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Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with 
several distinct complex endotypes. Both environmental and genetic factors can in-
fluence the development and progression of allergy. Complex pathogenetic pathways 
observed in allergic disorders present a challenge in patient management and suc-
cessful targeted treatment strategies. The increasing availability of high- throughput 
omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, 
and metabolomics allows studying biochemical systems and pathophysiological pro-
cesses underlying allergic responses. Additionally, omics techniques present clinical 
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1  |  INTRODUC TION

Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, 
and food allergy are heterogeneous and multifactorial inflammatory 
diseases affecting people all around the world, and the clinical man-
ifestations vary among allergic patients.1– 4 The occurrence of aller-
gic diseases is constantly increasing worldwide, and the underlying 
mechanisms remain to be further detailed.5,6 Although the devel-
opment of allergic diseases has been well known to be influenced 
by both environmental and genetic factors, the interactions and 
possible outcomes of these factors are not fully understood.7 The 
complexity and heterogeneity of these diseases raise the challenge 
to diagnose and manage specific endotypes.8,9 Patients with aller-
gic diseases and asthma have been reported to respond differently 
to the same treatment which may be caused by altered interactions 
between thousands of genes resulting in various subendotypes.10 
The emergence of high- throughput omic technologies, including 
genomics, transcriptomics, epigenomics, proteomics, and metabo-
lomics, may allow to develop a molecular profile and deeper under-
standing of the pathogenesis of these diseases. These technologies 
can help to process and analyse a large amount of biological data, 
to interpret the potential outcomes and consequently decipher the 
mechanisms behind the development of these complex diseases.7,11 
System- wide molecular profiling may have essential clinical implica-
tions, from discovery of new functional roles for a gene, a protein, or 
a metabolite involved in the disease progression and identification of 

reliable biomarkers for disease endotypes, to new insights into dis-
ease pathobiology while aiding in the development of more precise 
therapeutic strategies for better disease management and control 
(Table 1).11

2  |  WHAT IS OMIC S SCIENCE?

The phenotype of an organism, specific tissues, and individual cells 
in disease and health is determined by the molecular profiles of the 
individual cellular components present at a specific time under spe-
cific conditions. The genome is an organism's complete set of DNA 
that is relatively static and comprises all genes and noncoding DNA. 
The decision on what sequences of the DNA are accessible for tran-
scription is determined by the epigenome, a set of modifications 
on the DNA including methylation, and on DNA- binding proteins, 
mainly histone proteins that carry a combination of several post- 
translational modifications (PTMs). The transcriptome is the set of 
all transcribed RNAs, which includes mRNAs, housekeeping RNAs 
such as rRNAs and tRNAs, and regulatory RNAs comprising long and 
short noncoding RNAs. The proteome comprises all the proteoforms, 
which are the sum of all molecular forms of a protein arising from a 
specific gene. The reason why a gene can give rise to several proteins 
are post- transcriptional processes such as differential splicing, vari-
able promoter or start codon usage, and post- translational processes 
such as endoproteolytic cleavage, or PTMs. These mechanisms vastly 

applicability by functional identification and validation of biomarkers. Therefore, find-
ing molecules or patterns characteristic for distinct immune- inflammatory endotypes, 
can subsequently influence its development, progression, and treatment. There is a 
great potential to further increase the effectiveness of single omics approaches by 
integrating them with other omics, and nonomics data. Systems biology aims to si-
multaneously and longitudinally understand multiple layers of a complex and mul-
tifactorial disease, such as allergy, or asthma by integrating several, separated data 
sets and generating a complete molecular profile of the condition. With the use of 
sophisticated biostatistics and machine learning techniques, these approaches pro-
vide in- depth insight into individual biological systems and will allow efficient and 
customized healthcare approaches, called precision medicine. In this EAACI Position 
Paper, the Task Force “Omics technologies in allergic research” broadly reviewed cur-
rent advances and applicability of omics techniques in allergic diseases and asthma 
research, with a focus on methodology and data analysis, aiming to provide research-
ers (basic and clinical) with a desk reference in the field. The potential of omics strate-
gies in understanding disease pathophysiology and key tools to reach unmet needs in 
allergy precision medicine, such as successful patients’ stratification, accurate disease 
prognosis, and prediction of treatment efficacy and successful prevention measures 
are highlighted.

K E Y W O R D S
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2890  |    RADZIKOWSKA et Al.

expand the proteotype, which is the total of all proteoforms that de-
fine the cellular phenotype. Finally, the enzymatic or other biological 
activities of the different proteins, together with environment-  and 
microbiota- delivered small molecules, determine the metabolome. 

Thus, metabolites are then the final step of the process. Metabolome 
includes active metabolites as well as spent by- products of metabolic 
processes and their degradation substances. These different cellular 
components are tightly interconnected with positive and negative 

TA B L E  1  Summary of methods, protocols, and data analysis pipelines most frequently used in omics approaches for allergic diseases 
research

Methods and 
protocols Data analysis pipeline Mechanisms of allergic diseases

Genomics and transcriptomics

Microarray 181,182 GWAS 183 and RNA microarray 
bioinformatics 184,185

Asthma, 89,186 Asthma and 
allergic rhinitis 187,188

Sequencing 23,24,26,189 DNA-  25 and RNA-  190 sequencing 
bioinformatics

Asthma, 102 Food allergy, 191,192 
Atopic dermatitis 82

Single- cell sequencing 57,193 Single- cell sequencing 
bioinformatics 194,195

Asthma and allergic rhinitis 81

Epigenomics

HiChIP (chromosome structure) 62 ChIP- sequencing data analysis 196 Asthma, Allergic rhinitis, Atopic 
dermititis, Food allergy 29,60

ATAC- sequencing (chromatin accessibility) 64 ATAC- sequencing data analysis 197

WGBS (DNA methylation) 69 Bisulphate sequencing data 
analysis 198

Asthma, Allergic rhinitis, 
Atopic dermititis, Allergic 
sensitization 58,59

TAB- sequencing (DNA methylation) 68 TAB- sequencing data analysis 199

CUT&RUN (histone modifications) 65 CUT&RUN data analysis 200

MS (histone modifications) 66 Histone modifications with use of 
MS 201

Asthma and Allergic Rhinitis 61

Small- sequencing (short noncoding RNAs) 86 Small RNA- sequencing data 
analysis 202

RNA- sequencing (long noncoding RNAs) 84 Long noncoding RNAs from RNA- 
sequencing data analysis 203

Proteomics

High- throughput protein identification, label- 
free quantification

121,122,126,128 Data analysis using similarity 
network fusion 125

Allergen characterization 129– 131

N- glycan characterization 132

Single protein quantification 120

Metabolomics

Proton nuclear magnetic resonance (1H- NMR) 204 Biobank procedures for 
metabolomics 205

Food allergy and Asthma 206

Liquid chromatography- MS (LC- MS) 207 Sample handling and 
preprocessing 208

Asthma 209

Gas chromatography- MS (GC- MS) 210 Quality assurance 211 Asthma severity 212

Capillary electrophoresis- MS (CE- MS) 213 CEU Mass Mediator: metabolite 
identification 214

