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Abstract

Cells respond to external cues by precisely coordinating multiple molecular events. Co-regulation may be established by the
so-called single-input module (SIM), where a common regulator controls multiple targets. Using mathematical modeling, we
compared the ability of SIM architectures to precisely coordinate protein levels despite environmental fluctuations and
uncertainties in parameter values. We find that post-transcriptional co-regulation as exemplified by bacterial small RNAs
(sRNAs) is particularly robust: sRNA-mediated regulation establishes highly synchronous gene expression thresholds for all
mRNA targets without a need for fine-tuning of kinetic parameters. Our analyses reveal that the non-catalytic nature of
sRNA action is essential for robust gene expression synchronization, and that sRNA sequestration effects underlie coupling
of multiple mRNA pools. This principle also operates in the temporal regime, implying that sRNAs could robustly coordinate
the kinetics of mRNA induction as well. Moreover, we observe that multi-target regulation by a small RNA can strongly
enhance ultrasensitivity in mRNA expression when compared to the single-target case. Our findings may explain why
bacterial small RNAs frequently coordinate all-or-none responses to cellular stress.
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Introduction

Since their discovery more than thirty years ago, it has become

clear that small RNAs (sRNAs) play a crucial role in regulating

gene expression. sRNAs downregulate gene expression post-

transcriptionally by pairing with target mRNAs through base

complementarity. Complex formation with small RNAs compet-

itively inhibits mRNA translation and/or induces mRNA degra-

dation (reviewed in [1,2]). Importantly, the interaction between

the sRNA and its target is non-catalytic in nature, since sRNA

molecules are typically degraded along with their target, instead of

being re-used to regulate other targets [3]. Such regulation is

distinct from other post-transcriptional regulators such as RNA-

binding proteins (RBPs) and microRNAs (miRNAs) which, in most

cases, pass through multiple rounds of mRNA complex formation

[4]. On the other hand, RBPs and miRNAs can competitively

inhibit translation, and thus resemble sRNA action [5,6]. Notably,

sRNA-mediated regulation conceptually differs from transcrip-

tional repression, besides simply regulating a later step in protein

biosynthesis: transcriptional repressors are typically present in vast

excess over individual binding sites in the genome; thus, unlike

sRNAs, the repressor pools are not depleted by binding to specific

targets. Compared to other modes of regulation, sRNAs may thus

confer unique dynamical features to gene expression.

The quantitative aspects of sRNA regulation were analyzed by

various mathematical modeling studies, most of which assumed a

purely stoichiometric mode of sRNA action

[7,8,9,10,11,12,13,14]. Model-based analyses revealed that sRNAs

binding their targets with sufficiently high affinity can establish a

threshold-linear gene expression response at steady state [9]: the

stoichiometric nature of sRNA action ensures that mRNA

translation is almost completely suppressed as long as the sRNA

concentration exceeds that of the mRNA (sub-threshold regime).

In contrast, gene expression increases linearly with increasing

mRNA transcription as soon as the sRNA is less abundant than

the mRNA species (linear regime). Recent work revealed that

miRNAs can generate similar threshold-linear behavior at the

single-cell level [15]. Regulation by sRNAs has a clear signature

not only for steady state expression but also during dynamic

responses. For example, the system may initially need to eliminate

excess unbound sRNA when reaching the linear regime; thus the

kinetic profile of gene expression is characterized by a sharp delay

[7,16].

Mathematical modeling studies revealed that steady state and

temporal thresholds require that sRNAs bind strongly to their

targets. Accordingly, some sRNA-mRNA complexes were shown

to be stable and can be assumed to form irreversibly, as expected

for sufficiently long RNA duplexes [17,18,19]. However, sRNA

species vary as to the extent they complement their targets, and

even in case of extensive complementarity base pairing may only

occur over a limited region, the so called ‘‘kissing complex’’

[20,21,22]. In order to maintain their regulatory effects, many
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sRNAs require the presence of a specific RNA chaperone protein,

Hfq, which is thought to melt inhibitory RNA structures and may

have a bridging function in mRNA binding [22]. In fact, the

presence of Hfq increases local concentrations of sRNAs and

mRNAs that drastically enhances complex formation. For

example, a 50-fold increase in mRNA-association rate in the

presence of Hfq has been measured between rpoS mRNA and

DsrA sRNA [23] or between ompA and MicA [24]. Thus, in living

cells high affinity complex formation may be ensured by additional

factors beyond simple base pairing. Notably, Hfq has also been

implicated in protecting the sRNAs from degradation until paired

and in recruitment of the degradosome to sRNA-mRNA

complexes [22], suggesting intensive regulatory interactions

between sRNAs and RBPs.

Small RNAs regulate a broad range of targets, many of which

function during bacterial stress responses, e.g., by regulating outer

membrane proteins, iron metabolism, quorum sensing or carbo-

hydrate metabolism [22]. By being expressed only under specific

conditions, sRNAs contribute to adaptation to environmental

changes. On the other hand, constitutively expressed sRNAs

appear to limit the expression of proteins that become toxic when

expressed in large amounts [21,22,25]. Many sRNAs have the

potential for interacting with multiple mRNAs, which allows them

to coordinate whole physiological responses [26]. One of the first

sRNAs observed to interact with more than a single mRNA target

was DsrA in E. coli effecting translation of global transcription

factors [27]. Another well-established sRNA example for control-

ling multiple targets is RyhB, which downregulates at least 18

operons encoding iron-using proteins [28]. Very recently, 16

regulated mRNA targets were identified for Spot42, a small RNA

that modulates catabolite repression in E. coli [29]. For GcvB and

RybB in Salmonella it has been demonstrated that a conserved

domain of the sRNA is responsible for recognizing multiple

mRNA targets encoding ABC transport systems or outer

membrane proteins, respectively [30,31]. A recent systematic

target profiling and validation approach revealed RybB and MicA

to act each as global mRNA repressors during envelope stress [32].

In summary, many sRNAs (e.g. RyhB, Spot42, RybB, MicA,

CyaR, DsrA, GcvB, OmrAB, RNAIII) turned out to act as

multiple-target regulators [26,29,32]. It is very likely that multi-

target regulation by a small RNA is a recurrent design principle

adding a new layer of complexity for bacterial gene expression.

Multi-target regulation by a single sRNA was analyzed in previous

mathematical modeling studies (reviewed in [33]): These papers

showed that a single sRNA is able to efficiently downregulate

many targets at once ([13,34]), and that mRNAs crosstalk between

each other by sequestering the common sRNA regulator [8].

Mitarai et al. proposed the concept of hierarchical prioritization,

where RNAs respond sequentially to decreasing levels of sRNA

expression, depending on their affinity for the common sRNA

regulator [11]. In this paper, we extend these previous theoretical

studies on sRNA-mediated multi-target regulation, and re-evaluate

the parameter requirements of hierarchical prioritization by

analytical and numerical studies.

