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Abstract
In estuary and coastal systems, human demand for freshwater, climate change‐driven 
precipitation variability, and extreme weather impact salinity levels, reducing con-
nectivity between mesohaline coastal fish populations and potentially contributing 
to genomic divergence. We examined gill transcriptome responses to salinity in wild‐
caught juveniles from two populations of Sacramento splittail (Pogonichthys mac-
rolepidotus), a species of conservation concern that is endemic to the San Francisco 
Estuary, USA, and the lower reaches of its tributaries. Recent extreme droughts have 
led to salinities above the tolerance limits for this species, creating a migration barrier 
between these populations, which potentially contributed to population divergence. 
We identified transcripts involved in a conserved response to salinity; however, the 
more salinity‐tolerant San Pablo population had greater transcriptome plasticity (3.6‐
fold more transcripts responded than the Central Valley population) and a response 
consistent with gill remodeling after 168 hr of exposure to elevated salinity. The re-
organization of the gill in response to changing osmotic gradients is a process critical 
for acclimation and would facilitate enhanced salinity tolerance. We detected an up-
regulation of receptors that control the Wnt (wingless‐type) cell signaling pathway 
that may be required for an adaptive response to increases in salinity, patterns not 
observed in the relatively salinity‐sensitive Central Valley population. We detected 
62 single nucleotide polymorphisms (SNPs) in coding regions of 26 transcripts that 
differed between the populations. Eight transcripts that contained SNPs were asso-
ciated with immune responses, highlighting the importance of diversity in immune 
gene sequences as a defining characteristic of genomic divergence between these 
populations. Our data demonstrate that these populations have divergent transcrip-
tomic responses to salinity, which is consistent with observed physiological differ-
ences in salinity tolerance.
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1  | INTRODUC TION

Understanding how natural populations respond to changing envi-
ronmental conditions is a fundamental research focus in ecology. 
Responses to environmental stressors observed in organisms are 

largely determined by a combination of phenotypic plasticity and 
adaptation (Crozier & Hutchings, 2014). Environmental stressors 
associated with climate change, such as changes in temperature, sa-
linity, and incidences of disease, can alter the transcriptomes and 
phenotypes expressed in wild fish populations (Huang et al., 2016; 

F I G U R E  1   (a) Early rearing habitats 
for the San Pablo and Central Valley 
populations of Sacramento splittail 
(Pogonichthys macrolepidotus) in the San 
Francisco Estuary, California, USA (source 
data: CalAtlas. 2012. California Geospatial 
Clearinghouse. State of California. 
Available: http://atlas.ca.gov. Accessed: 
March 2012; Gesch et al. (2002); United 
States Geological Survey (USGS). 2017. 
National Hydrography Dataset. Accessed: 
March 2017. Available: https://nhd.
usgs.gov/data.html). It should be noted 
that these distributions do not reflect 
the full extent of the semianadromous 
Sacramento splittail distribution in the 
San Francisco Estuary across lifestages 
as adult and subadult fish from both 
populations move into the estuary when 
conditions are appropriate and their 
distributions can overlap (Feyrer et al., 
2015). (b) Monthly salinity measurements 
in San Pablo Bay near Carquinez Strait, 
the critical migration corridor separating 
spawning habitats of San Pablo and 
Central Valley populations, from 1980 
to 2015. A reference line is included 
at 14 PSU as that was the salinity for 
the exposures in the present study 
and salinities greater than that lead 
to mortality in Sacramento splittail. 
Yellow‐shaded regions indicate periods of 
drought in California

(a)

(b)

http://atlas.ca.gov
https://nhd.usgs.gov/data.html
https://nhd.usgs.gov/data.html
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Jeffries, Hinch, Sierocinski, Pavlidis, & Miller, 2014; Papakostas et 
al., 2012). However, plasticity in gene expression may differ among 
populations along environmental gradients (Dayan, Crawford, & 
Oleksiak, 2015). Furthermore, populations that are reproductively 
isolated can respond to different local selective pressures, which 
may facilitate adaptive divergence over time (Bradbury et al., 2010; 
Narum & Campbell, 2015; Papakostas et al., 2012). Genomic diver-
gence can lead to differences in transcriptomic responses to envi-
ronmental stressors between populations of wild fish.

