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Migraine is the most common neurological disorder in the world, affecting 12% of

the population. Migraine involves the central nervous system, trigeminal nerves and

meninges. Recent advances have shown that targeting calcitonin gene-related peptide

(CGRP) through either antibodies or small molecule receptor antagonists is effective at

reducing episodic and chronic migraine episodes, but these therapeutics are not effective

in all patients. This suggests that migraine does not have a singular molecular cause but

is likely due to dysregulated physiology of multiple mechanisms. An often-overlooked

part of migraine is the potential involvement of the immune system. Clinical studies

have shown that migraine patients may have dysregulation in their immune system, with

abnormal plasma cytokine levels either during the attack or at baseline. In addition, those

who are immunocompromised appear to be at a higher risk of migraine-like disorders. A

recent study showed that migraine caused changes to transcription of immune genes in

the blood, even following treatment with sumatriptan. The dura mater is densely packed

with macrophages, mast and dendritic cells, and they have been found to associate with

meningeal blood vessels and trigeminal afferent endings. Recent work in mice shows

activation and morphological changes of these cells in rodents following the migraine

trigger cortical spreading depression. Importantly, each of these immune cell types can

respond directly to CGRP. Since immune cells make up a large portion of the dura, have

functional responses to CGRP, and interact with trigeminal afferents, CGRP actions on

the dural immune system are likely to play key roles in migraine.

Keywords: meninges, immune, dura mater, migraine, CGRP, macrophage, perivascular

INTRODUCTION

Migraine is a highly common neurological disorder characterized by intensive headaches. While
almost everyone has headaches from time to time, what separates migraine is the duration, intensity
and symptoms associated with the headache. It has been estimated that roughly 12% of the
global population experiences migraine annually (1, 2). The International Headache Society (IHS)
defines migraine as a recurring headache that lasts between 4 and 72 h. The headache occurs
on one side of the head, and is accompanied by “pulsating quality, moderate or severe pain
intensity, and aggravation by or causing avoidance of routine physical activity" (3). Additional
diagnostic symptoms occur during the migraine attack, including vomiting, nausea, photophobia
and phonophobia. Migraine patients experiencing an attack have a higher sensitivity to light
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(photophobia) and sound (phonophobia) that can cause
discomfort, and this is one quality of migraine that makes it
much worse than normal headache. Another important fact is
that migraine is 2 to 3 times more common in women than
men, suggesting a sex difference impacting the neurological
environment (4). Approximately 20–30% of migraine patients
also experience a disconcerting sensory phenomena called an
aura prior to the headache (5).

Migraine is a multifaceted disorder involving the peripheral
and central nervous systems (CNS) and the meninges,
particularly the dura mater (6). There are many potential triggers
of migraine, so migraine shouldn’t be seen as having a singular
cause but rather, migraine represents a spectrum of triggers,
symptoms, and potential treatments (7). Within this complexity,
it is generally accepted that trigeminal neurons are responsible
for the pain of migraine. These neurons sense modalities such
as pain, touch, temperature and mechanoreception (8, 9).
Trigeminal sensory neurons innervate the face, jaw, and anterior
portion of the head and dura mater (9). The nerve endings also
innervate the sutures of the skull and can even be found to
traverse the sutures into extracranial tissue (10, 11). The interface
of nerve endings with both extracerebral and extracranial targets
add to complexity studying the TG.

One trigger associated with migraine with aura is cortical
spreading depression (CSD) (12). CSD causes an increase in
trigeminal ganglion (TG) firing following application in animal
models (13). A recent study found that migraine with aura
patients have increased uptake of a radiolabeled inflammation-
associated protein into the meninges and occipital skull bone
(14). This provides strong evidence that CSD-induced meningeal
inflammation in rodent models also occurs in migraine patients.
The role of CSD and meningeal immune cells will be further
discussed below.

The afferent endings of the TG interface with the dura
mater, and the complex microenvironment composed of nerve
endings, blood vessels, fibroblasts, and immune cells (15,
16). Early hypotheses of migraine were that migraine was
caused by a vascular component (17, 18). Proponents of such
theories date back to the classical Greek physician Galen.
In the 1950’s, Wolff postulated that migraine was due to
distention of cranial vessels and vasodilation. He found that
treatment with ergotamine compounds reduced the pulsing
and partially restored function. Ergotamine is a serotonergic
vasoconstrictor that also inhibits trigeminal nerve transmission
(19). This helped lead to development of more specific acute
treatments. One of the main acute treatments of migraine,
sumatriptan (a 5HT1B/D agonist) alleviates migraine pain and
causes vasoconstriction (20). Sumatriptan also reduces synaptic