Multi-target regulation systems (Fig. 1A, top) are recurrent

motifs in biochemical networks, and are commonly referred to as

‘‘Single-input modules’’ (SIMs). Depending on the kinetic param-

eters, SIMs can show two types of behavior (Fig. 1A): (i) if all

targets show similar affinity for the regulator, they may respond

synchronously once a critical regulator concentration is reached.

Such behavior has been termed ‘‘synexpression’’, and is thought to

require fine-tuning of target affinities [35]. (ii) In the other

extreme, low-affinity targets may be relieved from inhibition at

lower regulator concentrations than high-affinity targets. Exper-

imental studies confirmed that such hierarchical prioritization

occurs in transcriptional responses to morphogen gradients [36].

In this work, we compare different SIM architectures and

parameter regimes, and show that some intrinsically favor

synexpression while others tend to promote hierarchical prioriti-

zation. Since coordinated regulation of functionally related

proteins is thought to optimize cellular responses

[35,37,38,39,40], we focused on a SIM architecture that favors

synexpression even without fine-tuning of target affinities: sRNA-

mediated multi-target regulation. Using analytical approxima-

tions, we comprehensively characterize the parameter space, and

show that robust synexpression at steady state is a general feature

of the system, unless target affinities are extremely different.

Numerical studies show that shared sRNAs are able to synchro-

nize the temporal dynamics of mRNA expression as well;

moreover, sRNAs can establish strong feedback regulation in

larger networks. Taken together, we extend previous studies on

mRNA crosstalk by sRNA sequestration [8], and show that

sequestration effects may be beneficial in robustly synchronizing

mRNA expression levels under various regulation regimes. Our

findings suggest that post-transcriptional control may be more

efficient in coordinating gene expression when compared to

transcriptional modes of regulation.

Results

SIM architectures differ in their ability to robustly
coordinate gene expression responses

Single-input modules (SIMs), where a single regulator controls

multiple targets (Fig. 1A, top) are recurrent motifs in biochemical

networks. SIMs may result in synexpression or prioritization of the

regulator targets (Fig. 1A and Introduction). To better understand

the requirements for synexpression and hierarchical prioritization,

we analyzed the steady state behavior of simple SIM architectures

by calculating the response to increasing regulator concentrations.

We focused on regulation mechanisms controlling gene expression

at transcriptional and post-transcriptional levels. Consider the

following minimal model of cooperative transcriptional co-

regulation, where a transcriptional repressor RT inhibits tran-

scription of the mRNA species m1 and m2 (1)

d½m1�
dt

~
vmax,1

Kn
D,1zRn

T

{kdeg,1
:½m1�

d½m2�
dt

~
vmax,2

Kn
D,2zRn

T

{kdeg,2
:½m2�

The kinetic parameters Vmax, KD, n and kdeg correspond to the

maximal transcription rate, the dissociation constant of promoter

binding, the Hill coefficient and the mRNA degradation rate,

respectively. The steady state solution [mi] = Vmax,i/kdeg,i/

(KD,i
n+RT

n) implies that the repressor concentration for half-

maximal inhibition equals KD,i. Thus, the threshold repressor

concentrations eliciting half-maximal mRNA downregulation

depend in a linear manner on the repressor affinity for the

promoter. Moreover, the distance between the mRNA dose-

response curves scales with a9 = KD,2/KD,1 (cf. Fig. 1B). There-

fore, the transcriptional switch easily accommodates expression

prioritization and sequential regulation, as even moderate affinity

differences: (i) allow the two mRNAs to respond at significantly

different regulator concentrations. (ii) establish an exclusive

expression regime of the low-affinity mRNA at intermediate

Multi-Target sRNA Regulation
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regulator concentrations (depending on the steepness of the dose-

response curves). On the other hand, precise synexpression of the

two mRNAs in the transcriptional switch can only be established

for very similar affinities KD,i, and thus requires extensive

parameter fine-tuning. In the following, we will discuss SIM

architectures whose mRNA expression thresholds diverge in a less-

than-linear manner with affinity differences. We will argue that

this property promotes robust synexpression, independent of

precise kinetic parameter values.

In Eq. 1, repressor pools are not depleted by binding to

promoter sites; this assumption is likely to be fulfilled in

transcriptional networks, where abundant transcriptional regula-

tors (cf., [41]) target only two specific promoter copies per cell, and

are buffered by non-specific binding to the genome. To

understand the potential role of regulator depletion, we analyzed

an extended cooperative inhibition model, where the repressor

concentration is no longer assumed constant (see Protocol S1). The

corresponding dose-response curves in Fig. 1C reveal that the

distance between repression thresholds scales less than linearly

with the affinity ratio a: for example, the threshold repressor

concentrations eliciting half-maximal mRNA downregulation

differ by ,3-fold if the affinities differ eightfold (a= 8). Parameter

insensitivity is even more pronounced in the lower part of the

dose-response. In such a system, synexpression would require less

extensive parameter fine-tuning, making it a more plausible

mechanism for precise co-regulation. We conclude that some SIM

architectures intrinsically favor synexpression while others tend to

promote hierarchical prioritization. In the Supporting Informa-

tion, we show that the partial threshold insensitivity observed in

Fig. 1C is directly linked to regulator depletion and sequestration

effects (see Protocol S1). Regulator depletion effects play a major

role in post-transcriptional gene expression regulation [8,33]; we

therefore decided to comprehensively analyze the parameter

(in)sensitivity in a minimal SIM, where a small RNA inhibits two

Figure 1. SIM architectures differ in their ability to robustly coordinate gene expression responses. (A) The single-input module (SIM),
where a regulator (R) controls multiple targets (Ti) may establish coordinated expression of all targets (synexpression) or sequential regulation if
target affinities differ (prioritization). (B) Threshold of a cooperative repression model is sensitive to changes in regulator affinity. The steady state
dose-response of the cooperative repression model (Eq. 1) was calculated while varying the ratio of promoter-regulator affinities a9 = KD,2/KD,1 (other
parameters: Vmax,i = 1; kdeg,i = 1; n = 3). The x-axis is normalized by the regulator concentration where the case a9 = 1 reaches 10% of maximal mRNA
expression. (C) An extended cooperative repression model with regulator depletion is less sensitive to parameter alterations. The steady state dose-
response of a mass-action model explicitly describing three sequential binding steps of the regulator to the two target promoters was calculated
numerically (see Protocol S1 for details). This system is a generalization of the minimal cooperative repression model (Eq. 1). High affinity regulator
binding to mRNAs was assumed to ensure that regulator depletion effects are significant. The x-axis is normalized by the regulator concentration
where the case a9 = 1 reaches 10% of maximal mRNA expression to allow direct comparison with panel B. (D) Mathematical model for sRNA-mediated
co-regulation. The mRNA species (m1 and m2) are controlled by reversible binding to the shared sRNA (s), giving rise to inhibitory complexes, c1 and
c2. The monomeric species m1, m2 and s are constantly synthesized, and all molecular species are subject to degradation. Throughout this work we
assume that the inhibitory complexes c1 and c2 are formed with high affinity.
doi:10.1371/journal.pone.0042296.g001
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mRNAs (Fig. 1D). We focused on a system where the sRNA is co-

degraded with its targets, because such a mechanism favors

synchronization and coupling effects when compared to a catalytic

mode of action (cf. Discussion). It will be shown below that the

thresholds of the sRNA system are even more robust than the ones

in Fig. 1C.