Climate change and sea level rise will increase saltwater intru-
sion into freshwater systems, affecting organisms that rear in estu-
aries and lower reaches of coastal rivers (Chesney, Baltz, & Thomas, 
2000). Furthermore, periods of extreme drought and low precipita-
tion, which will be exacerbated by climate change (Karl & Trenberth, 
2003), combined with increased water withdrawals for human use, 
will lead to decreased river outflows and increased salinities in estu-
aries, potentially impacting estuarine organisms (Knowles & Cayan, 
2002; Martinho et al., 2007). Northern California is predicted to 
have decreased precipitation and river flows in the future due to 
climate change resulting in an increase in temperature and salinity 
in the San Francisco Estuary, USA (Cloern et al., 2011). Changes in 
salinity dynamics can effectively create migration barriers between 
coastal populations of mesohaline fishes resulting in reproductive 
isolation (Feyrer et al., 2015; Mahardja et al., 2015). Reproductive 
isolation may contribute to intraspecific variation in the response to 
salinity exposure suggesting adaptation to local environmental con-
ditions (Brennan, Galvez, & Whitehead, 2015; DeFaveri & Merilä, 
2014; Hasan et al., 2017; Papakostas et al., 2012; Scott, Rogers, 
Richards, Wood, & Schulte, 2004; Velotta, McCormick, & Schultz, 
2015; Velotta et al., 2017; Verhille et al., 2016; Whitehead, Roach, 
Zhang, & Galvez, 2011). Characterization of fish responses to salinity 
can aid in predicting consequences of altered salinity levels on sensi-
tive coastal and estuarine species (Komoroske et al., 2016).

We examined the effects of environmentally relevant salini-
ties on wild‐caught juveniles (i.e., >1 year) from two populations 
of Sacramento splittail (Pogonichthys macrolepidotus), a semianad-
romous minnow endemic to the San Francisco Estuary, California, 
USA (Figure 1a). The Sacramento splittail had previously been 
listed as threatened under the United States Endangered Species 
Act; they are now currently considered a species of special con-
cern in California. There are two genetically distinct populations 
of Sacramento splittail (Baerwald, Bien, Feyrer, & May, 2007; 
Baerwald, Feyrer, & May, 2008; Mahardja et al., 2015), the Central 
Valley population, which is larger and has a greater effective pop-
ulation size (i.e., up to 5 times larger; Mahardja et al., 2015), and 
the San Pablo population. Both populations rear as juveniles in their 
natal rivers and flood plains, followed by migration into the San 
Francisco Estuary as adults and subadults when conditions are ap-
propriate, resulting in potential overlap of their distributions (Feyrer 
et al., 2015). As adults, the fish return to freshwater or low salinity 
water to spawn, and based on previous studies, during most years 
the two populations spawn in different locations leading to genetic 
differentiation (Baerwald et al., 2007; Feyrer et al., 2015; Mahardja 

et al., 2015). The San Pablo population experiences variable salini-
ties due to saltwater intrusion into their natal rivers (ranging from 
0 to 10 practical salinity units; PSU) during early rearing and are 
more salinity‐tolerant than the Central Valley population that rear in 
freshwater (Feyrer et al., 2015). Mortality occurs at lower salinities 
in the Central Valley population relative to the San Pablo population 
(Verhille et al., 2016), and neither population is found in the wild at 
salinities greater than 16 PSU (Feyrer et al., 2015). Low river out-
flows into the estuary during dry conditions contribute to salinities 
above the tolerance limits for this species and creates a migration 
barrier between these populations (Baerwald et al., 2007, 2008; 
Mahardja et al., 2015; Verhille et al., 2016). High salinities in the 
San Francisco Estuary may prevent gene flow between Sacramento 
splittail populations (Baerwald et al., 2007; Feyrer et al., 2015), and 
there has been evidence of genetic structure between these two 
populations for over a decade suggesting limited gene flow (esti-
mated pairwise RST = 0.024–0.042 using microsatellites; Mahardja 
et al., 2015). During periods of drought, high salinities in the estuary 
are common (Figure 1b) suggesting that prolonged droughts may 
contribute to a lack of habitat connectivity and genomic divergence 
between the two populations.

We compared the gill transcriptome response to salinity in the 
two Sacramento splittail populations to test for molecular signatures 
consistent with differences in salinity tolerance. Characterization 
of transcriptome‐wide responses to changing environmental con-
ditions provides critical information for managing coastal fishes of 
conservation concern (Connon, Jeffries, Komoroske, Todgham, & 
Fangue, 2018; Jeffries et al., 2016; Kalujnaia et al., 2007; Komoroske 
et al., 2016). We used RNA sequencing to examine the responses 
to short‐term and long‐term (i.e., 72 and 168 hr, respectively) ex-
posures to elevated salinity (14 PSU) compared with a freshwater 
control group for each population. The exposure salinity and du-
ration were chosen based on a previous laboratory holding study 
using these same Sacramento splittail populations that showed peak 
increases in plasma osmolality and gill Na+/K+‐ATPase activity after 
72 hr of exposure to salinities of 14 PSU and divergent patterns in 
plasma osmolality, with the Central Valley individuals maintaining el-
evated osmolality after 168 hr (Verhille et al., 2016). Fourteen PSU 
were also shown to be the highest salinity that the Central Valley fish 
could experience without any mortality in the laboratory (Verhille et 
al., 2016). Our overall hypothesis was that there would be divergent 
transcriptomic responses to salinity exposure over a time course 
that reflect the differences in survival at elevated salinity between 
the two populations. We also hypothesized that the more salin-
ity‐tolerant San Pablo population would show evidence of greater 
transcriptome plasticity that reflects variable salinity levels during 
early rearing conditions. We also compared transcript sequences 
to examine whether sequence differences occurred at frequencies 
high enough to suggest genomic divergence between the two pop-
ulations. The goal of this study was to examine whether extreme 
drought‐related alterations to flow regimes and salinity dynamics in 
coastal systems may result in habitat fragmentation between popu-
lations of coastal fishes and contribute to genomic divergence.
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2  | MATERIAL S AND METHODS