Abbreviations: IHS, International Headache Society; CSD, Cortical spreading

depression; CGRP, Calcitonin gene-related peptide; TG, Trigeminal ganglion;

CNS, Central nervous system ; IL1-β, Interleukin 1-beta ; IL6, Interleukin-6;

IL10, Interleukin 10; TNF-α, Tumor necrosis factor α; CSF, Cerebrospinal fluid;

TGFβ-1, Transforming growth factor beta-1; IBS, Irritable bowel syndrome; GI,

Gastrointestinal; SNP, Single nucleotide polymorphism; IL4, Interleukin 4; ECM,

Extracellular matrix; ROS, Reactive oxygen species; LPS, Lipopolysaccharide;

PAR, Proteinase-activated receptor; APC, Antigen presenting cell; NGF, Nerve

growth factor.

release of neurotransmitters of trigeminal neurons (21). A
counter to the argument that migraine is a vascular disorder
comes from the development of non-vasoactive serotonergic
medication such as lasmiditan. Lasmiditan is a 5HTF agonist with
no vasoconstriction side effect, at least in vitro (22). The efficacy
of lasmiditan with no significant vascular effects suggests that
blood vessels are only partially involved. An additional argument
was based on the observation that while some vasodilators like
nitroglycerin induce headache in migraine patients, another
dilator, vasoactive intestinal peptide failed (23, 24). However, this
argument has lost weight since a recent study with prolonged
infusion of vasoactive intestinal peptide showed that it can induce
migraine in patients (25).

Recent advances in the field have involved the neuropeptide
CGRP. It is a 37 amino acid peptide released from trigeminal
ganglion neurons that can induce vasodilation, nociception, and
neurogenic inflammation (26–28). CGRP is released both in the
periphery and centrally (26, 29, 30). Researchers noted that CGRP
can inducemigraine-like headache inmigraine patients following
infusion, including symptoms such as photophobia (31). Jugular
vein CGRP is higher during migraine onset than in control
subjects (32). Chronic migraine patients also have elevated levels
of plasma CGRP at baseline compared to healthy controls (33).
Using the preclinical and clinical evidence, scientists developed
treatments targeting either CGRP or its receptor complex. The
FDA has approved both CGRP-blocking or receptor blocking
antibodies, as well as small molecule antagonists against the
CGRP receptor (34, 35). Monoclonal antibodies result in a
50% reduction in migraine days in 50% of episodic migraine
patients (36). The antibodies can also be partially effective in drug
resistant migraine by reducingmigraine headache days (4.2 fewer
headache days in a month compared to baseline) (37). CGRP
antibodies have fewer adverse side effects compared to other
prophylactics (38).

Despite the success of recent CGRP-targeting medications,
CGRP is not the only component of migraine induction and
pathogenesis. The failure to ablate migraine, and only provide
a reduction in migraine headache days suggests that CGRP is
merely one player in the complex physiology of migraine. The
physiology of the meninges should be taken into consideration,
due to the complexity of migraine and headache disorders. This
review will focus on clinical evidence of immune dysfunction in
migraine patients, the anatomical and physiological relationships
of the immune cells in the dura mater and their potential
regulation by CGRP, and pre-clinical evidence implicating the
immune system in migraine-like symptoms.

CLINICAL EVIDENCE OF THE IMMUNE
SYSTEM DYSREGULATION IN MIGRAINE

Over the years evidence has emerged that migraine patients
may have immune system dysfunction. Peripheral cytokine levels
have been used to show a shift in the general inflammatory
state of the body. One study showed that migraine patients
have higher levels of interleukin 1-beta (IL1-β) and interleukin-
6 (IL6), and lower levels of interleukin-10 (IL10) compared to
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healthy control patients (39). A 2015 study noted that migraine
patients had higher IL6 levels compared to healthy controls (40).
Tumor necrosis factor α (TNF-α) was elevated during attack in
migraine patients with aura, and baseline levels were increased
in general migraine patients. A 2021 study measured cytokine
levels in the blood in migraine patients and healthy controls
and discovered that TNF-α was elevated, but IL1-β was not
compared to controls (41). Cerebrospinal fluid (CSF) protein
measurements indicate that migraine patients have significantly
different levels of transforming growth factor beta (TGF-β) 1,
interleukin-1 receptor antagonist and monocyte chemoattractant
protein 1 compared to controls (42). It is important to note that
this is within the confines of the CNS, vs. peripheral blood levels
that the previous studies have represented. Finally, while cytokine
dysfunction in migraine is indicated by numerous studies, there
are conflicting reports (39, 41).