Modelling the regulation of multiple mRNAs by a shared
sRNA

Post-transcriptional co-regulation of multiple mRNAs by a

shared small RNA was analyzed using the model depicted in

Fig. 1D. The translation of the mRNA species (m1 and m2) is

competitively inhibited by the sRNA (s). Additionally, the effective

turnover rate of the mRNA pools is controlled by the sRNA, since

the degradation rates of the inhibitory complexes, c1 and c2, may

differ from those of the free mRNA species. By employing the law

of mass-action, the dynamics of post-transcriptional regulation can

be described by the following set of differential equations (2)

d½m1�
dt

~vsyn,m1
{kdeg,m1

:½m1�{kon,1
:½m1�:½s�zkoff ,1

:½c1�

d½m2�
dt

~vsyn,m2
{kdeg,m2

:½m2�{kon,2
:½m2�:½s�zkoff ,2

:½c2�

d½s�
dt

~vsyn,s{kdeg,s
:½s�{kon,1

:½m1�:½s�zkoff ,1
:½c1�{kon,2

:½m2�:½s�

zkoff ,2
:½c2�

d½c1�
dt

~kon,1
:½m1�:½s�{koff ,1

:½c1�{kdeg,c1
:½c1�

d½c2�
dt

~kon,2
:½m2�:½s�{koff ,2

:½c2�{kdeg,c2
:½c2�

This system comprises 12 kinetic parameters, i.e., three synthesis

rates (vsyn), five degradation rate constants (kdeg), and four rate

constants describing complex association and dissociation (kon,

koff).

Simplifying assumptions were made to derive analytical

expressions for the dose-response behavior and parameter

sensitivity of the system: It was assumed that the system has

reached steady state, thus (initially) neglecting the temporal aspects

of the response. As the steady state of the full system (Eq. 2) cannot

be solved analytically, the affinity of the mRNA-regulator

complexes, c1 and c2, was additionally assumed to be very high

(Kd,i = koff,i/kon,iR0). As outlined in the introduction, this seems to

be a reasonable assumption for many sRNA circuits. In case of

strong binding, all mRNA will be bound into the inhibitory

complexes (c1 and c2) as long as the sRNA is present in excess, i.e.,

(3)

½m1�~0 ^ ½m2�~0 if vsyn,swvsyn,m1
zvsyn,m2

In the following, we will focus on the opposite regime

(vsyn,m1+vsyn,m2.vsyn,s) to understand principles governing the

accumulation of free, translationally active mRNA.

Analytical approximation for strong post-transcriptional
co-regulation

At steady state, transcription balances RNA degradation, giving

rise to the following set of algebraic equations (4)

vsyn,s~kdeg,s
:½s�zkdeg,c1

:½c1�zkdeg,c2
:½c2�&kdeg,c1

:½c1�zkdeg,c2
:½c2�

vsyn,m1~kdeg,m1
:½m1�zkdeg,c1

:½c1�

vsyn,m2~kdeg,m2
:½m2�zkdeg,c2

:½c2�

Degradation of free sRNA is neglected, since the whole sRNA pool

will be bound completely into the complexes c1 and c2 as long as

vsyn,m1+vsyn,m2.vsyn,s. Taking into account the binding equilibria

of the complexes (Kd,i
eff = (koff,i+kdeg,ci)/kon,i = [s]?[mi]/[ci]), one

can solve for the steady state concentration of the free mRNA

species (5)

½m1�~
vsyn,m1

kdeg,m1

: 1{
1

2
: S:

bz1

b
{

1z
a

b

a{1

0
B@

0
B@

z
a{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a{1ð Þ2

q :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S:

bz1

b
{

1z
a

b

a{1

0
B@

1
CA

2

z4:
S: bz1ð Þ
b: a{1ð Þ

vuuuut
1
CCCA
1
CCCA

½m2�~
vsyn,m2

kdeg,m2

: 1{S: bz1ð Þzb: 1{
kdeg,m1

vsyn,m1

:½m1�
 ! !

Importantly, the steady state of the 12 parameter system in Eq. 2 is

fully determined by five lumped parameters (a, b, S, vsyn,m1/

kdeg,m1, vsyn,m2/kdeg,m2). The mRNA synthesis ratio b relates the

production terms of the two mRNAs (6a).

b~
vsyn,m1

vsyn,m2

while the mRNA inhibition strength ratio a quantifies the sRNA-

mediated inhibition of m2 relative to m1 (6b)

a~
K

eff
d,1d,1

K
eff
d,2d,2

:
kdeg,c2

kdeg,m2

:
kdeg,m1

kdeg,c1

~
(koff ,1zkdeg,c1

)

kon,1

: kon,2

(koff ,2zkdeg,c2
)
:

kdeg,c2

kdeg,m2

:
kdeg,m1

kdeg,c1

Large values of a imply that: (i) the sRNA affinity for m2 is larger

than that of m1 (Kd,2
eff,Kd,1

eff) and/or (ii) sRNA-mediated

destabilization of m2 is large relative to m1 (kdeg,c2/kdeg,m2.

kdeg,c1/kdeg,m1). Thus, a.1 indicates that sRNA-mediated inhibi-

tion of m2 is stronger than that of m1. For equal inhibition of both

mRNAs (a= 1) the steady state solution simplifies to (7)

½m1�~
vsyn,m1

kdeg,m1

: 1{Sð Þ
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½m2�~
vsyn,m2

kdeg,m2

: 1{Sð Þ

In Eqs. 5 and 7, the mRNA species simultaneously become

positive if the stimulus S fulfills (8)

S~
vsyn,s

vsyn,m1
zvsyn,m2

v1

Thus, accumulation of free mRNAs can only occur if the sum of

the mRNA transcription rates exceeds the sRNA transcription rate

(vsyn,m1+vsyn,m2.vsyn,s; cf. Eq. 3). Using numerical simulations of

the full system (Eq. 2), we confirmed that Eqs. 5 and 7

approximate the steady state of the system very well as long as

complex formation is sufficiently strong.

Equation 7 describes a threshold-linear response with a switch

from no expression to linear expression at S = 1. Thus, for equal

inhibition of both mRNAs (a= 1), each mRNA behaves similar to

the case where a single mRNA is strongly inhibited in a threshold-

linear manner by a small RNA [7,9] or a miRNA [15].

sRNA-mediated co-regulation can synchronize gene
expression thresholds despite different affinities for
individual mRNAs

To analyze the parameter sensitivity of mRNA co-regulation, it

is instructive to analyze the remaining fraction of active mRNA (9)

f ~
½mi�

vsyn,mi

�
kdeg,mi

The free mRNA concentration in the absence of sRNA equals

[mi] = vsyn,mi/kdeg,mi. Thus, the remaining fraction of active

mRNA quantifies the percent inhibition of each mRNA by the

sRNA. Plotting f as a function of the stimulus S (Fig. 2) yields

doubly normalized dose-response curves fully characterizing

mRNA regulation in terms of the constants a and b (Eq. 5). In

biological terms, the stimulus S may correspond to alterations in

the sRNA transcription rate (vsyn,s).