2.1 | Fish collections

Gill samples for transcriptome sequencing were collected from a 
subset of individuals used in a previous study that examined the 
effects of salinity on physiological indices in Sacramento Splittail 
(detailed methods in Verhille et al., 2016). In brief, wild juvenile 
Sacramento splittail (>1 year) from the San Pablo population 
were collected from sites in the Napa River and juveniles from 
the Central Valley population were collected from multiple sites 
within their juvenile habitat range (Figure 1a) by the California 
Department of Fish and Wildlife. The salinity of the sites from 
where the San Pablo fish were collected ranged from 12.8 to 13.7 
PSU, while the salinity of the sites where the Central Valley in-
dividuals were collected ranged from 0.1 to 5.5 PSU. Fish were 
transported to a holding facility at the University of California, 
Davis, and held in freshwater in 150‐L tanks. Fish were allowed 
to acclimatize to holding conditions for a minimum of 30 days be-
fore the salinity exposure experiments. Monthly salinity measure-
ments are from locations near a constriction in the San Francisco 
Estuary (Carquinez Strait; data available at http://www.water.
ca.gov; Figure 1b). This constriction is a critical migration corridor 
that enables habitat connectivity between the two populations of 
Sacramento splittail.

2.2 | Salinity exposures

Fish were transferred to 20‐L tanks with flow‐through freshwater 
recirculation systems for the salinity treatments. There were two 
replicate tanks (n = 4–5 individuals per tank) for each population and 
treatment (i.e., total of 12 tanks). Fish were sampled in freshwater 
24 hr after transfer, and these samples were used as the freshwater 
controls for each population as we were primarily interested in ex-
amining how the transcriptome changes over time due to exposure 
to salinity in these fish. Salinities were increased using Instant Ocean 
(Aquarium Systems) with a 6‐hr consistent ramp to the test salinity 
of 14 PSU and monitored using a YSI 556 MPS (YSI). Fourteen PSU 
were the highest salinity with no mortality in the Central Valley popu-
lation during chronic exposures (Verhille et al., 2016) and are below 
the maximum salinity of 16 PSU where these fish are found in the 
wild (Feyrer et al., 2015). Fish were fed throughout the exposure pe-
riod, except 24 hr prior to sampling. Fish remained at 14 PSU for 72 or 
168 hr, after which they were euthanized in buffered tricaine meth-
anesulfonate (MS‐222) and sampled for gill, muscle, and blood tissue. 
Blood samples were first centrifuged at 20,000 g for 5 min for plasma 
separation. Gill and blood plasma samples were immediately frozen 
in liquid nitrogen and then stored at −80°C. Additionally, the entire 
left gill arch was collected into a microcentrifuge tube filled with SEI 
buffer (250 mM sucrose, 10 mM Na2EDTA, 50 mM imidazole, pH 7.3) 
and frozen in liquid nitrogen for measuring gill Na+/K+‐ATPase activity.

Individuals from each population were genotyped (details in the 
supplementary data in Verhille et al., 2016) to determine whether 

the individuals were from the correct population (data not shown) 
prior to the transcriptomic assessments. Briefly, DNA was ex-
tracted from caudal fin tissue using a DNeasy 96 kit (QIAGEN Inc.) 
following manufacturer's protocols. Eighteen microsatellite mark-
ers were amplified for population genetic assignment: CypG3, 
CypG4, CypG23, CypG25, CypG35, CypG39, CypG40, CypG43, 
CypG45, CypG48, CypG52, CypG53, Pmac1, Pmac4, Pmac19, 
Pmac24, Pmac25, and Pmac35 (Baerwald & May, 2004; Mahardja, 
May, & Baerwald, 2012) following PCR and allele scoring pro-
cedures from Mahardja et al. (2015). The program STRUCTURE 
2.3.3 (Pritchard, Stephens, & Donnelly, 2000) was used to assign 
individuals to their putative population and was performed for 10 
iterations at K = 2 with all individuals and references included, no 
prior location information, a 500,000 burn‐in period, and 1 mil-
lion Markov chain Monte Carlo repetitions under the assumption 
of admixture and correlated allele frequencies. Previously genet-
ically assigned Sacramento splittail from Baerwald et al. (2007) 
and Mahardja et al. (2015) served as references for the present 
study. Replicate runs were averaged in CLUMPP 1.1.2 (Jakobsson 
& Rosenberg, 2007) with the FullSearch algorithm. An average q‐
value of 0.8 was used as the threshold for distinguishing between 
individuals from the different populations and potential hybrids or 
unassigned individuals.