Serum CGRP has been noted as either a potential biomarker
or a poor marker due to variability in concentrations, patient
conditions and diagnostic criterion. For example, Lee et al.
found that healthy controls had a mean serum level of 75.7
picograms/mL CGRP, while episodic migraine patients showed
67.0 picograms/mL. In that study, chronic migraine patients had
no increase in interictal levels of CGRP (43). But another study
found that interictal CGRP levels were significantly elevated in
chronic migraine patients (74.9 picograms/mL) compared to
46.37 picograms/mL in healthy patients (33). This discrepancy
is highlighted in a Lancet review from 2021 (44). The lack
of reproducibility could be explained in part due to different
exclusion criteria, different ELISA sources, time of extraction, or
methodology. The study by Cernuda-Mellon et al. and the one by
Lee et al. did use similar timeframes, collection conditions, and
measurement techniques (33, 43). More studies should be done
to determine if CGRP is a valid biomarker of migraine.

Other evidence that doesn’t rely on peripheral markers
are comorbidities with immune disorders and migraine.
Meta-analysis noted that headache had overlap with several
autoimmune diseases like multiple sclerosis, rheumatoid
arthritis, vasculitis, and allergic diseases (45). The authors
hypothesize that headache or migraine phenotypes may be a
“consequence of general inflammatory mechanisms involving
meningeal vessels and activating trigeminal terminals, especially
in individuals with a previous history of headache. . . ” (45). A
study investigating irritable bowel disorder (IBS) gave some
evidence of a causal relationship between IBS and migraine (46).
The potential dysfunction in cytokines in migraine patients,
and abnormal CGRP activity may influence the gut-brain axis
(47). It is important to note that CGRP doesn’t just signal in the
meninges, but all over the body, including the gastrointestinal
(GI) tract. CGRP is postulated to influence the gut microbiome
through interaction with resident GI tract immune cells as well
as on gastroenteric motility (48, 49). This in turn may explain
the correlation with migraine/headache in IBS disorders (47).
There is also a significant association between celiac disease, an
immune disease of the GI tract, and migraine (50).

Genome-wide association studies and single nucleotide
polymorphism (SNP) studies provide additional evidence of
the involvement of immune dysregulation in migraine. In a

Jordanian population of 198 migraine patients and 200 controls,
there was a significant association with two SNPs regarding TNF-
α gene (51). There was also a decrease in circulating lymphocytes
in the blood. Lymphocytes include cell types such as T and
B cells (52). This is supported by a 2021 study showing that
there is a significant decrease in peripheral regulatory T cells
in migraine patients compared to controls (53). Changes to the
immune system through different genes and SNPs may influence
the environment of the dura mater, in parallel with the trigeminal
afferent endings. In migraine patients, an RNA sequencing study
in 2021 examined blood RNA levels during migraine attack or
during the baseline period. Genes involved with the immune
system, along with fat metabolism and signaling pathways were
implicated in the study (54).

Measurement of peripheral gene expression through qPCR
hints at immune dysfunction in migraine as well. A group of
researchers examined migraine patients with or without aura
compared to healthy controls and extracted jugular venous blood
to measure gene expression of various cytokines (41). Migraine
patients had elevated levels of interleukin-4 (IL4), TGF-β, TNF-
α and interferon gamma. Some cytokines that were previously
found to have higher circulating protein levels such as IL1-βwere
not significantly different from controls.

The evidence for immune system involvement is diverse, but
not concrete enough to pinpoint a distinct role of these cells. But
there does appear to be an involvement of this system, at least
for part of the pathogenesis of migraine. The following section
will highlight the immune cells present in the meninges, their
actions, relation to trigeminal afferents and influence on neurons
and blood vessels.

DURA MATER RELEVANCE AND
OVERVIEW

The dura mater is the outermost layer of the meninges that
contains extracerebral blood vessels, fibroblasts, trigeminal
afferent endings, sympathetic and parasympathetic efferent
endings, and numerous immune cells (55–60). The trigeminal
afferents extensively innervate the blood vessels and other
regions of the dura mater, and interface with the extracellular
matrix (ECM) (61). The interplay between afferent endings,
vessels, immune cells, and ECM is hypothesized to be one way
in which migraine is induced, particularly by neuropeptides
like CGRP as well as other small molecules. This is referred
as the trigeminovascular hypothesis of migraine (62). It is
thought that there is initial trigeminal activation, resulting
in release of neuropeptides like CGRP and Substance P
into the trigeminovascular space. The trigeminal afferents
also release small molecules such as glutamate (63). CGRP
directly binds to vascular smooth muscle cells and causes
hyperpolarization through metabotropic signaling and
downstream phosphorylation of KATP channels by protein
kinase A (64). This results in relaxation and thus vasodilation.
CGRP also acts on resident immune cells such as macrophages
and mast cells. The macrophages may become activated, and
the mast cells degranulate (65, 66). This degranulation involves
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FIGURE 1 | CGRP actions on immune cells in the dura mater of the meninges. Cells of both the innate and adaptive immune systems are present. Mast cells and