For equal inhibition strength (a= 1), the mRNAs show perfect

co-regulation, since the dose-response curves completely overlap

regardless of the synthesis ratio b (Fig. 2 A, B, C; Eq. 7). Unequal

inhibition strength (a?1) results in preferential suppression of the

high-affinity mRNA. Nevertheless, the gene expression thresholds

of the system respond in a sub-sensitive manner to changes in a,

thus supporting that the system favors synexpression: The stimuli

of 10% or 50% mRNA expression (dashed horizontal lines in Fig. 2

A, B, C) can be used to quantify threshold positions in a robust

manner. Even if strong affinity differences are allowed (a#100)

these threshold measures differ less than two-fold between the two

mRNAs in most cases, and the ratio never exceeds a factor of 5 in

Figs. 2 A, B, C. Thus, the thresholds of the sRNA circuit are even

less parameter-sensitive than the thresholds of the cooperative

switch with regulator depletion (Fig. 1C). Therefore, repression of

the two mRNA typically occurs at very similar sRNA concentra-

tions. Moreover, an exclusive expression regime for the low-

affinity mRNA (‘sequential regulation’) can only be established for

very large affinity differences (a$100).

In the context of stress responses, it is most likely the all-or-none

transition from no expression to a significant level that matters. In

the following, we will therefore use the stimuli of 10% mRNA

expression to systematically analyze alignment in this lower part of

the dose-response. Synchronous switching is comprehensively

quantified in Fig. 2D using the logarithmic difference between the

10% stimulus levels (S10) of both mRNAs (10).

threshold ratio~log2

S10(m1)

S10(m2)

� �

Alterations in the parameters a and b generally induce sub-

sensitive changes in the threshold ratio, confirming that synchro-

nous switching is a robust property of the system. Threshold de-

synchronization is restricted to the upper-right region of the

heatmap where the inhibition strength a and the synthesis ratio b
are large (Fig. 2C and D). In this non-robust regime a highly

abundant weak affinity mRNA and a low abundance high affinity

mRNA coexist. Once the sRNA concentration is too low to inhibit

both mRNAs (i.e., if S,1), the high affinity mRNA pulls the

regulator away from the low affinity mRNA. Thus, the low affinity

mRNA starts to be freed from the sRNA, while the high affinity

mRNA is still subject to inhibition, giving rise to two distinct

thresholds (dashed lines in Fig. 2C). It should, however, be noted

that the thresholds still desynchronize in a sublinear manner even

in this most sensitive regime.

Besides transcriptional induction of the sRNA, the circuitry in

Fig. 1 may also be controlled by alterations in the expression of

one or both mRNAs, raising the question of whether synchronous

switching is maintained under these conditions. The dose-response

curves in Fig. 2 are based on the assumption that a and b are

constant, and therefore continue to hold for co-linear regulation of

both mRNA transcription rates (vsyn,s = const.; vsyn,m2 = b N vsyn,m1

with b= const.). Thus, a constitutively expressed sRNA synchro-

nizes gene expression thresholds arising from transcriptional co-

regulation of the two mRNAs. Moreover, parameter-independent

coordinated switching is also maintained for selective transcrip-

tional regulation of one mRNA (e.g., vsyn,s = constant; vsyn,m1 =

constant; vsyn,m2?const; Protocol S2). This is due to the fact that

high-affinity sRNAs serve as push-pull devices that couple the

expression of an unregulated target mRNA with that of a

regulated target mRNA. For equal affinity of both mRNAs

(a= 1; Eq. 7), the strength of this push-pull effect can be quantified

by calculating the gain of the free m1 concentration with respect to

the synthesis rate (11)

G~
d ln(½m1�)

d ln(vsyn,m2
)
~

vsyn,m2

½m1�
: d½m1�
dvsyn,m2

~
1

1z1=b
: 1

1=S{1

Thus, for the case where m2 transcription is regulated, the

expression of m1 can respond infinitely strong if the system is close

to the threshold (S<1). The effect is enhanced if m2 is more

abundant than m1 (b.1). The former condition explains our

observation that gene expression thresholds are coupled, while the

upper parts of the dose-response curves are less well coordinated.

Taken together, we comprehensively characterized the param-

eter space to show a shared sRNA establishes synchronous gene

expression thresholds irrespective of the mode of transcriptional

regulation in the circuit. Numerical simulations confirm the

synchronization effect, but also reveal that the effect is less

pronounced if the low-affinity mRNA binds too weakly to the

sRNA (non-stoichiometric mode of inhibition): in this case, large

sRNA concentrations are required to fully repress the low-affinity

mRNA, and, as a result, the threshold ratio would be higher than

predicted by the analytical approximation.

Multi-Target sRNA Regulation
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sRNA-mediated co-regulation may convert threshold-
linear mRNA dose-response curves into a very steep all-
or-none switch

Our simulations in Fig. 2B revealed that the low-affinity mRNA

can exhibit an extremely steep dose-response curve for b= 0.1 and

a$10. To understand this effect intuitively, we will analyze the

limiting case of strong affinity differences (a&1) in the following. The

steady state solution of the low-affinity mRNA (Eq. 5) becomes (12)
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Figure 2. sRNA-mediated co-regulation can synchronize gene expression thresholds despite different affinities for individual
mRNAs. (A) Steady state dose-response curves of mRNA expression for equal synthesis rates of both mRNAs (b= 1). The remaining fraction of active
mRNA species (Eq. 9) is shown as a function of the normalized sRNA synthesis rate (stimulus S; Eq. 8). The dose-response curves of the two mRNAs
completely overlap if both mRNAs are inhibited with the same efficiency (a= 1; Eq. 6; black line), while they diverge for increasingly different inhibition
strengths (a= 10; a= 100). According to Eq. 5, the system behavior is solely determined by the lumped parameters a and b. (B) and (C) Steady state dose-
response curves of mRNA expression (same as in panel A) for unequal synthesis rates of both mRNAs (b= 0.1 or b= 10; cf. Eq. 4). (D) Gene expression
threshold synchronization occurs over a broad range of kinetic parameters. The log2 threshold ratio (Eq. 10) was calculated for varying mRNA inhibition
strength (a) and synthesis ratios (b) using Eq. 5. Thresholds were calculated using the 10% stimulus levels (S10, cf. horizontal green line in panels A–C),
and divided to calculate the threshold ratio (Eq. 10). Blue areas in the heatmap reflect synchronous switching of both mRNAs.
doi:10.1371/journal.pone.0042296.g002
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The behavior of the low-affinity species m1 is governed by the terms

T1 and T2. For low stimuli, the term T1 dominates, and m1 will not

be significantly affected by sRNA-mediated regulation, .i.e., (13)

½m1�&
vsyn,m1

kdeg,m1

: 1{
1

2
: T1zDT1Dð Þ

� �
~
z}|{T1v0

%hbrace=t
vsyn,m1

kdeg,m1

In molecular terms, this regime can be considered to represent

sequestration of the sRNA by the high abundance/high-affinity

species m2. As the stimulus increases, sequestration is less efficient

and m1 is subject to inhibition as well (term T2 dominates). Thus,

sequestration of the sRNA by m2 shifts the onset of m1

downregulation to higher stimulus levels. Since complete inhibition

of both mRNAs is fixed to S = 1, a small fold-change in the input S

may be sufficient to switch m1 from low to high levels, indicating a

strong increase in ultrasensitivity.