2.3 | Transcriptome sequencing

Gill tissue samples were homogenized using a Qiagen TissueLyser in 
Buffer RLT Plus (RNeasy Plus Mini Kit), and 350 μl of the homogen-
ate was used for RNA extraction on a QIAcube following manufac-
turer's protocols (Qiagen). There was a total of 32 fish used for the 
transcriptome sequencing (n = 16 from each population). The sam-
ples sizes from each time point for each population in the study were 
as follows: n = 4 for the freshwater control group; n = 6 for the 72 hr 
at 14 PSU group; and n = 6 for the 168 hr at 14 PSU group. The RNA 
quality was assessed using a Bioanalyzer (Agilent; RNA Integrity 
Numbers = 7.9–9.9 for all samples).

Sequencing was performed at the BGI@UC Davis facility in 
Sacramento, CA, USA. Total RNA was used to prepare cDNA li-
braries using KAPA Stranded mRNA‐Seq kits (KAPA Biosystems, 
Inc.) prior to sequencing. Each fish (i.e., 32 total) was individually 
barcoded with a unique adapter (NEXTflex DNA Barcodes; BIOO 
Scientific). Then, all 32 indexed libraries were pooled and sequenced 
on an Illumina HiSeq 2000 over six lanes. Mixed tissues from ad-
ditional individuals (adults exposed to various stressors) were se-
quenced on another lane to improve transcriptome coverage for 
the de novo assembly. Sequencing was conducted to produce 100 
base pair paired‐end reads generating an average of 34.8 (±5.9 SD) 
million raw pairs of reads per individual. Raw, demultiplexed reads 
were filtered and trimmed for low‐quality sequences using Sickle 
(https://github.com/ucdavis-bioinformatics/) to generate an average 
of 34.5 (±5.7 SD) million trimmed pairs (orphan single reads averag-
ing 0.3 million per sample were discarded). Reads were normalized 

http://www.water.ca.gov
http://www.water.ca.gov
https://github.com/ucdavis-bioinformatics/
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and assembled using Trinity v.2.0.6 (Haas et al., 2013) to produce a 
de novo transcriptome with 704,972 sequences (contigs). The raw 
assembly was filtered to remove ribosomal RNA (rRNA), low or un-
expressed transcripts, and transcripts with no annotation (e.g., a 
blast hit, sequence description, or GO term) to a total of 118,853 
transcript contigs, representing 28,534 genes.

Open reading frames (ORFs) were identified using TransDecoder 
v.2.0.1 (http://transdecoder.github.io), which included a blast search 
of zebrafish (Danio rerio) protein sequences (UniProt DANRE data-
base) to maximize sensitivity for capturing ORFs that may have func-
tional significance. Annotation was performed with Trinotate v.2.0.1, 
by blasting to subsets of the SWISS‐PROT and UniRef databases 
specific to Actinopterygii (ray‐finned) fishes. For contigs without 
blast hits to the subset databases, blasts were subsequently per-
formed against the full Trinotate‐specific SWISS‐PROT and UniRef 
databases (https://data.broadinstitute.org/Trinity/Trinotate_v2.0_
RESOURCES/). All steps in a standard Trinotate pipeline were run 
except RNAMMER as rRNA was already removed.

Reads were aligned to the reference transcriptome using BWA 
(Burrows‐Wheeler Aligner; Li & Durbin, 2010). A table of raw 
counts by transcript (from BWA alignments to the filtered assem-
bly) was generated using Samtools v.1.2 idxstats (Li et al., 2009). 
Read counts for each contig were summed to gene level to gen-
erate a table of raw counts by gene for the differential expression 
analysis, which was conducted using edgeR (Robinson, McCarthy, 
& Smyth, 2010). A general linear model was run in edgeR with pop-
ulation and time as factors. A priori contrasts were designed to 
compare responses at 72 and 168 hr with the freshwater control 
group for each population. Genes were considered differentially 
expressed at a Benjamini–Hochberg‐corrected false discovery rate 
(FDR) <0.05. Due to large differences in the number and types of 
transcripts that responded between the two populations, we fo-
cused our interpretation of population‐specific responses to tran-
scripts assigned to functional groups (i.e., Gene Ontology [GO] 
categories) using gene set enrichment analysis with EnrichR (Chen 
et al., 2013; accessed in September 2016). Only GO terms that had 
a minimum of four transcripts were used and were considered sig-
nificantly enriched in the gene list at a Benjamini–Hochberg‐cor-
rected FDR < 0.05. EnrichR only considers one copy of a gene for 
the analysis, and therefore, if there were more than one transcript 
annotated as the same gene in the gene list, the additional copies 
were ignored.