macrophages represent the immediate frontline defense against pathogens and harmful compounds, while dendritic cells help move parts of the harmful

pathogen/protein to the adaptive immune cells (71–73). The B cells can produce antibodies against the antigens, and the T cells can differentiate to either kill cells or

aid fellow B and T cells for enhanced immune response. Most of the work of CGRP’s effect on these cells has been done in culture, but it appears that CGRP induces

neurogenic inflammation through mast cell degranulation, while enhancing anti-inflammatory macrophage function when stimulated with an inflammatory compound

(27, 65, 66, 74). CGRP appears to reduce dendritic cell presentation of antigens (75). CGRP’s effect in B cells and T cells is not well-studied but may drive the

adaptive immune system to undergo physiological changes upon presence of certain triggers.

release of inflammatory chemicals such as histamine, proteases
and various cytokines that are implicated in headache (67). Many
of the compounds released can sensitize trigeminal afferents,
leading to an increase in firing (68). Macrophage activation
may result in release of cytokines that could further sensitize
afferents (69). It should be noted that CGRP itself can sensitize
afferent endings to compounds such as ATP, so there could
be a synergism with cytokines and CGRP regarding afferent
sensitization (70). The following section will discuss each of
the immune cells present in the dura mater, interactions with
trigeminal afferents and CGRP, and how they could be involved
in migraine. Figure 1 provides a general overview of the immune
cells present in the meninges as well as CGRP’s actions on
these cells.

IMMUNE CELLS IN THE MENINGES

Macrophages
Macrophages are monocytic lineage cells that act as frontline
defenders through the innate immune system (71). In the dura
mater, the macrophages are derived from bone marrow and
replenish over time (76). They are highly mobile and engage in
phagocytosis of pathogens or dying cells (77). Other functions of
macrophages include tissue repair and remodeling and cytokine
release (78). A 2017 study by McIlvried et al. found that in the
rodent dura mater, over 17% of cells present are immune cells,

and of these almost two-thirds are macrophages (79). The high
proportion of cells in the dura being immune cells (roughly
1 in 10 dural cells being a macrophage) represents a dynamic
and ever-changing portion of the dura. Research has shown that
mouse macrophages interact with cultured trigeminal ganglion
cells in either a genetic model or wild type mice (80). They found
that macrophages underwent more phagocytosis of particles in
co-culture with TGs of either genotype compared to no co-
culture. This suggests that macrophages may have a physiological
relationship with TG neurons.

Macrophage function is intertwined with its cell surface
receptors, cytokines that are released and morphology (81). In
the past macrophages have been thought as “undifferentiated,”
then respond to stimuli around them. Following activation, they
were thought to shift to an inflammatory M1 phenotype or an
anti-inflammatory M2 phenotype (82). The M1 inflammatory
phenotype is typically characterized by anti-microbial and
anti-tumor functions (Figure 2). An early study found that
upon stimulation with interferon gamma, cultured human
macrophages produced increased levels of hydrogen peroxide
(84). This became known as the M1 phenotype. M1macrophages
produce other reactive oxygen species (ROS), release cytokines
such as IL1-β to recruit other immune cells and change
expression of genes to respond appropriately to the threat
(85, 86). The release of ROS-related compounds can harm
pathogens (86). When macrophages shift to the M1 phenotype,
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FIGURE 2 | Macrophages polarize toward different phenotypes depending on the stimuli. Triggers like pathogen-associated molecular patterns (PAMPs) including

LPS, double-stranded DNA or RNA can induce M1 polarization. This phenotype is characterized by production of inflammatory cytokines and an increase in ROS

production to help break down targets. The M2 spectrum of polarization is activated by cytokines such as IL4 or IL13. The result is a transformation into the M2

spectrum (M2a, b, c, and d) which is characterized by enhanced phagocytosis, anti-inflammatory cytokine release and increase in production of the ECM. These are

associated with tissue repair (82, 83). The ability of macrophages to rapidly shift based upon of stimuli represents a potential target for migraine, especially since they

have functional CGRP receptors.

they change to a more circular appearance and may have reduced
mobility (87).

