predictors (varying effective sample sizes). a Risk-based
quintile partitioning. This does not interpolate between average risks in each subgroup. There is some minor variation in effective sample size due
to ties in the multivariable risk scores. b Exponential tilting with free parameter λ as a global reweighting scheme with varying effective sample size
(top x-axis). This is centred around the overall treatment effect corresponding to the value λ = 0. c1 Epanechnikov kernel with fixed bandwidth
chosen for an effective sample size of n = 1097 (20% of the original sample size). c2 Epanechnikov kernel with maximal bandwidth reference class.
Note that the 50% risk quantile has an effective sample size reduction of 17% with respect to the original trial sample size due to the decay in
weights. This contrasts with panel b, where the ITE prediction at the 50% empirical risk quantile equals that of the ATE
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presence of coma (yes/no) and the base deficit concentra-
tion (mEq/L) as fixed effects. Study code and country of
patient recruitment were added as random effect terms.
This model was then used to predict the baseline prob-
ability of death in all patients (n = 5483) recruited in
the AQUAMAT study. The assigned risk of outcome was
highly predictive of death in the AQUAMAT study (see
supplementary Figure S2).
The original publication of the AQUAMAT study

results reported no significant effect from a Mantel-
Haenszel analysis of the predefined subgroups [18]. This
is unsurprising, as it is well accepted that assessing HTE
using single patient covariates lacks power and is prone to
false positive results [3, 5]. Using reference class schemes,
however, Fig. 2 shows that it is visually apparent that treat-
ment effect is strongly dependent on the baseline risk of
death. Panel a in Fig. 2 shows a standard quintile subgroup
plot such as that recommended in [4]. Each subgroup
has an effective sample size equal to approximately only
one fifth of the original sample size, but the two high-
est quintiles of risk both approximately reach significance
at the 5% level in terms of absolute mortality reduction.
When using reference class forecasting that interpolates
between all risk quantiles, the trend between baseline risk
and treatment effect becomes clearer. For example, panel
b shows the variation in CATE when varying the dis-
tribution of baseline risk using exponential tilting. The
estimation of ITEs using an Epanechnikov kernel with
varying bandwidth gives very similar results (panel c2).

Discussion
Randomised trials are designed and powered to estimate
ATEs. However, the distribution of baseline risk is often
highly skewed. In this case, the ATE will both overes-
timate and underestimate the benefit of treatment for
subjects who have lower or higher than average risk. A
consequence of this variation in baseline risk and its influ-
ence on the reported treatment effect is that ATEs can
be misleading when used to guide treatment recommen-
dations at the individual level. It has been recommended
that all trials report how treatment effect varies as a func-
tion of baseline risk [4], and the methods described here
provide a principled framework for the graphical visual-
isation of HTEs and the estimation of ITEs and CATEs.
Visualisation of HTEs using baseline risk is an important
example of the broader concept of constructing an a priori
reference class on which to explore heterogeneity.
The classical approach to the estimation of ITEs is to

construct a parametric model of the outcome conditional
on each possible treatment assignment and observed key
subject covariates. Typically this necessitates data trans-
formations of the outcome measurement such as the
log-odds scale for logistic regression. Instead, we advo-
cate a two-stage approach, first fitting a parametric model

between the outcome and the key subject covariates,
preferably from an external data source: this is a multivari-
able risk model which does not involve counterfactuals.
This risk model can then be used to construct causally
valid weighted treatment effects which can be directly
interpreted in terms of risk-dependent ITEs and CATEs.
In brief, instead of modelling the treatment effect directly,
we recommend to model the risk and then use classi-
cal tests on randomised data to estimate ITEs. A major
advantage of this approach is that it provides a formal
approach to the use of prior observational data when
evaluating the results of a randomised trial.
Graphical visualisation of RCT data using a well-defined

risk-based reference class forecasting method such as
exponential tilting of subjects’ ‘information weight’ allows
for a clear presentation of heterogeneity in treatment
effect as a function of baseline risk. These reference class
forecasting plots are defined on the scale of the origi-
nal estimand and are explicitly centred around the ATE
targeted by the original RCT, clearly showing the loss in
effective sample size as one attempts to predict in the
tails of the risk distribution. Alternative methods, such as
smoothing splines to estimate the ITEs, add extra compli-
cation to the analysis, for example, requiring a transfor-
mation of the outcome measure to ensure that the spline
estimates remained in the appropriate range (for example,
non-negative risk). In addition, they would not be centred
around the ATE without considerable modification.
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