Food allergy, Asthma 140

Multiplatform 215 METLIN: metabolite identification 
216

Food- associated respiratory 
allergy 172

Large- scale studies 217 XCMS- MRM and METLIN- MRM: 
targeted analysis 218

Asthma risk 219

Lipidomics 220 MS/MS deconvolution, 221 
Metaboanalyst, 222 Biological 
pathways 223

Abbreviations: ATAC- sequencing, Assay for Transposase- Accessible Chromatin using Sequencing; ChIP- sequencing, Chromatin immunoprecipitation 
followed by Sequencing; CUT&RUN, Cleavage Under Targets and Release Using Nuclease; HiChIP, Protein- centric Chromatin Conformation Method; 
MS, Mass Spectrometry; TAB- sequencing, Tet- assisted Bisulphate Sequencing; WGBS, whole- genome Bisulphate Sequencing.
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feedback and feed- forward loops. The omics sciences aim at charac-
terizing the entirety of these different cellular components, and their 
main disciplines include genomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics.

3  |  PRECISION MEDICINE:  THE 
IMPORTANCE OF ACCUR ATE PATIENTS’ 
STR ATIFIC ATION

Precision medicine- based approaches rely on validated biomarkers, 
and on cost- efficient sampling.12 This requires a deep understand-
ing of the immunopathology and of the phenotypic heterogeneity 
of clinical entities.13 The definition of extreme phenotypes may be 
helpful to characterize immune or metabolic pathways specifically 
linked to the corresponding endotype.13 For example, unfavorable 
prognosis- related biomarkers in allergic asthma cannot be identified 
before effectively differentiating allergic asthmatics from the rest 
of asthma patients with atopic sensitization,14 including both nonal-
lergic atopic individuals and subjects in whom allergic mechanisms 
play a minor role. This prior differentiation will permit not only the 
elucidation of disease- specific pathways but also the identification 
of patients at higher risk of severity progression for whom a closer 
follow- up and an early therapeutic intervention would be war-
ranted.15 Therefore, progress in precision medicine will necessarily 
mirror the advances in phenotype definition and in- patient strati-
fication concerning prognosis and severity.13 Nevertheless, several 
issues may hamper the implementation of this approach. Allergic dis-
eases are widely influenced by the specific exposome composition,16 
which determines pronounced geographical variations in the relative 
prevalence and severity of certain phenotypes (regiotypes).17 In ad-
dition, it may explain why phenotypes and biomarkers validated for 
one area or one population might not be useful for other geographi-
cal areas.18 Moreover, allergen challenges are frequently needed to 
confirm the diagnosis of allergic diseases.19,20 In this regard, there 
is a need to develop new protocols with clinical applicability which 
allow a confirmation diagnosis of patients with severe phenotypes 
(e.g., bronchial allergen challenge protocol, that does not require the 
discontinuation of inhaled corticosteroids).19,20 In any case, severe 
cases of some extreme phenotypes can be hardly confirmed, which 
ultimately impairs the identification of clinically valid biomarkers.12

The concept of "personalized medicine" has been increasingly 
used in scientific literature, health care systems, and social media. 
The development of high- throughput technologies in omics sci-
ences, and the analysis of their intensive associated data, have 
emphasized the great inter- individual variability in the biological re-
sponse to disease and drug treatment. Therefore, clinical decisions 
could be conceivably adjusted or personalized considering the indi-
vidual specific biochemical, physiological, and environmental char-
acteristics. However, such a concept may be misleading as it could 
suggest the design of a unique treatment for each individual to max-
imize drug treatment efficacy. Thus, it would be more convenient to 
use "precision medicine," i.e., the ability to classify individuals into 

subpopulations differing in their susceptibility to a particular disease, 
in their biology and/or prognosis, or in their treatment response.21 
Ideally such classification should be based on the characterization 
of molecular phenotypes, i.e., the set of genomic/epigenomic, tran-
scriptomic, proteomic, and metabolomic profiles/signatures under-
lying human pathologies and clinical outcomes. The identification 
of molecular phenotypes may help clinicians in the election of pa-
tient management strategies, including specific drug administration. 
The utility of this approach has been recently exemplified in other 
inflammatory diseases, such as inflammatory bowel disease and 
arthritis, setting the path from organ- based classifications toward 
those with a molecular basis. This would not only address common 
aspects in diseases affecting different organs but could also provide 
insights into mechanistic differences between pathologies involving 
the same organ.22

4  |  BA SIC OMIC S STR ATEGIES

4.1  |  Genomics and metagenomics

The genome encompasses the entire genetic material of cells/organ-
isms, and genomics addresses the study of genes and their functions. 
Pharmacogenomics, the study of how genes influence drug response, 
could have a crucial role in avoiding therapeutic failure and, conse-
quently, in precision medicine, as it aims to develop effective, safe 
medications and doses tailored to variations in a person’s genes. 
However, despite precision medicine being the great promise of phar-
macogenomics, its use in clinical settings is still in its infancy.

Limitations related to the high- cost and low- throughput of the 
Sanger DNA sequencing method have been overcome by parallel or 
next- generation sequencing (NGS) technologies,23 which may use 
as a template both DNA or RNA (Figure 1). Two key applications of 
DNA- NGS are whole- exome and whole- genome sequencing (WES 
and WGS, respectively). WES targets approximately 22,000 human 
exons (protein- coding genes), whereas WGS encompasses the whole 
genome. Thus, while WES may identify exonic single nucleotide 
polymorphisms (SNPs), indels, structural, and copy number variants, 
WGS is a nontargeted strategy that also covers intergenic regions. 
NGS comprises both laboratory techniques and bioinformatics anal-
ysis of DNA- generated sequences (Figure 1A– C).23– 26

The first step is to prepare a DNA- fragment collection (library), 
representing a target region or the entire genome, through physical 
or enzymatic methods. These fragments are connected to platform- 
specific synthetic nucleotide sequences (adapters) to create known 
begins and ends and are further selected according to a platform- 
specific requirement.23– 26 DNA fragment(s)– adapter(s) are linked 
to solid support containing sequences that are complementary to 
those from the adapters, and DNA is then amplified by PCR. The 
type of support and the amplification and sequencing methods are 
also platform specific.23– 26 During PCR different signals that are in-
terpreted by the sequencer as specific nucleotides are generated (by 
pyrosequencing or pH changes).23– 26
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Data generated by NGS require an in- depth bioinformatics data 
handling, which starts with signal analysis (raw data detection and 
evaluation), base calling (generation of legible sequencing reads), 
and scoring base quality (Figure 1D). After raw signal measurements, 
a fast analysis of sequences toolbox quality (FASTQ) file is usually 
provided as output, which also contains potential sequencing er-
rors according to a logarithmic error probability called the Phred 
score.25 The quality of the raw sequences may be assessed by dif-
ferent tools, with FastQC being one of the most commonly used, 
which provides information such as base and sequence quality, base/
GC content, sequence length distribution, and duplications.25 Low- 
quality sequences and adapters can be cleaned using different tools, 

like Trimmonatic, TopHat, and Cufflinks.25,27 Reads are aligned to 
the reference human genome, with Bowtie 2 being among the most 
used aligners.25 De novo assembly, in which read assembling does 
not rely on an external reference genome, is less frequent in clinical 
genetics.25 Post- alignment processing is performed to improve the 
accuracy and quality of downstream steps (duplicate reads removal, 
local realignment of reads, and base quality score recalibration), 
using tools like SAMtools and Genome Analysis Toolkit (GATK).25 
Such tools help also to identify variants (variant calling). Finally, 
identified variants are connected with the specific clinical pheno-
type through a process including variant annotation and filtering, 
prioritisation, and data visualisation. Variant annotation provides 