The M2 phenotype of macrophage activation is generally
thought of as anti-inflammatory. These macrophages function
to ensure wound repair, engulf debris through phagocytosis,
promote neovascularization and interact with the ECM (83, 88).
M2 macrophages also express cytokines that are thought to fight
inflammation. Compounds released by M2 macrophages include
IL10and TGF-β (89). There have been significant advancements
in understanding the complexity of activation state. Macrophages
have multiple M2 sub phenotypes such as M2a, M2b, M2c and
M2d (81). In fact, it is possible to manipulate the cell shape and
cause more characteristics of the phenotype associated with the
shape (90).

The adaptability of macrophages and their constant change
in location, morphology and cell processes might be one way
in which the dysregulated trigeminovascular space is caused. A
preclinical study sought to examine macrophage activity through
in-vivo two photon imaging (91). This was done in anesthetized
animals under a two-photon scope. The macrophages and other
CX3CR1-expressing cells produced green fluorescent protein,
allowing visualization of the cells and their morphology. The
team found that macrophages adopted an increased circularity
following CSD in the mouse brain. They also saw a reduction
in movement of dendritic cells. Changes in morphology is a

potential but not absolute sign that the macrophages are being
activated into one of the phenotypes (92). The macrophages
were closely associated with transient receptor potential vanilloid
receptor 1-positive nerve endings, suggesting close association
with the trigeminal afferents (92, 93). This corresponds with in
vitro work showing functional communication between cultured
trigeminal neurons and macrophages (80). Similar association
was also found in immunohistochemical analysis of rat dura
maters. Macrophages appeared near dural vessels, and a portion
were associated with afferent nerve endings (94). All this
points to macrophages having possible crosstalk with trigeminal
afferents, especially given the high portion of dural cells being
macrophages (79).

In the context of migraine, macrophages can respond to
several compounds released by trigeminal afferent endings,
such as CGRP. Macrophages in culture have been shown to
express the CGRP receptor and treatment of cells with CGRP
causes an increase in cAMP (indicative of CGRP receptor
activation) (95). If there is an initial CGRP release from
trigeminal afferents, then that could potentially activate the dural
macrophages. Reciprocal release of cytokines from the now-
activatedmacrophage could sensitize the nearby afferent endings.
This is known as neurogenic inflammation (27). This type of
inflammation via endogenous compounds such as cytokines or
CGRP is also referred to as sterile inflammation since there is
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a lack of an exogenous pathogenic trigger such as microbial
membrane components (96).

The ultimate question is that even if CGRP binds to
macrophages and increases cAMP levels, what is this doing to
the macrophage itself regarding polarization? A recent pattern
in studies observing macrophages is that CGRP appears to
be preventing inflammation when cells are pretreated with a
compound such as lipopolysaccharide (LPS) (97). In a study
of mouse lung cells in vitro, lung macrophages were treated
with LPS, and treatment with CGRP afterwards significantly
reduced expression of inflammatory genes NLR family pyrin
domain containing 3 and the pre-spliced IL1-β (97). Another
study examined the role of CGRP-deficiency in bone marrow
derived macrophages in the context of surgical implants (98).
Cultured cells in the CGRP-knockout group had a far higher
portion of CD86-expressing macrophages. This is generally
considered a marker for M1 polarization (99). Supplementation
in the knockout mice with CGRP reduced the M1 population
and increased the M2 population, closer to those found in
the wildtype controls. The results suggest that CGRP may be
necessary for basal macrophage functioning, and a loss of CGRP
results in a shift toward inflammation.

Another hint at CGRP’s involvement in macrophages is with
wound healing. In a recent study, CGRP’s role in recovery
was examined in corneal tissue. Cultured trigeminal ganglion
neurons were co-cultured with macrophages in a rodent
model with bacterial infection of the corneal nerves by P.
aeruginosa (74). The research team found CGRP release from
both macrophages and trigeminal ganglion cells when cultured
separately following LPS administration. Together, they had a
higher level of CGRP production following LPS than alone.
CGRP prevented inflammation by promoting macrophages to
express anti-inflammatory cytokines andmarkers. CGRP appears
to be beneficial following infection of corneal afferents, and may
help the local immune function, at least in the cornea. Another
study found that CGRP levels were elevated in premolars
from patients suffering from occlusion trauma in addition to
orthodontic trauma (100). Other peptides were elevated, such as
substance P and vascular endothelial growth factor. CGRP may
be essential for tissue remodeling and wound healing acting as an
activator or signal to macrophages in damaged tissue.