2.4 | Sequence variation

Given the design of this comparative transcriptomics study, we op-
portunistically compared the transcript sequences from the indi-
viduals to identify mRNA transcripts with mutations that occur at 
different frequencies between the two populations. Single nucleo-
tide polymorphisms (SNPs) were used to determine whether there 
was evidence of genomic divergence between the two populations 
of Sacramento splittail, consistent with previous studies that used 
microsatellites (Baerwald et al., 2007, 2008; Mahardja et al., 2015). 

Our SNP analysis focused on mutations within the coding region of 
the transcripts as we were interested in knowing whether there are 
SNPs within the transcripts that may contribute to functional dif-
ferences in the responses to salinity. The longest transcript within 
each gene contig was selected for identifying SNPs. Reads were 
aligned to the assembled reference transcriptome (i.e., the 28,534 
sequence FASTA file) with BWA, and Picard MarkDuplicates was 
run (Picard tools v.1.139, https://broadinstitute.github.io/pic-
ard/). The SNPs were called with FreeBayes v.0.9.18‐1 (Garrison 
& Marth, 2012), and the effects of SNPs were determined with 
SnpEff v.4.1l (Cingolani et al., 2012). We only considered SNPs in 
transcripts that were present in at least 75% of the individuals and 
had a minimum read depth of 500. We used pcadapt (Luu, Bazin, 
& Blum, 2017) to look for evidence of population structure and to 
test for outlier SNPs after filtering out SNPs with a minor allele 
frequency <0.05. After running an initial PCA, we used the “score 
plot” approach to determine the number of PCs to use for the out-
lier analysis. The best evidence of population structure was seen 
in the first 2 PCs; therefore, the subsequent outlier analysis was 
limited to 2 PCs. Outliers were considered significant using the 
Mahalanobis distance at a q‐value <0.05. We also used BayeScan 
to test for outlier SNPs (Foll & Gaggiotti, 2008). Using BayeScan, 
SNPs were considered significant at a q‐value <0.05. When SNPs 
were significant using both approaches (i.e., BayeScan and pca-
dapt), we considered them to be under selection and contribute to 
genomic differentiation between the two populations. We tested 
for genetic differentiation by estimating the pairwise FST using the 
Weir and Cockerham (1984) method for calculating FST in the pro-
gram HIERFSTAT (Goudet, 2005).

2.5 | Physiological parameters

Plasma osmolality was measured on plasma samples that were 
equilibrated to room temperature using a Vapro™ Vapor Pressure 
Osmometer (Model 5600) equipped with a mini sample holder to 
allow for small (2 µl) sample volumes. Dorsal skeletal muscle samples 
weighing ~100 mg were collected for muscle water content analysis. 
Wet mass of muscle samples was measured on a 4‐digit analytical 
balance. Samples were then desiccated for 7 days at 55°C and then 
reweighed. Muscle moisture was calculated as the percent of wet 
mass lost with desiccation.

The Na+/K+‐ATPase activity was quantified by measuring the rate 
of NADH loss through enzymatically coupling Na+/K+‐ATPase cata-
lyzed ATP hydrolysis with the oxidation of NADH to NAD catalyzed 
by lactate dehydrogenase (McCormick, 1993). Gill samples were 
thawed on ice; then, the SEI buffer was pipetted out and replaced 
with 0.5–1 ml of fresh chilled 0.5% SEID buffer (250 mM sucrose, 
10 mM Na2EDTA, 50 mM imidazole, 0.5% Na Deoxycholic acid, pH 
7.3) depending on the size of the sample. Each sample was homog-
enized using a Polytron Homogenizer (KINEMATICA AG, Lucerne, 
Switzerland) for 30 s then centrifuged for 30 s at 4°C and 5,000 g. 
The supernatant was pipetted off and stored on ice prior to enzyme 
activity readings. Ten‐minute spectrophotometric kinetic reads of 

http://transdecoder.github.io
https://data.broadinstitute.org/Trinity/Trinotate_v2.0_RESOURCES/
https://data.broadinstitute.org/Trinity/Trinotate_v2.0_RESOURCES/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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340 nm absorbance (25°C, Synergy HT microplate reader, BioTek) 
were performed on triplicate 10 µl volumes of samples loaded onto 
microplates then combined with 200 µl of ouabain+ or ouabain− 
assay solutions warmed to 25°C. Total protein was quantified using 
a commercial test kit (BCA protein assay kit; Thermo Scientific) 
according to the bicinchoninic acid technique (Smith et al., 1985). 
The Na+/K+‐ATPase enzyme activity was standardized to total pro-
tein among samples. Na+/K+‐ATPase activities (µmol ADP mg pro-
tein−1 hr−1) were calculated as the ouabain inhibited fraction of total 
ATP hydrolysis and conversion of NADH to NAD+. Differences in the 
physiological indices were analyzed with a two‐factor ANOVA with 
time and population as factors. Tukey's HSD post hoc tests were 
performed, and values were considered significant at p < 0.05 after 
correcting for multiple testing.

