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Introduction: Endoscopy is an important tool for the diagnosis of early gastric cancer.
Therefore, a combination of artificial intelligence and endoscopy has the ability to increase
the speed and efficiency of early gastric cancer diagnosis. YOU ONLY LOOK ONCE
(YOLO) is an advanced object detection depth neural network algorithm that has not been
widely used in gastrointestinal image recognition.

Objective: We developed an artificial intelligence system herein referred to as “EGC-
YOLO” for the rapid and accurate diagnosis of endoscopic images from early gastric
cancer.

Methods: More than 40000 gastroscopic images from 1653 patients in Yixing people’s
Hospital were used as the training set for the system, while endoscopic images from the
other two hospitals were used as external validation test sets. The sensitivity, specificity,
positive predictive value, Youden index and ROC curve were analyzed to evaluate
detection efficiencies for EGC-YOLO.

Results: EGC-YOLO was able to diagnose early gastric cancer in the two test sets with a
high superiority and efficiency. The accuracy, sensitivity, specificity and positive predictive
value for Test Sets 1 and 2 were 85.15% and 86.02%, 85.36% and 83.02%, 84.41% and
92.21%, and 95.22% and 95.65%, respectively. In Test Sets 1 and 2, the corresponding
Threshold-values were 0.02, 0.16 and 0.17 at the maximum of the Youden index. An
increase in Threshold-values was associated with a downward trend in sensitivity and
accuracy, while specificity remained relatively stable at more than 80%.
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Conclusions: The EGC-YOLO system is superior for the efficient, accurate and rapid
detection of early gastric cancer lesions. For different data sets, it is important to select the
appropriate threshold-value in advance to achieve the best performance of the EGC-
YOLO system.
Keywords: Early gastric cancer, YOLO, endoscopy, Convolutional neural network, artificial intelligence
INTRODUCTION

Gastric cancer is one of the most common malignant tumors in
the world, and the third leading cause of cancer-related death.
Nearly 1 million new cases and 783000 gastric cancer-related
deaths are reported each year (1, 2). The prognosis of patients with
gastric cancer depends on the stage of cancer, with patients with
advanced gastric cancer having poor prognosis. On the other
hand, the 5-year survival rate of patients with early gastric cancer
is more than 90%. This is because patients at the early stage can be
treated directly through endoscopic mucosal resection (EMR) or
endoscopic submucosal dissection (ESD). The operation is simple
and hardly impacts the quality of life of the patients (3–5).
Therefore, endoscopy is the standard method for early screening
of gastric cancer. However judging between benign and malignant
tissue under gastroscopy mainly depends on the diagnostic
expertise of endoscopic physicians, and inexperienced
endoscopic doctors often misdiagnose patients. Atrophic
gastritis is a precancerous state that gives rise to more than 95%
of gastric adenocarcinomas (6–8). The morphological features of
early gastric cancer are difficult to distinguish from atrophic
gastritis under white light endoscopy. Therefore, endoscopic
physicians need long-term specialized training and a wealth of
experience to correctly detect gastric cancer. Differences in
expertise among endoscopic physicians are responsible for the
unequal detection rates of early gastric cancer in different regions
and different levels of hospitals. As a result, improving the
efficiency of endoscopic diagnosis of early gastric cancer is the
most effective measure to reduce the mortality rates associated
with gastric cancer. Several endoscopic aids such as magnifying
gastroscopy, chromoendoscopy and narrow band imaging (NBI)
have been developed to improve the detection rate of early gastric
cancer (9–14). Recently, there has been great progress in image
recognition technology based on artificial intelligence (AI) and
machine learning, which has been increasingly used in image
recognition and auxiliary diagnosis in many fields of medicine.
These areas include the identification or classification of skin
cancer (15–17), radiation oncology (18–20), the diagnosis of
retinopathy (21–23), histological classification of pathological
biopsies (24–27), and the characterization of colorectal lesions.

Several multicenter studies using CNN to train and recognize
images of early gastric cancer have been conducted with
satisfactory results. However, in this study, we used the brand-
new YOLOv3 algorithm for training and testing. The algorithm
is a region-based convolution neural network characterized by
high speed, strong versatility and low background error detection
rate. We developed the EGC-YOLO diagnostic system based on
artificial intelligence by training more than 40000 gastroscopic
2

images to distinguish between early gastric cancer and benign
lesion. We then used endoscopic images obtained from other
databases to verify the performance of the diagnostic system, and
obtained good results. Our findings indicated that EGC-YOLO
has good potential for application in the intelligent diagnosis of
early gastric cancer.
MATERIALS AND METHODS

Equipment and Software Used
for the Study
Convolutional Neural Network(CNN) related development
software, PYTHON programming language, LINUX system,
GPU: NVIDIA RTX 2080TI+NVIDIA GTX 1080TI.