Mast Cells
Mast cells are another major portion of the innate immune
system, and the dura mater hosts these cells (67, 101). These cells
originate from bone marrow precursors, like macrophages, but
are not of monocytic lineage (102, 103). They are referred to as
granulocytes due to their ability to release granules containing
compounds such as histamine, tryptase, heparin, substance P
and numerous cytokines (72). These chemicals are thought to
mediate part of the neurogenic inflammation portion of migraine
(60, 104). These compounds can act on subtypes of trigeminal
afferents to sensitize them directly (105, 106).

In the context of migraine neurobiology, both CGRP and
substance P are capable of directly acting on mast cells to induce
degranulation (107–109). However, CGRP didn’t activate human
mast cells in the study by Kulka in 2008 while substance P did

(108). Treatment of single mast cells with immunoglobulin E
potentiated CGRP-induced degranulation, but not substance P-
induced degranulation in culture (66). It is possible that while
CGRP is indeed capable of inducing degranulation in mast
cells, a priming event is needed. Since substance P is released
along with CGRP from trigeminal afferents, it could be that
substance P and CGRP are working synergistically to cause
sustained degranulation. More studies are needed to assess the
role of CGRP-induced degranulation. Components of the CGRP
receptor have been colocalized to mast cells, but the degree of
functional receptor presence is not well-known.

Even if CGRP’s role in degranulation is less clear than
other neuropeptides, it still can interact and induce neurogenic
inflammation. Preclinical work in rodents found that treatment
of animals with the mast cell degranulating agent 48/80 given via
intraperitoneal injection at 2 mg/kg increased firing of trigeminal
afferent endings present in the dura mater (67). The C fibers,
which are unmyelinated afferents that release CGRP, had a higher
increase in firing than the A delta afferent fibers. Increased
firing of C fibers could release more neuropeptides and thus
have a bidirectional relationship with the local dural mast cells.
Besides CGRP or substance P, mast cells respond to numerous
compounds such as allergens, cytokines, LPS, chemokines and
others (110). The diversity of agonists for mast cells is important
for the innate immune system, but in the case of migraine
patients and immune disorders it may negatively affect the
trigeminovascular space. A common irritant acrolein is capable
of degranulating mast cells and is a known headache trigger
(111, 112).

Degranulation of mast cells releases a diverse number of
chemicals and enzymes into the extracellular space (Figure 3).
The most understood, histamine, is a known vasodilator (118).
However, culture work on trigeminal afferents shows that
treatment with histamine only resulted in a small increase in
firing rate compared to compounds such as serotonin (113).
Histamine was also found to promote an M2 phenotype like
those seen in tumor associated macrophages, and prevention of
histamine receptor H1 alleviates this shift in phenotype (119).

Other components released from mast cell degranulation
include serotonin, heparin, tryptase, and numerous cytokines.
Serotonin’s effects on the dura and trigeminal neurons are
complex, but can be summarized as increase in trigeminal
firing, both vasoconstriction and dilation (depending on receptor
subtype and concentration) and various immune actions,
including secretion of specific cytokines (113, 115, 120, 121).
For example, serotonin was found to dilate the feline middle
meningeal artery, while triptans (5HT1B/D agonists) caused
vasoconstriction (20, 114). Tryptase is of interest because it
is a serine-threonine protease capable of inducing changes to
the extracellular environment and inducing nociception (122,
123). Researchers found that tryptase can induce mechanical
allodynia is a mouse paw, and it does this through cleavage of
proteinase-activated receptor (PAR) 2 (123). Antibodies against
PAR-2 have shown beneficial effects in rodent models of pain and
will be discussed later (124). Cytokines found in mast cells are
conflicting, in part because of differences of measuring mRNA vs.
functional protein (117). Numerous pro- and anti-inflammatory
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FIGURE 3 | CGRP actions on dural mast cells. Compounds such as CGRP, substance P or inflammatory cytokines can bind to mast cells via a diverse array of

receptors (66, 108). Following activation, the mast cell releases granules that contain compounds such as histamine, heparin, enzymes like tryptase, many different

cytokines and serotonin (68, 72, 113). The effect of these compounds is diverse. Among the most prominent are histamine and serotonin. Histamine can cause

vasodilation and immune activation. Serotonin has mixed vascular activity depending on the site of action. It has been found to dilate middle meningeal arteries (114).

It can also modulate cytokine release from monocytes (115). Tryptase is a protease that can cleave other proteins, such as protease-activated receptor (PAR) 2.