Under the assumption that a&1, we can estimate the onset of

m1 downregulation by setting T1 = T2<0, and solving for S. One

obtains (14)

Sonset&
1

1zb

Thus, the larger the expression level of the high affinity mRNA

(i.e., the smaller b), the larger the shift in the onset and the more

pronounced ultrasensitivity of m1. For very low b, Sonset

approaches the stimulus level where the sRNA concentration

equals the sum of mRNA concentrations (Sonset<1), indicating a

perfect all-or-none switch. We have thus shown that the switching

performance of a threshold-linear sRNA system can be strongly

enhanced by the presence of a high affinity competitor, which may

either represent another target mRNA or a binding decoy.

Equation 14 represents the extreme case of very large affinity

differences (a&1). In Fig. 2A, we see that enhancement of

ultrasensitivity is already observed for moderate values of a and b,

although the effects are less pronounced in this intermediate

parameter regime. For example, the estimated Hill coefficient as a

measure of ultrasensitivity already approaches nH<6 for a ten-fold

affinity difference of the two mRNAs (a= 10 and b= 0.1). For

comparison, one estimates nH<2 in the single-target case.

Very strong affinity differences between the two mRNAs may

imply that the limit of strong binding may no longer hold for the

low-affinity mRNA. We therefore performed numerical simula-

tions under the assumption that the low-affinity mRNA no longer

shows a threshold-linear response in the single target case (i.e.,

does not follow a purely stoichiometric mode of inhibition).

Importantly, the presence of a high-affinity competitor enhanced

ultrasensitivity under these conditions as well (not shown).

To conclude, co-regulation by a shared sRNA gives rise to

particularly interesting dynamic behavior if a high-affinity, high-

abundance mRNA and a low-affinity/low-abundance mRNA co-

exist. In this scenario, co-regulation induces robust synexpression

and also enhances ultrasensitivity of the low-affinity mRNA

(Fig. 2B).

Regulation by a shared sRNA synchronizes the temporal
induction of mRNA expression

Our analyses in Fig. 1 indicated that regulator depletion and

stoichiometric coupling effects favor synexpression of two mRNAs.

Since stoichiometric depletion effects should also occur under pre-

steady state conditions, we numerically analyzed whether sRNAs

synchronize the temporal dynamics of gene expression as well. For

simplicity, the analysis was restricted to a reduced model

previously introduced by others [9,13] (15)
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Here, mRNA-sRNA complex formation is assumed to be

irreversible owing to high affinity and/or rapid decay of the

complex. Numerical analyses of temporal RNA expression were

performed to confirm that sRNA-mediated regulation synchro-

nizes the temporal dynamics of gene expression (Fig. 3). We

assumed step-like alterations of mRNA or sRNA synthesis rates;

these simulations reflect initiation or termination of physiological

stress condition where gene expression responses are regulated by

altering mRNA or sRNA transcription [2,25].

Upon step-like upregulation of both mRNA synthesis rates,

while sRNA synthesis rate remained constant (at a non-zero value),

the multi-target system behaved similarly to the single-target case

[7,8]; sRNA-mediated regulation establishes a delay that equals

the waiting time required to deplete the initial sRNA pool (Fig. 3A,

left). The duration of the delay phase was exactly the same for both

mRNAs despite differences in sRNA affinity and/or expression

levels, implying that the onset of mRNA expression is always

synchronized. This has important ramifications for synchronizing

the expression of mRNAs whose synthesis rates increase in a

temporally sequential manner (cf. Fig. 3E and below).

When comparing systems with and without sRNA-mediated

regulation, we observe that sRNA regulation can synchronize

mRNA accumulation beyond the delay phase as well (Fig. 3A,

left). In the sRNA-less system (dashed lines), the accumulation of

mRNA is solely determined by mRNA half-lives [42], implying

that the short-lived mRNA accumulates faster. In the sRNA

system, the difference in mRNA response times can be less than

the difference between the half-lives (Fig. 3A, solid lines). This

synchronization effect is due to opposite effects on the two

mRNAs: Accumulation of the short-lived, high affinity mRNA is

slowed down relative to the sRNA-less system (red solid line), since

sRNA-mediated degradation efficiently suppresses mRNA accu-

mulation at early (but not late) time points. The long-lived, low

affinity mRNA responds more gradually to sRNA-mediated

degradation enhancement; the net effect is an increased apparent

mRNA turnover rate and thus a shorter response time (blue solid

line). We conclude that sRNA-mediated regulation promotes

synchronization; it will be shown below that the synchronization

effect is particularly pronounced if short-lived mRNA has higher

affinity for the sRNA (as assumed in Figs. 3A and B).

Upon coordinated downregulation of both mRNA synthesis

rates, we observe a beneficial effect of sRNA-mediated regulation

as well (Fig. 3A, right): In the sRNA system, both mRNAs are

degraded faster than expected from their half-lives, and this agrees

well with the previous observation that sRNA regulation speeds up

mRNA downregulation in the single target case [7,8]. In the multi-

target case, this acceleration is beneficial for synchronization and

we observe an overlay of three effects: Firstly, enhanced

degradation by the sRNA reduces the absolute difference between

mRNA time courses, and thereby establishes synchronization.

Secondly, once the short-lived, high-affinity sRNA declined to low
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levels, the sRNA is redistributed to the low-affinity, long-lived

mRNA, thereby establishing a coupling effect. Thirdly, mRNA

expression is synchronously and completely shut-off once the free

sRNA regulator starts to accumulate; this sharpens the decay when

compared to exponential kinetics of the sRNA-less system, and

further promotes synchronization.

The opposite regulatory case of step-like sRNA synthesis with

constant synthesis of both mRNAs is shown in Fig. 3B. We observe

similar effects to the case where the mRNA synthesis is regulated

(Fig. 3A): Upon a step-like downregulation of the sRNA synthesis,

a common delay period is established for both mRNAs (Fig. 3B,

left). However, the following accumulation of both mRNAs is

solely regulated by their half-life times; thus, sRNA regulation is

not beneficial, simply because sRNA is not expressed at all in this

scenario. Upon the step-like upregulation of the sRNA synthesis

rates both mRNAs are rapidly and synchronously down-regulated

(Fig. 3B, right); this behavior is reminiscent of the corresponding

scenario in Fig. 3A (right), and arises from degradation enhance-

ment and a sharp shut-off once the sRNA is present in excess.