3  | RESULTS

3.1 | Transcriptome sequencing

There were 53 transcripts differentially expressed that were com-
mon in both the short‐term (72‐hr) response and the longer‐term 
(168‐hr) acclimation response relative to the freshwater control 
groups at FDR < 0.05 (Figure 2). Nine of these common transcripts 
were upregulated, including two Cytochrome P450 proteins (1A1 
and 1A3), two transcripts involved in protein transport, and two 
transcripts annotated as inositol‐3‐phosphate synthase 1‐A, which 
plays an important role in osmoregulation. The remaining 44 com-
mon transcripts were downregulated, and many were involved in ion 
transport and homeostasis, including seven transcripts annotated 

F I G U R E  2   (a) Number of upregulated 
and downregulated transcripts (false 
discovery rate <0.05) relative to the 
freshwater control group in two 
populations (the salinity‐sensitive Central 
Valley and the salinity‐tolerant San Pablo) 
of Sacramento splittail (Pogonichthys 
macrolepidotus) at 72 and 168 hr of 
exposure to elevated salinity relative to 
the freshwater control group; (b) venn 
diagram of the number of transcripts that 
were differentially expressed in common 
between the different populations at the 
different time points
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as sodium/potassium‐transporting ATPase subunit alpha‐1. Of the 
other common downregulated transcripts, two were annotated as 
band 3 anion exchange protein, four as chloride channel protein 2, 
one as ornithine decarboxylase, one as solute carrier 12 member 3, 
and one as prolactin receptor. Complete lists of differentially ex-
pressed transcripts at FDR < 0.05 for both populations are provided 
in the Supplementary materials (Table S1).

There were population‐specific responses associated with the 
72‐hr and 168‐hr salinity exposures (Figure 3). At both time points, 
the San Pablo fish had more transcripts respond to the salinity treat-
ments compared with the Central Valley fish, suggesting enhanced 
transcriptome plasticity in the more salinity‐tolerant San Pablo 

population (Figure 2b). This was more evident at 168 hr, where there 
were 977 significant transcripts in the San Pablo population in con-
trast to 215 transcripts in the Central Valley population. Within each 
population‐specific response, 150 and 102 transcripts for the San 
Pablo and Central Valley populations, respectively, showed common 
response patterns at 72 and 168 hr of exposure relative to the fresh-
water control.

After 72 hr, both populations had altered expression of tran-
scripts associated with ion and general transport across the cell 
membrane (Figure 4a), a required response in gills to contend with 
osmotic gradients. The response patterns between the two popu-
lations diverged during the 168 hr of salinity exposure (Figure 4b). 
Many of the 977 transcripts that were significant in the San Pablo 
fish may be associated with processes involved in acclimation. For 
example, the San Pablo population had many significantly respond-
ing transcripts associated with cellular turnover and proliferation 
(e.g., GO categories Mitotic nuclear division, Organelle fission), po-
tentially consistent with cellular remodeling. Additional details of the 
Gene Set Enrichment Analysis results are available in Table S2. The 
San Pablo population had many transcripts respond at 168 hr that 
are involved in the extracellular matrix organization (e.g., upregula-
tion of Matrix metalloproteinase‐11, Matrix metalloproteinase‐16, 
and Matrix metalloproteinase‐21), cell adhesion, and cell junctions 
(e.g., GO categories Extracellular matrix, Adherens junction, Focal 
adhesion, Wnt‐activated receptor activity). Interestingly, there was 
an upregulation of Metalloproteinase inhibitor 3 in the San Pablo 
fish, which is involved in repressing the expression of some matrix 
metalloproteinases including Matrix metalloproteinase‐13. The up-
regulation of Metalloproteinase inhibitor 3 coincided with a down-
regulation of Matrix metalloproteinase‐13. Both populations had 
differential expression of several transcripts involved in Wnt (wing-
less‐type) cell signaling. However, the San Pablo population at 168 hr 
responded by upregulating key transcripts (Secreted frizzled‐related 
protein 1, Protein Wnt‐11, Protein Wnt‐4A, Catenin beta‐1; CDC42 
effector protein 3) and associated receptors (Frizzled 2, 5, 7‐A, 9, 10, 
and 10‐B) involved in Wnt signaling (Figure 5). Lastly, the San Pablo 
population had a downregulation of Suppressor of cytokine signaling 
2 at 168 hr.