Data Collection and Grouping
The training set consisted of early gastric cancer cases with
endoscopic images along with pathological examination
confirming the diagnosis (endoscopic diagnosis of early gastric
cancer, pathological type of moderate + anisotropic hyperplasia,
severe anisotropic hyperplasia, intra-mucosal carcinoma) treated
at the Yixing People’s Hospital from 2019 to 2020. The control
group comprised of normal gastroscopic images taken by the
same endoscopic machine during the same period (with
pathological biopsy report supporting the endoscopic diagnosis),
and non-gastric cancer cases that could be easily confused with
early gastric cancer images, including (chronic superficial gastritis,
chronic atrophic gastritis, warty gastritis, gastric ulcer, acute
gastritis, erosive gastritis). A total of 1653 cases, involving
42,200 images of non-gastric cancer and 945 endoscopic images
of early gastric cancer were included in the training set.

The test set comprised of 280 early gastric cancer images and 77
non-gastric cancer images from the Second Affiliated Hospital of
SoochowUniversity, and159 early gastric cancer images and 77non-
gastric cancer images from Civil Aviation Hospital of Shanghai.

Construction of the EGC-YOLO Algorithm
We used the general architecture of YOLOv3, with DarkNet53 as
the backbone network and a three-layer spatial pyramid as neck
to increase detection accuracy. In the detection head, BCE Loss
was used as the target loss function, and a branch and loss
function specifically optimized for IoU was added to the original
YOLOv3. For the detection of early cancer, classification
accuracy was more important than the detection area, so we
set a larger weight for classification loss.

We used the Xavier initialization method to randomly
generate the network parameters so that the activation
January 2022 | Volume 12 | Article 815951

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yao et al. Diagnosis of EGC using EGC-YOLO
function inputs for each layer at the beginning of the training
phase were in a reasonable interval to ensure convergence speed.

Since our training data set was not as large as data in the
YOLOv3 network, training directly using the parameters
generated by the Xavier initialization method could have
resulted in over fitting. Consequently, we first pre-trained on
the image classification task of Image Net and the object
detection task of the COCO dataset to obtain the parameters
of the DarkNet53 backbone network. We then added a three-
layer pyramid detection neck and fine-tuned on the early cancer
data set. In order to match the training parameters with the early
cancer data set as closely as possible, we homogenized the images
from the Image Net and COCO datasets by using the mean and
variance of the early cancer training set.

In thefine tuningphase of the network, we used 640x640 images
as input and 64 images as a batch for one round of iteration. Due to
GPU memory limitation, a batch was divided into 32 divisions. A
total of 100 epochs were done, with the first 2 epochs using a cosine
learning rate of 0.01 as the warm-up training, and the learning rate
becoming 0.001 after the warm-up.
Frontiers in Oncology | www.frontiersin.org 3
We carried out data enrichment to make the data more
meaningful. Unlike normal image detection, gastroscopy
images do not have an inherent concept of top. Figure 1
shows the architecture and workflow of the EGC-YOLO system.

A barrier indication is the Threshold-value. When we enter a
specified threshold-value into the EGC-YOLO code, EGC-YOLO
will display potential areas with scores more than the threshold in
red on the screen to alert researchers that this region is suspected
of having early gastric cancer lesions. The findings are obtained by
comparing it to the green box specified by the manual box.
RESULTS

Construction of the Artificial Intelligence
Platform System and Image Processing
In order to effectively manage all training and test set data and
standardize all images, we created our own website and online
image processing tools. We used the tools to label and record the
coordinates of early gastric cancer sites for the uploaded images
FIGURE 1 | Architecture and workflow of the EGC-YOLO system. The target detection model was divided into three parts, the backbone, the bottleneck network,
and the detection head. The backbone network was responsible for the feature extraction of the image. 640x640x3 image raw input was transformed into 40x40x256
feature maps using 5 Resnet cell operations. The neck network was the feature fusion layer that used a three-layer spatial pyramid to fuse information with a large
receptive field to a network with a small receptive field. In particular, the 40x40x256 input was transformed into 20x20x512 and 10x10x1024 using two Resnet unit
operations, then 10x10x1024 was up-sampled to 20x20x256 using two layers of networks, and 20x20x512 features were stitched into 20x20x768 using another layer
of networks. Similarly, the 40x40x256 was also fused to the 20x20x256 features into 40x40x128. The detection head used the three spatial pyramid features exported
by the neck network to output the final target location.
January 2022 | Volume 12 | Article 815951
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to facilitate subsequent AI training. The platform webpage is
shown in Figures 2 and 3.