Summarizing both modes of regulation (Fig. 3A and B), our

numerical analyses suggest that three simple rules govern gene

expression dynamics of the sRNA circuit: (i) Stoichiometric

coupling establishes the same waiting time for all mRNAs upon

a shift from no to significant mRNA expression. (ii) The

subsequent increase in mRNA species is aligned when the sRNA

is further expressed. (iii) The transition from high to no mRNA

expression can be efficiently synchronized due to a combination of

enhanced degradation and strong stoichiometric inhibition.

To confirm that synchronous rise and shut-down of mRNAs

(properties ii and iii) are robust features of the system, we

Figure 3. Regulation by a shared sRNA synchronizes the temporal induction of mRNA expression. (A) and (B) Dynamics of mRNA
accumulation in response to step-like changes in both mRNA synthesis rates (A) or a step-like change in the sRNA synthesis rate (B). Time-dependent
changes in the mRNA or sRNA synthesis rates (vsyn) are depicted on the top. The solid lines correspond to the sRNA circuit, while the dashed lines
depict the behavior of the corresponding sRNA-less system. See Eq. 15 for model equations and Protocol S3 for kinetic parameters. (C) and (D)
Synchronous temporal switching occurs mostly independent of kinetic parameters. Response time alignment in the sRNA circuit was compared to
the corresponding sRNA-less system using the synchronization factor (Eq. 16). Synchronization factors smaller than unity indicate that sRNA-mediated
regulation enhances synchrony in mRNA expression. Synchronization was analyzed as a function mRNA degradation rates and the relative inhibition
strength of mRNAs (a0 = kon,1/kon,2). The heatmaps show simulation results for a regulatory scenario where a coordinate, step-like increase (C) or
decrease (panel D) in both mRNA synthesis rates is accompanied by a step-like change in the sRNA synthesis rate in the opposite direction; this
counter-regulation assumption was necessary to eliminate delay phases, and to obtain the same steady states in sRNA and sRNA-less systems.
Qualitatively similar results are obtained for coordinate regulation of mRNA (but not sRNA) synthesis rates. See Eq. 15 for model equations and
Protocol S3 for kinetic parameters. (E) Regulation by a shared sRNAs establishes a delay frame for mRNA induction. Multiple mRNA synthesis rates
sequentially increase at different times in a step-like manner (top). Synchronous accumulation of mRNA species occurs upon depletion of the sRNA
pool. Late mRNAs whose synthesis starts after the delay period respond immediately due to lack of sRNA buffer (dashed orange line). See Eq. 15 for
model equations and Protocol S3 for kinetic parameters.
doi:10.1371/journal.pone.0042296.g003
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systematically analyzed the parameter space for these scenarios

(Fig. 3C and D). We compare sRNA and sRNA-less systems by

calculating a synchronization factor (16)

synchronization factor~abs
t50 m

reg
1

� �
{t50 m

reg
2

� �
t50 m

unreg
1

� �
{t50 m

unreg
2

� � !

Here, t50 equals the time point where the mRNA concentration

has reached half of the difference between initial and final steady

states value, and thus measures the response time. The abbrevi-

ations mi
reg and mi

unreg refer to the sRNA circuit and to the

corresponding sRNA-less system, respectively. The synchroniza-

tion factor thus quantifies synchrony as the absolute difference

between the response times of m1 and m2, and compares sRNA

and sRNA-less systems by taking the ratio. Low values of the

synchronization factor (,1) imply that sRNA-mediated regulation

promotes synchrony of mRNA expression.

For mRNA upregulation kinetics beyond the delay phase, we

observe that sRNA-mediated regulation synchronizes expression

over a broad range of parameter values (Fig. 3C). As explained in

the context of Fig. 3A, the synchronization effect is particularly

pronounced if the short-lived mRNA has higher affinity for the

sRNA (upper-left and lower-right quadrants in Fig. 3C). Regula-

tion by sRNAs is even more beneficial in coordinating mRNA

downregulation, since strong alignment of mRNA time courses is

observed for almost all mRNA half-lives and affinity differences

(Fig. 3D). Adverse effects of sRNA regulation are restricted to a

narrow corridor, where mRNA half-life times are nearly equal and

the sRNA-less case already shows pronounced synchrony.

For sRNAs to be effective in synchronizing the temporal

dynamics of gene expression in a physiological setting, they should

be able to coordinate mRNAs that are induced early and late

during cellular stress responses. Numerical simulations were thus

performed under the assumption that mRNA synthesis rates

sequentially increase in a step-like manner at different times

(Fig. 3E). Indeed, sRNA-mediated regulation synchronizes the

induction of constitutively transcribed as well as early and late

induced mRNAs by establishing a fixed delay time (blue lines and

orange solid line in Fig. 3E). However, the synchronization

capacity of the system is limited to the time point where the excess

sRNA pool is fully degraded; a very late mRNA whose

transcription starts afterwards shows no synchronization effect

but its accumulation starts without delay (orange dashed line in

Fig. 3E).

Taken together, we conclude that shared sRNAs improve

temporal synchronization of gene expression by a combination of

stoichiometric inhibition and degradation enhancement effects.

Discussion

Single-input modules (SIMs), where a common regulator

controls multiple targets, may exert synexpression or hierarchical

prioritization (Fig. 1A). Here, we show that SIM architectures

differ strongly in their parameter sensitivity, implying that subtle

regulatory differences intrinsically favor synexpression or prioriti-

zation. We show that post-transcriptional co-regulation of two

mRNAs by a shared sRNA is particularly parameter-insensitive,

and thus strongly promotes synexpression without a need for

parameter fine-tuning. We numerically confirmed that similar

conclusions hold true for the case where more than two mRNAs

are strongly regulated by a shared sRNA (not shown). Our results

do not contradict previous reports showing that sRNAs can

establish hierarchical prioritization [11]: however, we conclude

that efficient prioritization would require extremely different

affinities for individual mRNAs, at least in the case of high affinity

binding.

Small RNAs were previously shown to optimize cellular stress

responses by establishing threshold-linear behavior and temporal

switching [7,9]. Cellular stress responses often involve the

expression of multiple genes. Our present analyses suggest that

sRNAs may be well suited to coordinate the expression of

functionally related stress response genes: strong binding effec-

tively suppresses all stress genes under normal conditions, while

allowing for highly synchronized all-or-none induction above a

critical threshold. Furthermore sRNAs are able to tightly

synchronize the temporal induction of multiple genes. Coordinat-

ed expression is, however, most pronounced in the regime where

the sRNA transcription rate is close to the sum of mRNA

transcription rates (near-threshold regime). Thus coordinated

expression over a broad expression range by a sRNA is a non-

robust property of the system and requires fine-tuning of

parameter values. This implies that sRNA-mediated regulation

may, for example, not be advantageous to coordinate the levels of

constitutively expressed protein complex subunits, without fine-

tuning of binding affinities to the sRNA. Previous modeling studies

showed that sRNA systems may show large fluctuations in the

near-threshold regime [10]. Assuming that noise mostly arises at

the level of transcription and that sRNA-mediated regulation is

fast, coupling will ensure that functionally related mRNAs

fluctuate in a coordinated manner, thus preventing imbalances

in cellular regulation.