3.2 | Sequence variation

We detected 181,059 SNPs that occurred in the transcripts from the 
two populations. Using the full set of 181,059 SNPs, we calculated 
a pairwise FST of 0.064. After filtering out the SNPs with a minor 
allele frequency <0.05, we were left with 82,461 SNPs within the 
coding region of the transcripts to test for outliers. The PCA con-
ducted on the filtered set of SNPs clearly separated the two popu-
lations along the PC1 axis, which explained 7.06% of the variation 
in the data (Figure 6). Another 4.72% of the variation in the data 
was explained by PC2, the relatively large amount of variation ex-
plained by PC2 was largely driven by the 5 fish on the most pos-
itive end of the PC2 axis (two and three fish from the San Pablo 
and Central Valley populations, respectively). The SNPs that were 

F I G U R E  3   Heatmap of differentially expressed transcripts 
(false discovery rate [FDR] <0.01) in two populations (the 
salinity‐sensitive Central Valley and the salinity‐tolerant San 
Pablo) of Sacramento splittail (Pogonichthys macrolepidotus) at 
72 and 168 hr of exposure to elevated salinity. Transcripts are 
presented as log2 fold change that were significant at FDR < 0.01 
and a minimum 2‐fold change (number of transcripts that were 
differentially expressed are in parentheses) in expression relative 
to the freshwater control group. Only a subset of the transcripts 
was used for the heatmap to improve visualization of the patterns, 
the number of transcripts that were significant at FDR < 0.05 is 
available in Figure 2

Central valley response (59 
Transcripts) - Salinity 
Sensitive Population 

San Pablo Response (134 
Transcripts) – Salinity 
Tolerant Population 

Common response
(35 transcripts )

Effects of Salinity
(Relative to the Control)
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significant along both PC1 and PC2 with all 32 fish and with those 
5 fish removed are available in the Supplementary Materials (Table 
S3). Because the PC1 axis showed the most separation between the 

populations and our interests were in SNPs that may contribute to 
differentiation between the two populations, we limit our interpre-
tations to SNPs that were significant along PC1. Using pcadapt, we 

F I G U R E  4   Gene ontology (GO) terms 
enriched in the significant gene lists from 
two populations of Sacramento splittail 
(Pogonichthys macrolepidotus) at (a) 72 hr 
and (b) 168 hr of exposure to elevated 
salinity. Only GO terms from the gene 
set enrichment analysis significant at 
a FDR < 0.05 that had more than four 
transcripts were considered

(a)

(b)
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detected 147 SNPs that were significantly associated with PC1 at a 
FDR < 0.05 (Table S3). We calculated a pairwise FST of 0.250 using 
these 147 SNPs. Using BayeScan, we detected 74 SNPs that were 
significantly different between the two populations at q < 0.05. 
There were 62 SNPs that were significant and were common using 
both pcadapt and BayeScan approaches. Of these, 37 were nonsyn-
onymous SNPs, 23 were synonymous SNPs, and 2 were stop gained 
SNPs (Table S3). There were 62 potential outlier SNPs that were 
identified; however, these occurred in 26 unique transcripts. Eight of 
the unique transcripts containing outlier SNPs were associated with 
immune responses. In particular, SNPs were found in transcripts 
involved in the regulation of the adaptive immune response (e.g., 
Major histocompatibility complex class I‐related gene protein; Class 
I histocompatibility antigen, F10 alpha chain; 2 and 4 unique tran-
scripts, respectively, were annotated as these genes), T‐cell receptor 
alpha chain V region RL‐5 and Protein NLRC3. There were 7 SNPs in 
one transcript annotated as Interferon‐induced very large GTPase 
1. Lastly, there were SNPs in transcripts that may have a role in ion 
transport (solute carrier family 22 member 6, Serine/threonine‐
protein kinase WNK3), an oxidative stress response (Thioredoxin), 
and cytoskeleton restructuring (Protein kinase C and casein kinase 
substrate in neurons protein 1). Of these, only Protein kinase C and 
casein kinase substrate in neurons protein 1 was a nonsynonymous 
SNP.

3.3 | Physiological indices

There was an increase in Na+/K+‐ATPase enzyme activity at 72 hr and 
plasma osmolality at 72 and 168 hr in the salinity treatments relative 
to the freshwater control group (Figure 7). The Na+/K+‐ATPase en-
zyme activity at 72 hr was also significantly different than the 168‐hr 
group. There were no differences in muscle moisture content. Despite 
large differences in the transcriptome‐wide responses to the salinity 

treatment, we did not detect population‐specific responses in the 
physiological indices. Although the Central Valley population tended 
to have higher plasma osmolality, this was not statistically significant.