F I G U R E  1  Main pharmacogenomics approaches. (A) Sanger sequencing characterises different size DNA fluorescently- labelled chains 
by capillary gel electrophoresis. (B) Genome wide association studies. DNA is loaded in a microarray containing probes for a genome- wide 
set of single nucleotide polymorphisms, and those surpassing a threshold value are considered statistically significant. (C) Next- generation 
sequencing (NGS). DNA is fragmented and bound to sequence barcode- adapters, hybridised with oligonucleotides (primers), and clustered. 
Single- stranded molecules flip over and hybridise with adjacent primers, leading to bridge formation. A polymerase repetitively synthesises 
the reverse strand. Strands are linearised before sequencing, with DNA incorporating fluorescent dNTPs. Each base emits a specific, 
identifiable signal. A complete sequence is given after reads assembly. (D) Main steps in NGS analysis. Primary analysis includes signal analysis 
(detection and raw data evaluation), and base calling and quality scoring. This generates a FastQ file, containing information on base and 
sequence quality, GC content, sequence length distribution and duplication levels, overrepresented sequences and adapter content. Low- 
quality sequences and adapters are cleaned. Secondary analysis mainly implies reads alignment against the reference genome and variants 
calling. Tertiary analysis, which includes variant annotation and filtering, prioritisation, and data visualisation, tries to connect variants and 
clinical phenotypes. BAM, binary alignment map; dNTPs/ddNTPs, deoxynucleotide/dideoxynucleotide triphosphates. FASTQ, fast analysis 
sequences toolbox quality; SAM, sequence alignment map; VCF, variant calling format

(A)

(B)

(C)

(D)
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biological information of all variants, including functionality, amino 
acid conservation, protein structure, and prediction of how they 
can affect structure/functionality. Among the most frequently used 
annotation tools are SIFT, PolyPhen- 2, ANNOVAR, and variant ef-
fect predictor.25 Additional information can be found through vari-
ous genome browsers, such as Ensembl, UCSC, and 1000 Genomes 
Project.28,29 Recent, genomic studies in the field of allergic diseases 
are summarized in Table S1 (DNA- based approaches).

During the past two decades, a great interest has been devoted 
to metagenomics, i.e., the analysis of all genomes of the microbiota 
(metagenome). Microbiota refers to all the microorganisms living in a 
specific place of the body, which encompasses a diversity of bacte-
ria, archaea, viruses, fungi, and protozoans.30 In addition to the com-
plexity of associations between humans and these microorganisms, 
research carried out in this field has also emphasised their essential 
role in preserving human health.31 Over recent years, a number of 
studies have focused on the utility of metagenomics for deciphering 
the underlying mechanisms in allergic diseases, with intriguing data 
available for atopic dermatitis,32 allergic rhinitis,33 asthma,34,35 and 
food allergy,36 among others. The main high- throughput sequenc-
ing technologies used in microbiota characterisation include PCR 
amplicon- based sequencing (16S and 18S rRNA and internal tran-
scribed spacer, ITS, sequencing), DNA- based shotgun metagenomic 
sequencing, RNA- based metatranscriptomic sequencing, and virome 
sequencing.37

16S rRNA sequencing consists in the amplification of the hyper-
variable regions of the 16S ribosomal RNA subunit genes, which are 
unique for specific bacterial genera. Quality control evaluation of 
sequencing reads is similar to these already described.38 Taxonomic 
assignment is usually based on sequence similarity or on the anal-
ysis of amplicon sequences before introducing amplification and 
sequencing errors, with different methods and packages being re-
cently described.37

Concerning fungi, the18S rRNA amplicon sequencing, which also 
focusses on hypervariable regions, and sequencing the ITS region, 
a 500– 700 bp nuclear ribosomal DNA sequence, are the methods 
most commonly used for their identification.39,40 In contrast to 
PCR- guided strategies, shotgun metagenomics sequencing does 
not require specific primers, avoiding potential biases, and allows 
the identification of all types of microorganisms, which makes it 
the most effective method for obtaining structural and functional 
information. After quality control examination, sequencing analysis 
may be performed through the alignment and reads comparison to 
known reference genomes or by database searching, or through de 
novo assembly; however, both approaches are recommended to be 
used to obtain most precise results.41,42

The amplicon- based approach is not useful for viruses sequenc-
ing due to their great diversity and the lack of universal marker 
genes, so metagenomics sequencing is the preferred procedure. 
Previous to sequencing, for RNA viruses a reverse transcription step 
is needed to obtain cDNA as RNA is easily degradable. Once the 
reads have been obtained, quality control analysis includes the elim-
ination not only of human sequence reads but also those of 16S and 

18S rRNAs. Although an alignment- based method could be used, 
the number of available genomes is weak and deposited sequences 
may be not correctly annotated. Thus, de novo assembly is normally 
preferred.43– 45

4.2  |  Epigenomics

Epigenomics is a branch of omics science that analyzes an epigenetic 
profile of a cell (epigenome).46 Epigenetic regulation refers to the re-
versible alterations in gene expression that do not involve changes in 
the DNA sequence.46,47 Epigenetic re- arrangements include chemi-
cal modifications of DNA and DNA- related proteins (histones).28,46 
The main mechanisms involved in the epigenome spectrum are (i) 
alterations in chromosomal structures, (ii) chromatin accessibility 
(iii) DNA methylation, and (iv) histone modifications, all of which 
regulate DNA accessibility and gene expression (Figure 2).28,46– 48 
Epigenetic processes control the functional output of the informa-
tion stored in the genome and directly shape cell development, func-
tion, and fate.28,46

Factors that affect epigenome profiles during the lifetime include 
developmental programs, differentiation, and pathophysiological 
mechanisms, circadian cycles, environmental exposures, including 
effects of host- microbiome profiles, and the internal hormonal and 
metabolic milieu.28,46,48,49 Epigenetic changes can be mitotically 
(cellular memory) or meiotically (parental imprinting) heritable and 
can be passed through generations.28 Interestingly, already the 
prenatal and early postnatal period can influence the development 
of diseases such as allergy in adulthood.28,29 Several recent, epig-
enomic studies in the field of allergic diseases allowed identification 
of epigenetic signatures of asthma/allergy and are summarized in 
Table S2.50– 57 Additionally, epigenetic mechanisms involved in the 
development, course, and control of allergic diseases are in detail 
reviewed elsewhere.29,47,58– 61