Two central and experimentally testable predictions can be

derived from our model: (i) mRNA pools targeted by the same

sRNA may be coupled by sequestration effects, i.e., transcriptional

upregulation of one target mRNA should affect the expression of

other targets (Eq. 11). (ii) multiple target mRNAs should exhibit

synchronous thresholds, independent of precise sRNA binding

affinities. The first prediction is well supported by the existing

literature, since mRNA targets of bacterial small RNAs and

eukaryotic miRNAs appear to communicate with each other by

sequestration effects [9,43]. The second model prediction

concerning synchronized gene expression thresholds by post-

transcriptional regulation could be verified experimentally by

measuring the expression of small RNA targets with different

affinities for the common small RNA regulator. Recently work by

Hao et al [44] showed that affinities for small RNA regulators and

therefore also repression strength can be gradually tuned by

sequence alterations in the complementary region of the mRNA

and the small RNA. The existence of synchronized temporal

thresholds could be confirmed experimentally by measuring

temporal kinetics of target expression responses, e.g., after

induction of stress. Such temporal responses are already available

for multiple targets of the small RNA Spot42 [29]. However, the

proposed synchrony effect would require simultaneous analysis of

all target mRNAs in the same biological sample.

Our analyses revealed that coupling of mRNA pools by sRNA

sequestration effects is the molecular mechanism underlying robust

synchronization of mRNA thresholds. Other post-transcriptional

regulators like microRNAs or RNA-binding proteins are not

degraded alongside with their targets, and thus employ a more

catalytic mode of action when compared to bacterial sRNAs. Our

unpublished observations suggest that coupling effects are also

possible in catalytic system, although the phenomena are less

pronounced than in Fig. 2. Accordingly, degradation of multiple

proteins by a common degrading activity was recently shown to

establish co-regulation of protein levels [45]. Similar to the

concepts we present here, co-regulation was especially pronounced
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when the degrading enzyme was close to its maximum processing

capacity (i.e., close to the threshold). We speculate that threshold

synchronization by sequestration may synergize with other

synchronization mechanisms. For example, it has been show that

positive feedback amplifying an upstream regulator synchronizes

downstream events in the cell cycle [46]. It is well possible that

relatively weak positive feedback may be sufficient to perfectly

align pre-synchronized sRNA multi-target systems.

In larger networks, sequestration-based coupling may profound-

ly affect the system dynamics, as previously discussed for signaling

cascades [47,48,49,50,51,52]. We expect the same to be true for

sRNA networks; for example, a hidden positive feedback and

bistability can arise if our minimal reaction network is extended

such that m1 induces the transcription of m2 (Fig. 4A; green arrow)

[48]: increasing m2 levels reduce the amount of sRNA available

for inhibition of m1, thus further enhancing m2 expression in a

positive feedback loop. Similarly, negative feedback can arise if m1

represses the transcription of m2 (red arrow). Strong negative

feedback is known to render biochemical networks insensitive to

perturbations [53,54,55]. Accordingly, our numerical simulations

reveal that the negative feedback model exhibits adaptation which

renders the steady state level of m1 partially insensitive to the m1

transcription rate (Fig. 4B). As expected, no adaptation is observed

if sequestration-based feedback regulation by the shared sRNA is

removed from the system (Figs. 4B, D, E). We conclude that the

synchronization effects discussed in the context of Eq. 10 are

sufficient to establish strong feedback regulation in larger post-

transcriptional regulatory networks. Sequestration-based negative

feedback may contribute to robustness observed in miRNA

circuitries [56] which, in one case, was attributed to a single

miRNA targeting multiple mRNAs [57]. Detailed simulations of

complex post-transcriptional circuitries and quantitative experi-

mental analyses are required to further define the roles of post-

transcriptional feedback and feedforward loops in genetic robust-

ness.
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Figure 4. Feedback and adaptation arising from regulation by a shared sRNA. (A) Minimal feedback motif. Feedback regulation arises if the
shared sRNA scheme in Fig. 1 is extended such that m1 induces or represses transcription of m2 (induction: positive feedback; repression: negative
feedback); altered levels of m2 in turn control the amount of sRNA available for inhibition of m1, thus synchronizing the mRNA pools and closing the
feedback loop (see text). (B) Adaptation arising from negative feedback regulation. Numerical simulations were performed using the model depicted
in (A) assuming m1-mediated repression of m2 transcription (red arrow). The full system (blue line) shows adaptation to a step-like, 2-fold increase in
the m1 synthesis rate at t = 0 (vsyn,m1). In contrast, no adaptation is observed if the feedback loop is broken by removing transcriptional repression of
m2 (‘open loop I’, panel D) or shared sRNA regulation (‘open loop II’, panel E). Parameters were chosen such that initial m1 levels of all topologies are
equal (see Protocol S4).
doi:10.1371/journal.pone.0042296.g004

Multi-Target sRNA Regulation

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e42296



References

1. Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr

Opin Microbiol 10: 134–139.
2. Gottesman S (2005) Micros for microbes: non-coding regulatory RNAs in

bacteria. Trends Genet 21: 399–404.
3. Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small

regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17: 2374–

2383.
4. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi

enzyme complex. Science 297: 2056–2060.
5. Babitzke P, Baker CS, Romeo T (2009) Regulation of translation initiation by

RNA binding proteins. Annu Rev Microbiol 63: 27–44.

6. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006)
Relief of microRNA-mediated translational repression in human cells subjected

to stress. Cell 125: 1111–1124.
7. Legewie S, Dienst D, Wilde A, Herzel H, Axmann IM (2008) Small RNAs

establish delays and temporal thresholds in gene expression. Biophys J 95: 3232–
3238.

8. Levine E, Hwa T (2008) Small RNAs establish gene expression thresholds. Curr

Opin Microbiol 11: 574–579.
9. Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of

gene regulation by small RNA. PLoS Biol 5: e229.
10. Mehta P, Goyal S, Wingreen NS (2008) A quantitative comparison of sRNA-

based and protein-based gene regulation. Mol Syst Biol 4: 221.

11. Mitarai N, Andersson AM, Krishna S, Semsey S, Sneppen K (2007) Efficient
degradation and expression prioritization with small RNAs. Phys Biol 4: 164–

171.
12. Mitarai N, Benjamin JA, Krishna S, Semsey S, Csiszovszki Z, et al. (2009)

Dynamic features of gene expression control by small regulatory RNAs. Proc
Natl Acad Sci U S A 106: 10655–10659.

13. Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, et al. (2007)

Regulation of gene expression by small non-coding RNAs: a quantitative view.
Mol Syst Biol 3: 138.

14. Zhdanov VP (2011) Kinetic models of the interference of gene transcription to
ncRNA and mRNA. Chaos 21: 023135.

15. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, et al. (2011)

MicroRNAs can generate thresholds in target gene expression. Nature Genetics
43, 854–859.

16. Beisel CL, Storz G (2010) Base pairing small RNAs and their roles in global
regulatory networks. FEMS Microbiol Rev 34: 866–882.