The number of all cases included in the study and the number
of valid training images for the three hospitals are presented
in Table 1.

Test Set 1 Results
The test took a total of 7.63 seconds to obtain the specific values
of TP, FP, TN, and FN under the corresponding Threshold-
values. The Threshold-values were set from 0.01 to 0.99. The
results of the first ten rows are shown in Table 2, in descending
order of the Youden index. When the Threshold-value was 0.02,
the maximum Youden index was 0.697727, the accuracy was
0.851541, the sensitivity was 0.853571, the specificity was
0.844156, and the positive predictive value was 0.952191.

Test Set 2 Results
The test took a total of 6.91seconds to obtain the specific values
of TP, FP, TN, and FN under the corresponding Threshold-
values. The Threshold-values for this test were taken as 99 values
Frontiers in Oncology | www.frontiersin.org 4
from 0.01 to 0.99. The results are listed in descending order of the
Youden index, and the first ten rows of the results are shown in
Table 3. When the Threshold-value was 0.16 and 0.17, the
maximum Youden index was 0.752267, the accuracy was
0.860169, the sensitivity was 0.830189, the specificity was
0.922078, and the positive predictive value was 0.956522.

The ROC curves for Test Set 1 and 2 with sensitivity and 1-
specificity are shown in Figure 4.

Threshold-Value
The correlation between the Threshold-value and sensitivity,
specificity, accuracy and Youden index are presented in
Figures 5 and 6. As the Threshold-value increased, there was a
tendency for the accuracy, sensitivity and Youden index values to
decrease significantly, while the specificity fluctuated between 0.8
and 1.0 in Test Set 1 and Test Set 2.

Our findings indicate that the YOLOv3 algorithm trained on
white light gastroscopy images can identify lesions and frame
suspicious lesions with high sensitivity and specificity. In
addition, the algorithm can simultaneously identify and frame
FIGURE 2 | A screenshot of the website database platform and online image annotation we created in this study. The yellow rectangular box shows the diagnosed
early gastric cancer lesion. The size and location (x, y, w, and h) of the selected site were displayed in real time on the right side of the image, while the type of lesion
(gastritis, early gastric cancer, progressive gastric cancer) of the selected site was annotated. The original information including source, size, format, and resolution is
displayed below the image.
January 2022 | Volume 12 | Article 815951
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FIGURE 3 | Online labeling of early gastric cancer lesions at 6 different sites.
TABLE 1 | Number of cases and images contributed by the three hospitals.

Hospital YXPH TSAH CAHOSH

Non-gastric cancer cases 1431 47 200
Non-gastric cancer images 42200 937 3457
Cases of early gastric cancer 222 48 47
Labeled early gastric cancer images 945 280 159
Frontiers in Oncology | www.frontiersin.org
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Yixing People’s Hospital (YXPH), the Second Affiliated Hospital of Soochow University (TSAH), Civil Aviation Hospital of Shanghai (CAHOSH).
TABLE 2 | The results of test set 1 showing the top 10 data in descending order of Youden index, with a Threshold-value range of 0.01 to 0.99, containing 99 values.

Threshold TP FP TN FN Accuracy Specificity Sensitivity Youden Index PPV

0.02 239 12 65 41 0.851541 0.844156 0.853571 0.697727 0.952191
0.04 218 7 70 62 0.806723 0.909091 0.778571 0.687662 0.968889
0.03 228 10 67 52 0.826331 0.870130 0.814286 0.684416 0.957983
0.05 210 7 70 70 0.784314 0.909091 0.750000 0.659091 0.967742
0.06 204 7 70 76 0.767507 0.909091 0.728571 0.637662 0.966825
0.08 198 6 71 82 0.753501 0.922078 0.707143 0.629221 0.970588
0.10 194 5 72 86 0.745098 0.935065 0.692857 0.627922 0.974874
0.07 201 7 70 79 0.759104 0.909091 0.717857 0.626948 0.966346
0.09 196 6 71 84 0.747899 0.922078 0.700000 0.622078 0.970297
0.11 191 5 72 89 0.736695 0.935065 0.682143 0.617208 0.974490
le 815951
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multiple suspicious lesions in a single image. This is significant
because multiple suspicious lesions in one gastroscopic image are
most commonly encountered in the clinic. EGC-YOLO provides
a more detailed zoning of each gastroscopy image, and each
image has several potential boxed areas. When different
Threshold-values are selected, the pre-selected boxes with
scores greater than the Threshold-value are displayed.
DISCUSSION