Epigenomes can be analyzed from a broad range of samples, 
including cells, tissues, and body fluids (Figure 2). Constant devel-
opment in the field of omics research allows for sensitive and spe-
cific measurements from lower sample quantities. Depending on the 
scientific question, certain experimental and biostatistical pipelines 
for bulk or single- cell analysis can be implemented.47 Understanding 
the proper technique prior to sample collection is crucial to obtain 
reliable data. Chromosome structures can be investigated with the 
use of HiChIP (protein- centric chromatin conformation method), 
which allows for analyzing the 3D architecture of chromatin in the 
chromosomes by capturing long- range interactions associated with 
a protein of interest (Figure 2A).62 Accessible chromatin (“open 
frames”) can be analyzed with the use of ATAC- sequencing (ATAC- 
seq).63 ATAC- seq enables isolation of genome regions, which are 
available for the transcriptional machinery (Figure 2B).63,64 Histone 
PTMs apply to chemical alterations (methylation, acetylation, 
phosphorylation, sumoylation, and/or ubiquitylation) of genome- 
associated proteins, which modulate histone- DNA interactions and 
lead to opening or closing of chromatin and changes accessibility. 
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The CUT&RUN (Cleavage under targets and release using nucle-
ase) technology uses antibodies targeting the specific PTMs of in-
terest and allows for genome- wide profiling of histones.63,65 Mass 
spectrometry (MS) approaches allow to obtain a comprehensive 
and quantitative view of histone PTMs (Figure 2C).66 DNA meth-
ylation (addition of methyl– 5mC or hydroxymethyl– 5hmC group 
inside and outside CpG islands) is responsible for the silencing of 
gene transcription.67 TAB- seq (Tet- assisted bisulfate sequencing) 

is a novel technique allowing to determine the abundance of 5hmC 
modifications across the genome (Figure 2D).68 5mC modifications 
can be assessed with use of whole- genome bisulphate sequencing 
(WGBS).69 However, methylation profiling microarrays are the most 
frequently used technology in the allergic diseases research field 
(Table S2).50– 57Notably, the recent development of the CRISP/Cas9 
technology provides a powerful editing and control toolbox for ob-
taining a better understanding of epigenetic mechanisms.47,70 For a 

F I G U R E  2  Graphical summary of novel methods used in epigenetic research. (A) Chromosome structures can be assessed with use 
HiChIP. (B) Chromatin accessibility is widely investigated by ATAC- sequencing. (C) Global histone modifications can be analyzed with use of 
MS, whereas CUT&RUN method is used for PTMs- specific gene expression regulation. (D) 5mC and 5hmC DNA methylation can be assessed 
with use of whole- genome bisulphate sequencing and TAB- seq methods, respectively. Detailed protocols and data analysis pipelines are 
included in Table 1. PTM, post- translational modification; WGBS, Whole- genome bisulphate sequencing; ncRNA, noncoding RNA

(A) (B) (C)

(C)

(D)
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broad overview of all available approaches in epigenetics, refere to 
the mentioned references.47,60,63,71– 74

Epigenomics is a dynamically developing field of research, which 
allows understanding the functional regulation of gene expression, 
and its consequences for health and disease. Epigenetic therapies 
(epidrugs) are already approved in cancer treatment.75,76 Controlled 
alteration of epigenetic mechanisms in allergic patients has potential 
for clinical applications and needs further investigations.77

4.3  |  Transcriptomics

The transcriptome represents the set of all RNA molecules, includ-
ing protein- coding RNAs and noncoding RNAs (ncRNAs) produced 
by transcription of the genome under a specific circumstance, in a 
specific tissue or cell.4 NcRNAs are defined to not encode proteins 
longer than 100 amino acids and can be divided into two groups: (i) 
short (represented here by microRNAs) and (ii) long noncoding RNA 
(lncRNAs). Peripheral blood, bronchial tissue, and sputum cells are 
the primary sources used for transcriptomic profiling in asthma and 
allergic diseases (Figure 3A).78

Nowadays, three methods are mainly used in transcriptome 
analyses. The microarray technique involves the hybridisation 
of oligonucleotide probes deposited in a predetermined spartial 

order to their corresponding cDNA fragments derived from cellu-
lar RNAs (Figure 3B).11 This approach is relatively cost- effective, 
but is dependent on predefined probe sets, which limits its us-
ability. Furthermore, the hybridization- based approach suffers 
from background noise, due to cross- hybridisation and limited dy-
namic range.11 In recent years, next- generation RNA- seq technol-
ogy has been widely used in transcriptome profiling, as it is more 
accurate and sensitive technique and requires less RNA sample 
(Figure 3C). Unlike microarrays, this technology does not depend 
on predesigned probes and therefore enables rapid, deep, and high- 
throughput transcriptome analyses, studying transcription initiation 
and alternative splicing events, and cataloguing antisense and gene 
fusion transcripts.79,80 The latest approach is single- cell RNA- seq, 
which includes the isolation of a single cell from a population and 
then assesses the gene expression differences between individual 
cells. This approach offers the opportunity to uncover rare events 
in a population that can be overlooked when the whole population is 
considered.72,81,82 Single- cell transcriptomics, when combined with 
other single- cell omic techniques including genomics, epigenomics, 
and proteomics in the same cell, create a great potential to discover 
new cell types and states.83 MicroRNAs can be identified with the 
use of small RNA sequencing, whereas lncRNAs that are often 
capped and polyadenylated can be analyzed together with mRNAs 
with the use of standard RNA- seq approaches (Figure 3D).84– 86 

F I G U R E  3  Graphical summary of transcriptomic analyses in allergic diseases. (A) Samples including bronchial tissue, blood, atopic lesions, 
BALF, and nasal lavage are collected from both healthy and diseased individuals. RNA isolation can be performed either directly from 
samples or isolated cells. RNA extraction from isolated single- cell populations can be performed to investigate a cell- based transcriptomic 
alteration. Isolated RNA samples are subjected to microarray (B), or RNA Seq (C) depending on the purpose. Gene expression levels of the 
samples are determined by high throughput sequencing and the transcriptomics data are processed, analyzed and interpreted by means of 
bioinformatics tools. (D) Noncoding RNA (ncRNA) expression determination is divided into Short ncRNA sequencing (left panel) and long 
ncRNA sequencing (right panel) methods. BALF, bronchoalveolar lavage fluid; FACS, fluorescence- activated cell sorting

(A) (B) (C) (D)
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Global transcriptome analysis in allergic diseases allows the identifi-
cation of distinct biomarkers and endotypes.