PAR-2 activation is thought to sensitize transient receptor potential channels present on sensory afferents, so downstream protease activity could possibly result in TG

sensitization (116). The cytokines found in mast cells are incredibly diverse, and both pro- and anti-inflammatory cytokines have been found but degranulation is

believed to drive further inflammation and sensitization of afferents (117).

cytokines have been identified but more work needs to be done
to parse out their relevance. Of the cytokines potentially released
from mast cells, IL-1β and IL-6 have the potential to activate TG
neurons or induce prolonged sensitization. In cultured rat TG
cells, IL-1β increased prostaglandin 2 synthesis and subsequent
CGRP release (125). In rodents, dural injection of IL-6 induced
both facial and hind paw allodynia, demonstrating that local
actions of cytokines in the dura can also apparently lead to central
sensitization (126).

Dendritic Cells
Dendritic cells are another type of monocyte lineage cell found
throughout the body, including the dura mater (127). While
they are in far lower proportion to macrophages, at least in
rodents, they still have a substantial presence (79). These cells are
involved in the antigen presentation process for B and T cells for
adaptive immunity (128). They are a type of antigen presenting
cell (APC). APCs take fragments of viruses and bacteria and
return them to T cells. The T cells recognize fragments of the
epitope and can differentiate accordingly (73). Dendritic cells
treated with CGRP have a change in cell surface receptors and a
decrease in proliferation, suggesting a functional CGRP receptor
on these cells (75). Cultured dendritic cells have reduced cell
migration following application of CGRP (129). In the skin,
aggregation of dendritic cells in the lymph nodes was inhibited
by CGRP, consistent with previous studies (130). A recent review
summarizes CGRP’s inhibitory effect on dendritic cells, reduced
migration and antigen presentation (131).

Dendritic cells may be a potential target for headache
and migraine treatment. A group in 2019 found that when
dendritic cells were cultured from rats and exposed to interferon
gamma, the exosome extract reduced spreading depression in

hippocampal slices in vitro (132). The reduced electrical activity
suggests that mild exposure of dendritic cells to specific cytokines
may suppress neuron firing downstream, and they suggest that
this could be one way to help patients with migraine.

B Cells
B cells are another part of the adaptive immune system and
can produce antibodies against specific antigens presented to
them. Until recently, it was not known if the meninges had
a substantial portion of B cells. In 2021, two papers reported
a surprising abundance of B cells in the meninges, at least in
rodents (133, 134).

CGRP’s involvement with B cells is not well-studied, but
CGRP was found to be expressed in these cells upon stimulation
by nerve growth factor (NGF) (135). Levels were much lower
in inactivated cells. B cells also appear to have CGRP receptors.
B cells can respond to treatment with CGRP in vitro, and
CGRP hinders development of B cell precursors. Blocking CGRP
receptors with the peptide antagonist CGRP8-37 prevented this
CGRP-driven inhibition (136).

T Cells
Part of the adaptive immune system, T cells are responsible for
circulating throughout the body and attacking antigens based
upon antibody recognition and absorbing fragments of the
pathogen. These cells are found in the dura. Based upon cell
surface receptors, they can be divided into CD4 and CD8 cells
(137). The CD4T cells can be further subdivided into Th1 or Th2
(137, 138). Th1 is seen as pro-inflammatory, primarily through
interferon gamma. Th2 is anti-inflammatory. The baseline level
of dural T cells remains relatively low, while in bacterial infection
there is a significant increase (139). Immunohistochemical
analysis found that T cells were present around dural sinuses,
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FIGURE 4 | Model of CGRP involvement with the dural immune system in migraine. TG-produced CGRP may drive dural mast cell degranulation that could sensitize

nearby TG afferent endings. It could also result in vasodilation and activation of macrophages and other resident immune cells. Beyond the direct activation of TG

afferents by inflammatory compounds, vasodilation via histamine or neuropeptides might activate mechanoreceptors present on TGs. Mechanoreceptor activation

such as Piezo2 present on sensory neurons could be one way sensitization of TG neurons occurs. Macrophages could change the extracellular makeup on the dura

following polarization from neuropeptides or cytokines. in vitro work shows that CGRP shifts either LPS-treated macrophages or tissue damage macrophages toward

an M2 tissue-remodeling phenotype (65, 97). Changes to the interaction of the TG endings and the dura superstructure could potentially cause dysregulated firing via

mechanoreceptors.

with multiple phenotypes, such as Th1 or Th2 (140). Dural T
cells increased as mice aged and had differentially expressed
transcripts, such as interferon gamma. Multi-photon imaging
confirmed the accumulation of T cells in the dura mater
in transgenic mice (140). The researchers postulate that the
accumulation of T cells at sinuses may represent an avenue
for peripheral meningeal immunity through interactions with
the CNS.