17. Maki K, Uno K, Morita T, Aiba H (2008) RNA, but not protein partners, is
directly responsible for translational silencing by a bacterial Hfq-binding small

RNA. Proc Natl Acad Sci U S A 105: 10332–10337.

18. Morita T, Mochizuki Y, Aiba H (2006) Translational repression is sufficient for
gene silencing by bacterial small noncoding RNAs in the absence of mRNA

destruction. Proc Natl Acad Sci U S A 103: 4858–4863.
19. Kawamoto H, Koide Y, Morita T, Aiba H (2006) Base-pairing requirement for

RNA silencing by a bacterial small RNA and acceleration of duplex formation

by Hfq. Mol Microbiol 61: 1013–1022.
20. Argaman L, Altuvia S (2000) fhlA repression by OxyS RNA: kissing complex

formation at two sites results in a stable antisense-target RNA complex. J Mol
Biol 300: 1101–1112.

21. Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense
RNAs. Curr Opin Microbiol 10: 102–109.

22. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.

23. Soper TJ, Woodson SA (2008) The rpoS mRNA leader recruits Hfq to facilitate
annealing with DsrA sRNA. RNA 14: 1907–1917.

24. Fender A, Elf J, Hampel K, Zimmermann B, Wagner EG (2010) RNAs actively
cycle on the Sm-like protein Hfq. Genes Dev 24: 2621–2626.

25. Dühring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA

regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A
103: 7054–7058.

26. Papenfort K, Vogel J (2009) Multiple target regulation by small noncoding
RNAs rewires gene expression at the post-transcriptional level. Res Microbiol

160: 278–287.

27. Lease RA, Cusick ME, Belfort M (1998) Riboregulation in Escherichia coli:
DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad

Sci U S A 95: 12456–12461.
28. Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on

global iron use in Escherichia coli. J Bacteriol 187: 6962–6971.
29. Beisel CL, Storz G (2011) The base-pairing RNA spot 42 participates in a

multioutput feedforward loop to help enact catabolite repression in Escherichia

coli. Mol Cell 41: 286–297.
30. Papenfort K, Bouvier M, Mika F, Sharma CM, Vogel J (2010) Evidence for an

autonomous 59 target recognition domain in an Hfq-associated small RNA. Proc
Natl Acad Sci U S A 107: 20435–20440.

31. Sharma CM, Darfeuille F, Plantinga TH, Vogel J (2007) A small RNA regulates

multiple ABC transporter mRNAs by targeting C/A-rich elements inside and

upstream of ribosome-binding sites. Genes Dev 21: 2804–2817.

32. Gogol EB, Rhodius VA, Papenfort K, Vogel J, Gross CA (2011) Small RNAs

endow a transcriptional activator with essential repressor functions for single-tier

control of a global stress regulon. Proc Natl Acad Sci U S A 108: 12875–12880.

33. Zhdanov VP (2011) Kinetic models of gene expression including non-coding

RNAs. Physics Reports-Review Section of Physics Letters 500: 1–42.

34. Zhdanov VP (2009) Conditions of appreciable influence of microRNA on a large

number of target mRNAs. Molecular bioSystems 5: 638–643.

35. Niehrs C, Pollet N (1999) Synexpression groups in eukaryotes. Nature 402: 483–

487.

36. Gurdon JB, Dyson S, St Johnston D (1998) Cells’ perception of position in a

concentration gradient. Cell 95: 159–162.

37. Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO (2008) Diverse

RNA-binding proteins interact with functionally related sets of RNAs, suggesting

an extensive regulatory system. PLoS Biol 6: e255.

38. Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V (2005) Design

principles of a bacterial signalling network. Nature 438: 504–507.

39. Lovdok L, Bentele K, Vladimirov N, Muller A, Pop FS, et al. (2009) Role of

translational coupling in robustness of bacterial chemotaxis pathway. PLoS Biol

7: e1000171.

40. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, et al. (2004) Just-in-

time transcription program in metabolic pathways. Nat Genet 36: 486–491.

41. Legewie S, Herzel H, Westerhoff HV, Bluthgen N (2008) Recurrent design

patterns in the feedback regulation of the mammalian signalling network. Mol

Syst Biol 4: 190.

42. Alon U (2007) Network motifs: theory and experimental approaches. Nature

reviews Genetics 8: 450–461.

43. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis:

the Rosetta Stone of a hidden RNA language? Cell 146: 353–358.

44. Hao Y, Zhang ZJ, Erickson DW, Huang M, Huang Y, et al. (2011) Quantifying

the sequence-function relation in gene silencing by bacterial small RNAs.

Proceedings of the National Academy of Sciences of the United States of

America 108: 12473–12478.

45. Mather WH, Cookson NA, Hasty J, Tsimring LS, Williams RJ (2010)

Correlation resonance generated by coupled enzymatic processing. Biophysical

journal 99: 3172–3181.

46. Santos SD, Ferrell JE (2008) Systems biology: On the cell cycle and its switches.

Nature 454: 288–289.

47. Bluthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, et al. (2006)

Effects of sequestration on signal transduction cascades. The FEBS journal 273:

895–906.

48. Legewie S, Bluthgen N, Herzel H (2006) Mathematical modeling identifies

inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS

computational biology 2: e120.

49. Legewie S, Schoeberl B, Bluthgen N, Herzel H (2007) Competing docking

interactions can bring about bistability in the MAPK cascade. Biophysical

journal 93: 2279–2288.

50. Ventura AC, Jiang P, Van Wassenhove L, Del Vecchio D, Merajver SD, et al.

(2010) Signaling properties of a covalent modification cycle are altered by a

downstream target. Proceedings of the National Academy of Sciences of the

United States of America 107: 10032–10037.

51. Salazar C, Hofer T (2009) Multisite protein phosphorylation–from molecular

mechanisms to kinetic models. The FEBS journal 276: 3177–3198.

52. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and

bistability arising from multisite phosphorylation in protein kinase cascades. The

Journal of cell biology 164: 353–359.

53. Becskei A, Serrano L (2000) Engineering stability in gene networks by

autoregulation. Nature 405: 590–593.

54. Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, et al. (2011)

Strong negative feedback from Erk to Raf confers robustness to MAPK

signalling. Molecular systems biology 7: 489.

55. Paulsen M, Legewie S, Eils R, Karaulanov E, Niehrs C (2011) Negative feedback

in the bone morphogenetic protein 4 (BMP4) synexpression group governs its

dynamic signaling range and canalizes development. Proceedings of the National

Academy of Sciences of the United States of America 108: 10202–10207.

56. Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA

imparts robustness against environmental fluctuation during development. Cell

137: 273–282.

57. Staton AA, Knaut H, Giraldez AJ (2011) miRNA regulation of Sdf1 chemokine

signaling provides genetic robustness to germ cell migration. Nature genetics 43:

204–211.

Multi-Target sRNA Regulation

PLOS ONE | www.plosone.org 11 August 2012 | Volume 7 | Issue 8 | e42296