Blood transcriptomics has been widely used in molecular analy-
ses and assessing treatment responses in allergic diseases (Table S1, 
RNA- based approaches).4,87– 89 Bigler et al. showed that genes asso-
ciated with chemotaxis, migration, and myeloid cell trafficking were 
highly expressed in severe asthmatics, while genes associated with 
B lymphocyte development and hematopoietic progenitor cells and 
lymphoid organ hypoplasia showed decreased transcript expression 
according to pathway analyses. Subgroups among severe asthmatics 
showed different responses to oral corticosteroids.89 Transcriptome 
profiling of nasal and bronchial tissues can be vital to develop a deeper 
understanding of the pathobiology of allergic diseases. Analysis of 
nasal epithelium collected from healthy individuals and allergic pa-
tients demonstrated striking differences with 94 transcripts differ-
entially expressed in allergic patients in nonchallenged (winter) and 
85 in challenged (spring) season.90 Interestingly, upon house dust 
mite stimulation nasal epithelium of allergic individuals showed en-
richment in protease inhibitor activity pathway (GO:0030414), with 
upregulated expression of SPINK5, SPINK6, SPINK7, SERPINB3, 
WFDC5, and downregulation of C3.91 Transcriptomic analyses of 
bronchial tissue have been performed to identify different endo-
types and potential biomarkers, predicting treatment response in 
allergic diseases, especially in asthma.92– 95 For example, Singhania 
et al. stated that activated T cells might be responsible for neutro-
philic inflammation and for the steroid insensitive IL- 17 response in 
severe asthma.96 Nie et al. analysed ten eligible bronchial tissue mi-
croarray datasets, revealing that CEACAM5, CLCA1, POSTN, CPA3, 
SERPINB2, KRT6A, CD44, and MUC5AC transcript expression was 
up- regulated, while LTF and MUC5B expression was down- regulated 
in asthmatics.97 Sputum is another crucial source for transcriptomic 
analyses98– 102 and in asthmatic patients can be used in asthmatic 
patients to unravel asthma endotypes. A study revealed that CLC, 
CPA3, DNASE1L3, IL1B, ALPL, and CXCR2 transcript levels could dis-
criminate inflammatory asthma phenotypes. The transcript levels of 
these genes were also reported to predict the response to inhaled 
corticosteroid treatment.103 Overall, eosinophilic airway inflamma-
tion (also called T2- high) has been correlated with higher expression 
of CLC, CLCA1, CPA3, DNASE1L3, POSTN, and SERPINB2; neutrophilic 
airway inflammation has been associated with higher expression of 
IL1B, ALPL, and CXCR2.13,97,103 Numerous studies have reported 
that ncRNAs, including miRNA and lncRNAs also contribute to the 
pathogenesis of asthma.104 An RNA- seq analysis revealed that ln-
cRNAs, including LINC01771, LINV02145, and GUSBP2 are closely 
associated with asthma- related genes, and participate in apoptosis, 
inflammation, and the immune response,105 suggesting that ncRNAs 
are involved in asthma pathogenesis.

Profiling gene expression may unveil the molecular mechanisms 
in allergic diseases. Transcriptomic studies investigating treatment 
responses have been reported.106– 108 Thus, integrating transcrip-
tomics and the other complementary omics technologies in daily 
clinical practise may contribute to tailor- made therapies for each 
individual by predicting potential efficiency and responses to a 

particular treatment. This will allow us to develop a deeper under-
standing of why treatment approaches fail to treat some patients 
and how to tailor treatments to individual patients.

4.4  |  Proteomics

Proteomics aims at characterizing proteins, and proteomics meth-
ods can be broadly divided into a small subset, or multiplex protein 
analyses, and MS- based proteomics (Figure 4).

4.4.1  |  MS- based and non- MS- based 
proteomics approaches

Methods aimed at characterizing a defined subset of proteins are 
usually based on antibody recognition followed by read- out using 
conjugated secondary antibodies producing a signal (Figure 4A– C). 
In novel multiplex immunological assays (e.g., Olink) a defined panel 
of target proteins are bound by pairs of antibodies conjugated with 
oligonucleotides, and therefore allow to work with microliters of the 
sample.109 In MS- based proteomics, top- down and bottom- up ap-
proaches can be distinguished. In top- down proteomics, single intact 
low- mass proteins are analyzed to detect protein isoforms and PTM 
patterns. In the much more widely applied bottom- up proteomics, 
the proteins are subjected to proteolytic digestion to form peptides 
before MS analysis.

4.4.2  |  Bottom- up proteomics requires 
protein extraction, proteolysis, peptide 
purification, and separation

At the outset of a proteomics experiment are sample lysis and pro-
tein extraction. Proteins can be isolated from body fluids, cells, or 
tissues, and either total protein extracts can be analyzed, or sub- 
fractions such as protein interaction partners or post- translationally 
modified proteins (Figure 4A,B). Further sample preparation usually 
involves reduction of disulfide bonds followed by carbamidometh-
ylation of cysteine sulfhydryl groups, and protein digestion with an 
endoproteolytic enzyme such as trypsin, either in- gel after electro-
phoretic separation on 1D-  or 2D- SDS- PAGE,110 in- solution or on 
columns. Before the purified and resuspended peptides enter the 
MS, they are usually fractionated using a reverse phase C18 columns 
(Figure 4D– E).

4.4.3  |  At the mass spectrometer: peptide 
ionization, mass analysis of the ions, and ion detection

In electrospray ionization (ESI), the positively charged peptide drop-
lets emerging from the tip of the column are evaporated until the 
peptides are getting into the gas phase. The peptide ions then enter 
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the MS, where their mass over charge (m/z) is determined making 
use of physical properties of the ions that are directly related to their 
m/z, such as their time- of- flight (TOF), stability in an electromagnetic 
field (Ion Trap), or rotation around an electromagnetic rod (Orbitrap). 
This results in the generation of a MS1 mass spectrum in which each 
of the peaks represents an ion with a specific m/z. In order to get 
sequence information for the measured ions, tandem MS (MS/MS or 
tandem MS) is performed. To this end, selected ions are isolated in-
side the mass spectrometer and then fragmented, typically through 
collision- induced dissociation (CID) or higher- energy collisional dis-
sociation (HCD). The energy of the collision is thereby set such that 
each peptide molecule should only break once, usually at the amide 
peptide bond. The m/z of the fragment ions is then recorded in the 
MS2 or fragment spectrum (Figure 4F).