Dural T cells recognize centrally derived antigens. APCs in
the dura such as dendritic cells and macrophages are capable to
transport proteins in the CSF to T cells (140). T cells appear to
be able to respond to CGRP, suggesting presence of a functional
receptor (141). CGRP-stimulated dendritic cells also can shift T
cells to the Th2 phenotype (130). So CGRP may have multiple
avenues to influence T cell functioning.

DISCUSSION

The immune system within the dura mater is extensive and
dysregulation is likely to contribute to migraine pathophysiology.
CGRP is a multifaceted neuropeptide that can modulate these
dural immune cells. CGRP can induce neurogenic inflammation
through mast cell degranulation and subsequent inflammatory
chemical release. CGRP actions are likely to extend beyond
mast cells, with recent articles hinting at CGRP being vital for

shifting macrophages toward an anti-inflammatory phenotype
following stimulation with either LPS or injury. CGRP also has
a generally inhibitory effect on dendritic cells through reductions
in migration and antigen presentation. Hence, CGRP cannot be
pigeonholed as either a pro- or anti-inflammatory peptide since
it is inflammatory via mast cells and anti-inflammatory through
macrophages and dendritic cells. Figure 4 presents a potential
model for the role of CGRP and other neuropeptides on dural
mast cells and macrophages. These are the two most well-studied
immune cells in the context of CGRP. However, a caveat of this
model is that most studies on CGRP and immune cells have
been with either cell lines or bone marrow-derived immune cells,
not immune cells in the meninges. Whether meningeal immune
cells will respond in the same manner to CGRP remains to
be determined.

CGRP-targeting medication is effective in 50% of chronic
and episodic migraine patients, but some recent studies
have brought on concerns about potential immune effects.
A series of 8 case studies from Australia and Ireland found
potential immune complications from the CGRP antibodies
erenumab or galcanezumab (142). Patients had complications
such as a man who suffered from rheumatoid arthritis. After
taking the antibody treatment, he had hepatitis. Cessation of
erenumab helped him recover, along with steroid treatment.
Another patient had psoriasis upon treatment with CGRP
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antibody. Another case study examined a 51-year-old woman
who following erenumab treatment had skin infiltration of
lymphocytes and thrombosis. While these are only case studies,
this provides hints at CGRP’s multifaceted, and nuanced role in
human immune physiology.

Another aspect to consider is the response of the immune
system to CGRP’s blockage over time. We don’t yet know the
impact on the immune system if CGRP is blocked for years,
but within a year timeframe of CGRP antibody usage there are
apparently no major complications in most patients (143). A
further complication of CGRP’s role on dural immune cells is
the ability of the immune cells to both respond to CGRP, and
to also release it upon stimulation by certain chemicals. Studies
have found that macrophages and B cells can produce CGRP
(135, 144). So neural-produced CGRP might affect downstream
CGRP production in these cell types, resulting in a potential
feedback loop between neurons and immune cells. It is unknown
if immune cell produced-CGRP has a physiological role but it
does represent another layer of complexity of the system. In
addition, other cell types may produce CGRP besides immune
cells (145). Thus, both neural and locally expressed CGRP in the
meninges is well-poised to modulate the activities many types of
immune cells and possibly contribute to migraine pathogenesis.

CONCLUSION

The complexity of the neurobiology of migraine perplexed
researchers for years, yielding the vascular vs. neuronal debate.
While the neuronal side is favored as of late, it is only a part
of the system. The neuropeptide CGRP is clearly involved in
the genesis and continuation of migraine headache for many

patients. Therapeutics targeting CGRP or the receptor are
effective, but only in ∼50% of episodic or chronic migraine
patients, which illustrates the need for a better understanding
of how CGRP contributes to migraine pathogenesis. CGRP
has primarily been viewed as a pro-inflammatory molecule in
most migraine literature, but it also has anti-inflammatory and
tissue repairing functions through macrophages, dendritic cells,
B and T cells. CGRP is cardioprotective and helps healing
following injury. There is evidence of immune dysfunction in
migraine. More work should be done examining CGRP’s role
in not just migraine neurobiology, but also its function in the
immune system. Targeting CGRP’s role in migraine immune
dysfunction could both augment CGRP therapeutics and possibly
help patients who are non-responders to drugs that target only
CGRP or its receptor.
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