China has a large population that is increasingly choosing
gastroscopy as an annual medical checkup routine due to
increase in health awareness and the popularization of science.
This has helped in the early detection of gastric cancer, but has
also greatly increased the workload for endoscopists. The
training of qualified endoscopists takes a long time, making it
Frontiers in Oncology | www.frontiersin.org 6
even more difficult for a junior endoscopist to grow into an
endoscopist who can independently identify various types of
gastric lesions. This leads to the low rates of early gastric cancer
diagnosis observed in China. Therefore, there is need to
introduce powerful and efficient medical assistance systems to
help cope with the extremely heavy endoscopic workload, while
improving diagnostic efficiency and avoiding misdiagnosis.
Technologies such as artificial intelligence and CNN can cater
for this need and AI can be used in the field of capsule
endoscopy. The number of images extracted from the video
taken by capsule endoscopy is huge, with each patient capable of
producing 40,000 to 60,000 images. The analysis of these images
by professionals can be time-consuming. However, the use of AI
allows images of normal tissues to be automatically filtered out,
leaving images of suspicious lesions for further analysis. This
greatly improves the efficiency of analyzing the images while
reducing the workload of endoscopists.
TABLE 3 | The results of Test Set 2 showing the top 10 data in descending order of the Youden Index, with a Threshold-value range of 0.01 to 0.99 and a total
of 99 values.

Threshold TP FP TN FN Accuracy Specificity Sensitivity Youden Index PPV

0.16 132 6 71 27 0.860169 0.922078 0.830189 0.752267 0.956522
0.17 132 6 71 27 0.860169 0.922078 0.830189 0.752267 0.956522
0.19 129 5 72 30 0.851695 0.935065 0.811321 0.746386 0.962687
0.18 131 6 71 28 0.855932 0.922078 0.823899 0.745977 0.956204
0.11 139 10 67 20 0.872881 0.870130 0.874214 0.744344 0.932886
0.23 126 4 73 33 0.843220 0.948052 0.792453 0.740505 0.969231
0.24 126 4 73 33 0.843220 0.948052 0.792453 0.740505 0.969231
0.20 128 5 72 31 0.847458 0.935065 0.805031 0.740096 0.962406
0.12 138 10 67 21 0.868644 0.870130 0.867925 0.738055 0.932432
0.10 141 12 65 18 0.872881 0.844156 0.886792 0.730948 0.921569
0.30 122 3 74 37 0.830508 0.961039 0.767296 0.728335 0.976000
January 2
022 | Volume 12 | Artic
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FIGURE 4 | ROC curves for Test Set 1 and 2. (A) ROC curve for Test Set 1, with the horizontal coordinate 1-specificity and the vertical coordinate sensitivity, the
AUC is 0.8925; (B) ROC curve for Test Set 2, with the horizontal coordinate 1-specificity and the vertical coordinate sensitivity, the AUC is 0.9078.
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Several studies have demonstrated the effectiveness and great
potential of artificial intelligence in image recognition during
gastrointestinal endoscopy. For instance, Ken et al. (28) were
able to distinguish between gastric ulcers and gastric cancer by
training and testing more than 10,000 images of gastric cancer and
gastric ulcers. They used the SSD algorithm with a 16-layer neural
network, resulting in a sensitivity of 99% and a specificity of 93.3%.
On the other hand, a team led by Gregor (29) was able to detect
colon polyps by training 8641 labeled intestinal polyp images using
algorithms such as ResNet-50. They then tested 20 colonoscopy
videos, resulting in an accuracy of 96.4% and an area under the
ROC curve of 0.991. Another team led by Takumi Itoh (30) were
able to distinguish HP infections by using the GoogLeNet
algorithm to train and test 179 gastroscopy images, resulting in a
sensitivity of 86.7% and a specificity of 86.7%. Hiroya Ueyama
et al. (31) also investigated the efficacy of artificial intelligence
relying on endoscopic NBI images to discriminate between
gastritis and gastric cancer. In the study, they trained and tested
2300 images using the ResNet-50 algorithm on over 5400
gastroscopic NBI magnified images, resulting in 98.7% accuracy,
98% sensitivity, and 100% specificity.