4.4.4  |  From MS spectra to list of identified and 
quantified peptides and proteins

Assignment of peptide sequences to the measured spectra is then 
performed by protein database- dependent searching with search al-
gorithms that implement different methods (Figure 4G).111 While in 
data- independent acquisition (DIA) usually the most intense ions in 
MS1 are selected and fragmented, data- dependent acquisition (DDA) 
focuses on predefined lists of peptides. In selected reaction monitoring 
(SRM), the mass spectrometer only measures ions that are comprised 
in a predefined list of peptides, and a number of specific fragment 
ions for each peptide. In parallel reaction monitoring (PRM), the full 
fragment spectra of the predefined peptides are monitored.112– 114 In 
the DDA method termed SWATH, all precursors found in a specific 

F I G U R E  4  The proteomics workflow. Protein isolation, quantitation and extraction (A); protein separation, enrichment and depletion 
techniques (B); immunoassays (C); peptide formation through enzymatic digestion (D); chromatography techniques (E); mass spectrometry 
(F); peptide and protein identification (G); targeted and untargeted protein identification and quantification methods (H); label- free and 
label- based quantification technologies (I); statistical and functional analysis of the identified and quantified peptides and proteins (J). BSA, 
bovine serum albumin; CE, capillary electrophoresis; DDA, data- dependent acquisition; DIA, data- independent acquisition; ELISA, enzyme- 
linked immunosorbent assay; FACS, fluorescence- activated cell sorting; GC, gas chromatography; HCD/CID, higher- energy collisional 
dissociation/collision induced dissociation; HRP, horseradish peroxidase; IEF, isoelectric focusing; iTraq, isobaric tags for relative and 
absolute quantitation; LC, liquid chromatography; MALDI, matrix- assisted laser desorption ionization; PBMCs, peripheral blood mononuclear 
cells; PMF, peptide mass fingerprinting; POI, protein of interest; PRM, parallel reaction monitoring; PTMs, post- translational modifications; 
SILAC, stable isotope labeling by amino acids in cell culture; SRM, single reaction monitoring; SWATH, sequential window acquisition of all 
theoretical fragment ion spectra; TAILS, terminal amine isotopic labeling of substrates; TMT, tandem mass tag; TOF, time- of- flight
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m/z isolation window are selected and fragmented, and all the frag-
ments are recorded in a complex fragmentation spectrum before 
moving on to the subsequent isolation window. Deconvolution of the 
complex fragment spectra is then based on fragmentation informa-
tion contained in spectral libraries (Figure 4I).115,116 For MS- based 
protein quantitation, label- based and label- free methodologies are 
available. Label- free methods rely on differences in the areas under 
elution curves of the peptides over retention time or on the number 
of MS2 spectrum counts.117 Labelling of either proteins or peptides is 
a common quantitation strategy. Peptide labelling often makes use of 
mass- balanced label sets with different reporter ions such as iTRAQ 
or TMT.114,118 A method for labelling proteins is SILAC in which pro-
teins in cultured cells are first labelled with isotopically light, heavy, 
or medium- heavy amino acids before the cultures are perturbed to 
induce changes in the proteome (Figure 4I).119

4.4.5  |  Biological data mining

Typical proteomics experiments will generate lists of identified pro-
teins for which fold changes between experimental conditions are 
indicative for the quantitative changes. A series of subsequent sta-
tistical and functional analyses then serves to obtain relevant infor-
mation from these lists that addresses the scientific questions and 
hypotheses of the experiments (Figure 4J).

The considerable improvements regarding sensitivity, applica-
bility, and versatility of proteomics technologies have led to their 
wider application also in the field of allergy (Table S3). Recent appli-
cations range from the quantification of one single protein in bron-
choalveolar lavage,120 to high- throughput protein identification in 
tear fluid,121 skin swabs,122 sputum,123 serum,124– 127 or even mouse 
lungs.128 In addition, proteomics methods were applied to identify 
immunoreactive proteins,129– 131 or changes in N- glycan modification 
patterns.132 With this broad spectrum of potential applications, it 
is expected that proteomics results will be central to many future 
research studies in the allergy field.

4.5  |  Metabolomics

Metabolomics is the science focused on the study of metabolism 
in living organisms. The molecules that comprise the metabolic 
pathways are called metabolites. These are involved in biological 
functions and cellular processes, thus, can reveal the relationship 
between metabolism and phenotype. The metabolism under specific 
biological conditions, such as a disease can be altered, leading to the 
dysregulation of some metabolites; glucose in diabetes would here 
be a classical example. Among the metabolites, the studying of the 
lipids— lipidomics— has become an important field, as lipids have 
important roles in immune response regulation, and participate in 
cell signaling, growth, differentiation, and apoptosis.14 They have 
also shown to be altered in atopic dermatitis and asthma.133– 135 
As an example, ceramide was elevated in mice lungs after allergen 

challenge, contributing to reactive oxygen species generation, 
apoptosis and neutrophilic infiltrate, which characterize the severe 
asthmatic phenotype.136

Metabolomics studies can be carried out either in noninvasive 
samples such as urine, faeces, saliva, and breath, in minimally inva-
sive samples such as blood (serum and plasma) or in tissue biopsies 
(Figure 5). Regarding faeces, this sample combines information from 
intestinal microbiota and host metabolisms. Additionally, microbiota in 
the lung, skin, or gut seems to play a key role in several allergic diseases 
(food allergy, atopic dermatitis, allergic rhinitis) and asthma.137– 139

Due to the diverse physicochemical properties of the differ-
ent metabolites, metabolomics needs sophisticated analytical 
techniques, which permit the characterization of the metabolites 
(Figure 5). These techniques comprise MS— usually coupled with a 
separation technique for complex samples, such as liquid and gas 
chromatography (LC- MS and GC- MS, respectively)— and nuclear 
magnetic resonance spectroscopy (NMR).

Metabolomics approaches can be nontargeted and targeted. In the 
first one, the aim is to detect as many metabolites as possible in a 
single analysis in each patient from the study, and to identify those 
with statistical differences between the groups. In the targeted anal-
ysis, specific metabolites are selected based on previous knowledge 
are analyzed and frequently quantified. The nontargeted approach is 
often explorative with the aim to detect metabolic changes to better 
understand the molecular mechanisms in the pathology. This can re-
sult in the identification of potential biomarkers, which after validation 
can be used in the clinic for diagnosis or prognosis (Figure 5).

Understanding the molecular mechanisms is still the best way 
to improve diagnosis, prognosis, and therapeutic strategies. In this 
sense, metabolomics has been applied in the study of different 
asthma phenotypes, such as in paediatric food allergy with or with-
out asthma,140 and in adult obesity- associated asthma. Additionally, 
this is complemented with metabolomic studies of gut141 and air-
way34 microbial- derived metabolites involved in asthma. The main 
metabolites identified across different studies from various body 
compartments were related to immune reactions, inflammatory pro-
cesses, tricarboxylic acid cycle, oxidative stress, hypoxia, and lipid 
metabolism pathways (Table S4).

4.6  |  Single- cell omics

Many inflammatory and structural cells are involved in the pathol-
ogy of allergies and airway diseases. It is extremely important to un-
derstand the contribution of these cells and their responses to the 
onset, development, and severity of the disease. However, there are 
heterogeneity and unique variations among individual cells; therefore, 
cells in a population may not respond in the same way under every 
circumstance.142 Traditional sequencing approaches have great impor-
tance due to their ability to analyze bulk data from whole populations 
and represent a common pattern for various diseases. However, rare 
events in minor subpopulations can be overlooked when the whole 
population is taken into account. Single- cell multiomics approaches are 
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used to identify single- cell genome, transcriptome, proteome, or other 
multiomic information, including DNA or histone modifications, chro-
matin accessibility, small RNAs, and chromosomal conformation.142 
Analyzing single- cell data allows for investigating cell- to- cell varia-
tions and evolutionary relationships, distinguishing unusual events in 
rare populations, identifying sub- populations or disease endotypes, 
and potentially leading to new biological discoveries. Single cells 
can be isolated using different methods, such as manual cell pick-
ing, magnetic-  or fluorescence- activated cell sorting (MACS or FACS), 
laser capture microdissection (LCM), and microfluidics. The isolation 
method can be chosen according to different parameters required 
for research of interest.143 Integrating single- cell multiomic analyses, 

including metabolomics, transcriptomics, proteomics, and other cel-
lular information allow to reveal the biological events occurring within 
a single cell. However, despite its obvious advantages, such as uncov-
ering rare events and barcoded profiling, interpreting single- cell se-
quencing data is relatively more challenging than bulk sequencing.144

5  |  E XPOSOMIC S:  THE ROLE OF 
E XPOSOME IN PRECISION MEDICINE

Exposomics is a research field investigating the effect of the ex-
posome (environmental, nongenetic exposures) on health and 

F I G U R E  5  Metabolomics workflow for nontargeted analysis. After biological samples are collected, metabolites are extracted by 
removing interferences such as proteins, DNA or RNA. This step is usually performed by filtration or organic solvent addition. Metabolite 
extraction can use of additional steps of the sample preparation such as centrifugation, sonication or chemical derivatization according to 
the analytical technique that will be used. The analytical techniques more often used are mass spectrometry (MS) and nuclear magnetic 
resonance as they provide structural information. Usually MS is coupled with separation techniques. All of the instruments provide 
information about specific type of metabolites. After data processing, potential biomarkers are selected to be identified. Before metabolite 
selection, statistical analysis is performed applying multivariate analysis, using principal component analysis (PCA) and principal component 
analysis (PLS- DA) are carried out. After selection of statistically significant metabolites, these are identified usually by comparison to 
database information and by fragmentation. Metabolites are explained in the biological context
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disease.145 The definition of exposome is very broad, therefore, mul-
tiple tools are required to sufficiently investigate those heterogene-
ous environmental exposures.146,147 Exposome is divided into two 
subgroups: internal and external exposome. Internal exposome can 
be assessed in various biospecimens with the use of described previ-
ously techniques, including genomics, transcriptomics, epigenomics, 
and proteomics.146 Microbiome is another factor influencing inter-
nal exposome.146 Notably, microbial dysbiosis is linked with an in-
creased prevalence of chronic diseases, including allergy.148 External 
exposome includes many indoor and outdoor exposures, such as 
diet, stress, lifestyle (smoking, pets, detergents), economic status, 
air quality, pollutants, climate, and social factors. Investigation of 
external exposome is very complex and often requires assessment 
of multiple exposures, using various techniques.145 Questionnaires 
might be helpful to register diet preferences or smoking habits. 
However, preferably, should be coupled with a biological biomarker 
for validation (i.e., cotinine for tobacco).145 Air sample quality can be 
measured by air samplers.146 Social, cultural, and lifestyle data can 
be collected from social media platforms, smartphone- linked diaries, 
and other wearable devices (smartwatches).145,146 Protocol inte-
grating biotic and abiotic exposures has been recently published.149 
Exposome has a significant impact on the development of allergic 
diseases.146,150,151 Integrating exposome into the concept of preci-
sion medicine will further improve patients' diagnosis and treatment.

6  |  SYSTEMS BIOLOGY: INTEGR ATION OF 
OMIC S AND NONOMIC S DATA

The rapid growth of data acquisition techniques has made it possible 
to introduce Big Data into life science and biomedicine areas. Many 
different options in the design of precision medicine treatment 

approaches and improved patient care are now becoming a reality 
(Figure 6).

Big Data in biomedicine can be separated into two large data cat-
egories: omics and nonomics data. Nonomics data can be described 
as a multitude of highly variable data including epidemiological in-
formation, clinical, laboratory test, imaging or morphologic param-
eters, environment biomonitoring, electronic health records, all 
registered by healthcare professionals. In contrast, omics data sets 
are obtained using high- throughput biological platforms and provide 
thousands of features characterising biological processes at differ-
ent levels (DNA, RNA, proteins, or metabolites levels).152

The heterogeneity of nonomics data poses a major challenge 
for data integration.153 Only a minority of proposed models have a 
decent predictive ability that could be implemented in practice.153 
This obstacle arises from several important properties of both no-
nomics and omics data. First, nonomics data acquisition is usually 
not standardised. This can heavily affect data quality, which in turn 
will downgrade the modelling performance. Second, clinical features 
(e.g., degree of illness severity) are still usually subjectively defined, 
introducing biases into datasets. Another source of bias may appear 
at an evaluation stage as assessment of clinical variables depends 
on the skills and competencies of a healthcare professional. On the 
other hand, omics data are generally free of these biases, because 
they are normalized and homogenous within one dataset. However, 
omics data impose great challenges in data integration as well due to 
the complexity, heterogeneity, dynamics, uncertainty, and inherited 
high- dimensionality. The combined analysis of different omics data-
sets that aims at identifying complex interactions between all the 
features in the dataset regardless of their nature therefore usually 
requires custom analytical tools and is limited by the lack of experi-
mental standardisation.2 As the different omics data acquisition and 
analysis technologies are further developed, increased experimental 

F I G U R E  6  Systems biology in precision medicine. Precision medicine aims to stratify patients into clusters characterized by common 
clinical and biological features. This is possible through an in- depth understanding of molecular and phenotypic heterogeneity of allergic 
diseases. Both nonomics and omics data are powerful tools in the understanding and management of allergic diseases. Integration of clinical 
and high throughput data creates new opportunities to fully comprehend genotype- phenotype interactions in allergic patients, subsequently 
improving healthcare workflow, efficient diagnostics, and treatment
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standardisation, and advanced data integration and modelling ap-
proaches are expected to enhance the usefulness of omics data sets 
in gaining biomedically relevant insights.