The use of convolutional neural network to screen for early
gastric cancer can effectively reduce the incidences of
misdiagnosis as well as false-positives at the primary screening
Frontiers in Oncology | www.frontiersin.org 7
stage of white light gastroscopy. Further, endoscopic precision
investigations such as EUS, magnification endoscopy, and NBI
with AI can be performed to clarify the pathology of the
les ion.Some invest igators have combined AI with
magnification endoscopy and NBI and achieved satisfactory
results. However, its actual clinical value needs to be
investigated further. This is because white light gastroscopy is
the main method used in daily endoscopic screening. Further
tests such as magnified endoscopy, NBI, EUS, and biopsy are
only performed when the lesion is suspected to be gastric cancer.
At this stage, misdiagnosis of gastric cancer is rare and therefore
the use of CNN to identify gastric cancer lesions according to the
above process does not seem to significantly improve the
efficiency of gastric cancer detection. In addition, some
researchers employed high-quality images as training and test
sets (32–34) and obtained satisfactory results. However, the
availability of high-quality images in the actual clinical setting
is not common in each time, which poses a challenge for AI.

We believe that the selection of images for the training set
should be relaxed, and the data access criteria should be refined,
so that the images obtained in routine examinations in the clinic
can be classified and aggregated before performing AI inspection.
This makes AI well adapted for accurate diagnosis of routine
endoscopic images. In addition, one gastroscopic image may have
FIGURE 5 | Respective curves of Threshold-values versus Accuracy, Sensitivity, Specificity and Youden Index in Test Set 1.
January 2022 | Volume 12 | Article 815951
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multiple suspicious lesions, as is common in the actual clinical
setting. The lack of standardized endoscopic equipment and video
acquisition devices in local hospitals in China poses a challenge
for the use of AI in endoscopy. HD capture cards are not popular,
and the quality of gastroscopic imaging in some hospitals is so low
that not all images can be obtained at 1080p or even 4k. To
overcome these challenges, we used a variety of images of different
resolutions in our training set to simulate the nonstandardize
quality of images encountered in the routine clinic.

In this study we observed a downward trend in the accuracy,
sensitivity and Youden index values as the Threshold-value
increased from 0.01 to 0.99. However, the correlation between
the Threshold-value and specificity remained stable between 0.8-
1.0. The optimal cut-off values for the two test sets were 0.02, 0.16
and 0.17, respectively. This suggested that Threshold-value need
Frontiers in Oncology | www.frontiersin.org 8
to be adjusted before detecting image data from different
databases, to obtain the most accurate test results. We do not
agree with the subjective Threshold-value set as 0.5 in some
studies as it produced poor results in our study. When we set the
Threshold-value as 0.5, the accuracy, specificity and sensitivity of
Test Set 1 and Test Set 2 were 0.557423 and 0.716102, 0.987013
and 0.961039 and 0.439286 and 0.597484, respectively,
indicating poor test performance. Therefore, in cases where the
specificity cannot be significantly improved, a small Threshold-
value is associated with high EGC-YOLO test efficiency. For such
a result, we found through careful analysis that the threshold-
value was very different from the traditional human biochemical
indicators, for example, AFP≥400mg/L in the diagnosis of
primary liver cancer and blood amylase > 300U/L in the
diagnosis of acute pancreatitis. Because the gastroscopic images
FIGURE 6 | Respective curves of Threshold-values versus Accuracy, Sensitivity, Specificity and Youden Index in Test Set 2.
January 2022 | Volume 12 | Article 815951
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of the test set came from different hospitals, they were taken by
different equipment. Their baseline values, such as resolution,
color saturation and brightness, are different. For the AI system,
the nature of data from different data sets is different, so it is
necessary to adjust the best threshold value to give full play to the
best performance of EGC-YOLO. Images from different data
sources need to have their own specific threshold-value
during detection. We found that it was not rigorous behavior
to set a threshold according to human experience in
previous experiments.

There is a huge potential for the application of artificial
intelligence in the field of gastrointestinal endoscopy, but many
studies are still in the primary trial stage and few are actually put
into clinical application. In China, artificial intelligence has been
developing rapidly in recent years, and its application in the
medical field is likely to increase in the next 5-10 years.
Therefore, the prospect of intelligent medical care in China is
bright. The value of artificial intelligence lies in its ability to take
over the repetitive nature of a single human task, rather than
completely replacing human intervention. The advantages of
artificial intelligence (i.e. fast and efficient, fatigue-free, omission-
free handling of single daily tasks) will free doctors to do more
creative medical research.

This experiment is a retrospective study, and the relevant
conclusion is to manually screen the image data retained by the
endoscopic center of the hospital for many years and compare it
with the pathological standard, based on these results, we will
add prospective study to verify the reliability and clinical
application value of this study in the future.
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