In order to overcome the challenges in integrating omics and no-
nomics data, several strategies have been developed 153 (Table S5). 
The most straightforward approach is independent data integration, 
when both omics and nonomics datasets are analysed separately, 
the most important variables are selected and integrated into a final 
model.154 However, this method has a major downside as it does 
not consider interactions between different data sets are crucial 
in the context of biomedicine. During conditional modelling, omics 
variables are combined with clinical ones, and afterwards, dimen-
sionality reduction is performed on the omics data set. The major 
drawback is that those techniques are computationally costly, re-
quiring dedicated strong computers. Lastly, joint modelling on the 
combined datasets is a promising technique, even though the infor-
mation on its application is quite scarce.155– 157

After the data have been successfully integrated, the next step 
is to build a model for machine learning. This is a powerful approach 
that can be applied to a broad variety of tasks, whether it is to iden-
tify patterns associated with an illness, use as a diagnostic tool to 
predict disease status, or predict response to an intervention. The 
heterogeneous multilayered network (HMLN) has proven successful 
in integrating diverse biological data for the representation of the 
hierarchy of the biological system.158 The HMLN provides unparal-
leled opportunities but imposes new computational challenges on 
establishing causal genotype- phenotype associations and under-
standing environmental impact, especially important for complex 
diseases like allergic diseases and asthma. Several other artificial 
intelligence approaches can be used depending on the purpose: dis-
ease subtyping, mechanistic insights, or biomarker prediction.158,159 
Recent successful applications showed their utility in understanding 
the endotypes of asthma and allergy.160– 164

Omics and nonomics data combination is still a challenging task, 
but the resulting inference or predictive models are quite promising. 
Potentially, such models can change the healthcare workflow, allow-
ing for efficient resource management, improved diagnostics, and 
new insights on pathogenesis.

7  |  CLINIC AL APPLIC ATION AND 
CHALLENGES OF OMIC-  BA SED STUDIES

Initial omics studies have mainly relied on GWAS, which, despite their 
limitations, have shown to be a useful tool in pharmacogenomics. For 
example, in some populations they have led to specific recommen-
dations before the administration of several drug types to prevent 
severe allergic reactions,165 and some polymorphisms have been 
also associated with the response to inhaled corticosteroids 166,167 
and to long- acting β2 adrenoceptor agonists in asthmatics.168– 170

Nowadays, data from high- throughput omics technologies are 
substantially improving our knowledge on the mechanisms under-
lying allergic diseases, which should ideally shunt diagnosis and 

treatment from a clinical phenotype- based approach towards a clini-
cal endotype- based strategy. In fact, the advances achieved over re-
cent years in molecular biology and bioinformatics have increasingly 
emphasised that biomarkers ascertained from a single “omics” may 
be insufficient to define all endotypes, which highlight the need of 
multiomics data integration not only for pathogenesis understand-
ing but especially for predicting treatment response.2 Although still 
in its infancy, some information concerning omics data integration 
is already available for allergy.13 Thus, the combination of metab-
olomics and transcriptomics has allowed the definition of different 
signatures in grass pollen mono and polysensitised patients receiv-
ing sublingual immunotherapy.171 Another study using both metab-
olomics and transcriptomics has also found specific patterns and 
biomarkers in severe grass- allergic patients, supporting a role for 
altered energy metabolism and systemic uncontrolled inflammation, 
which could be taken into account to decide which type of patients 
is eligible for immunotherapy.172 Finally, considering the complex-
ity of phenotypes/endotypes, the great challenge for an effective 
multiomics data integration for valuating treatment options would 
need to include cohorts of extensively characterised patients and 
integrate both clinical and molecular information through modern 
bioinformatics tools, including machine learning.

There are several features, which need to be considered prior to 
the experiment and will help the researchers to plan and perform a 
successful multiomics analysis and draw a meaningful clinically ap-
plicable conclusion. It is recommended to perform the pilot study, 
as preliminary data will help to identify potential cofounders and 
sources of variations, which subsequently will help to assess the sta-
tistical power and sample size of planned analyses. Sample size in 
omic studies is always a limitation. Mainly because they are expen-
sive techniques, complex to analyze, and need further validation and 
quantification. That is why omics analysis usually begins with small 
cohorts from pilot studies, to identify potential targets, biomarkers, 
or biological routes. Afterward, analytical validation takes place to 
ensure quantification of the molecular, and finally bigger cohorts 
are recruited to test the potential candidates. It is beneficial for re-
searchers to use standard operating procedures (SOPs) and to con-
sult experts in the field, to assist in practical aspects, such as correct 
sample collection, processing and storage, stability of the data sets 
over time/impact of applied therapies, and further data and analy-
sis pipelines sharing. Validation is the final stage of the biomarker 
identification process and is necessary if the identified molecule is 
to reach clinical practice. The validation method involves conduct-
ing large collaborative studies with thousands of patients preferably. 
It directly tests each candidate biomarker with the collected new 
independent set of samples from the target population.13 In aller-
gic disease some validations studied have been performed.173,174 
However, now the identified biomarkers need to be translated into 
clinical practice. Translation of omics data into the clinical trials 
requires fulfillment of strict criteria and beforehand planning.175 
McShane et al highlighted the most important principles to perform-
ing saucerful omics- based clinical studies.175,176 Major ethical, meth-
odological, and practical challenges that will need to be considered 
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are summarized in Table 2.175– 179 Multidisciplinary collaborations 
between researchers, whether clinical, translational, or computer 
scientists are important and required to understand molecular phe-
notypes of the diseases and their potential in precision medicine.180

8  |  SUMMARY AND CLOSING REMARKS

Omics data are generated by high- throughput biotechnological 
platforms delivering hundreds of thousands of raw (nonelaborated) 
variables that have revolutionized biomedical research. Most of the 
studies are using a single omic approach to characterize biological 
features. Genomics, epigenomics, transcriptomics, proteomics, and 
metabolomics have been widely applied to identify biological vari-
ants (e.g., biomarkers and biological pathways), to characterize com-
plex biochemical systems, and study pathophysiological processes. 
The potency of omic analysis will significantly increase if we are able 
to integrate them to generate a complete molecular profile of what 
is happening in a specific sample. Connections between genes and 
their outputs can provide some clues to what’s happening in com-
plex and multifactorial diseases as is the case of allergy and asthma. 
Furthermore, integrating omics datasets with nonomics data can 
reveal a much more complete view of biological activities and will 
allow us to classify and identify biomarkers, and predict disease pro-
gression and prognostic risk. Together, these approaches will pro-
vide the opportunity to get insights into biological systems of health 
and disease, and to conduct precision medicine.
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TA B L E  2  List of key ethical, methodological, and practical challenges to be addressed during omic data analysis175– 179

Challenges Recommendations

Ethical Patients’ anonymity Create a data base that links anonymous clinical data to omics data

Include a data protection manager

Responsibility for data generated by omic studies 
and communication with the individuals 
enrolled in the study

Provide clear identification of the person responsible for the 
study, responsible for data protection, and responsible for 
communication with enrolled subjects

Informed consent documents Clearly identify risks and benefits for enrolled subjects

Provide detailed information regarding the study protocol, 
techniques, sample management and data analysis

Methodological Sample management Clear definition of sample roadmap including information regarding 
biobank storage, exact period of storage before destruction 
or additional informed consent for further experimental 
assessments and samples sharing

Custody and conditions of sample storage

Variations in assay procedures due to differences 
in technical protocols and analysis strategies

Standardization of technologies, data management and storage

Practical Sample size Perform a previous statistical analysis to ensure the justification of 
the number of samples/groups to obtain significant and reliable 
results

Data interpretation Define a protocol that contains clearly stated: objectives, methods, 
and analysis plan

https://doi.org/10.3390/microorganisms8040498;
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