4  | DISCUSSION

Transcriptome sequencing is a valuable approach to study mecha-
nisms underlying essential conservation biology issues, such as 

F I G U R E  5   Heatmap of upregulated 
expressed transcripts (false discovery 
rate < 0.05) involved in the Wnt 
(Wingless‐type) signaling pathway in 
the San Pablo population of Sacramento 
splittail (Pogonichthys macrolepidotus) at 
168 hr of exposure to elevated salinity 
relative to the freshwater control group. 
Expression of genes is presented as 
log2 fold change for transcripts. Protein 
Wnt‐11 is a main ligand, and CDC42 
(CDC42 effector protein 3) is a key 
regulator of the planar cell polarity 
branch of the β‐catenin‐independent Wnt 
signaling pathway that is associated with 
cytoskeleton remodeling (SFRP, Secreted 
frizzled‐related protein; Frizzled, Frizzled 
receptor; LRP5/6, low‐density lipoprotein 
receptor‐related protein 5 and 6 complex)

WNT Signaling

SFRP
WNT11
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F I G U R E  6   Position of each fish (n = 32) from two populations 
(San Pablo or Central Valley) of Sacramento splittail (Pogonichthys 
macrolepidotus) along the first two principal component (PC) axes 
from the principal component analysis conducted on the genotype 
assigned from 82,461 SNPs detected in the coding regions of the 
transcripts
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stress tolerance, local adaptation, and population divergence 
(Connon et al., 2018; Gibbons, Metzger, Healy, & Schulte, 2017; 
Jeffries et al., 2016; Komoroske et al., 2016; Velotta et al., 2017; 
Zhang et al., 2015). The present study uses this approach to assess 
population‐specific responses to elevated salinity in a nonmodel fish 
species. We were able to show (a) evidence of population‐specific 
transcriptomic responses to a common salinity stressor; (b) that the 
enhanced salinity tolerance in the San Pablo population is associ-
ated with a transcriptome signature consistent with gill remodeling 
required for salinity acclimation; and (c) that there was sequence 
variation in transcripts associated with immune responses, which 
supports previous studies that demonstrate variation in genes in-
volved in immune responses are major signatures of genomic diver-
gence between fish populations (Dionne, Miller, Dodson, Caron, & 
Bernatchez, 2007; Eizaguirre, Lenz, Kalbe, & Milinski, 2012; Evans, 
Neff, & Heath, 2010; Miller, Kaukinen, Beacham, & Withler, 2001; 
Zhang et al., 2015; Zueva et al., 2014).

We identified a suite of transcripts involved in a conserved re-
sponse to salinity in the two populations. There was a downregu-
lation of some Sodium/potassium‐transporting ATPase transcripts, 
which has been shown in other species after exposure to elevated 
salinities (Brennan et al., 2015; Komoroske et al., 2016; Velotta et 
al., 2017) and may suggest either a downregulation of freshwater 
isoforms or sufficient protein level expression resulting in regulatory 
feedback on transcription. Previous work on other fishes has shown 
higher expression of chloride channel protein 2, prolactin receptor, 
solute carrier 12 member 3, Suppressor of cytokine signaling 2, and 
ornithine decarboxylase in freshwater (Barrio et al., 2016; Evans & 
Somero, 2008; Komoroske et al., 2016; Lai et al., 2015; Lam et al., 
2014; Whitehead et al., 2011), which is consistent with the observed 
downregulation at higher salinity in the present study. Furthermore, 
Suppressor of cytokine signaling 2 has been suggested to be asso-
ciated with salinity adaptation in marine fishes (Barrio et al., 2016; 
Dalongeville, Benestan, Mouillot, Lobreaux, & Manel, 2018). Fish in 

F I G U R E  7   Mean (±SE) values for (a) plasma osmolality and (b) gill Na+/K+‐ATPase (NKA) activity for two populations of Sacramento 
splittail (Pogonichthys macrolepidotus) after 72 and 168 hr of exposure to saltwater. Statistical differences from the 24‐hr freshwater control 
group are marked with an asterisk
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the present study were held under common conditions to control 
for other environmental factors that can influence transcriptome 
patterns; therefore, the divergent responses to salinity are likely 
partially associated with genomic differences between the two pop-
ulations. However, the role of salinity exposure histories prior to col-
lection of fish from the wild and potential transgenerational effects 
may have also influenced the transcriptome patterns. Additionally, 
given that most of the outlier SNPs detected in this study were not 
in transcripts associated with a response to an increase in salinity, 
plasticity may have played the largest role in the differences in 
the transcriptome responses in the present study. Future research 
should attempt to control for transgenerational effects in order to 
truly assess the influence of genotype on the phenotypes expressed 
in these populations.

There was a suite of transcripts involved in distinct population‐
specific transcriptome responses to salinity. The San Pablo popu-
lation, which rears in rivers that can have significant interannual 
variation in saltwater intrusion (Baerwald et al., 2007; Mahardja et 
al., 2015), had more transcripts respond to salinity exposure (1.4 
and 3.6 times more during the short‐term and acclimation response, 
respectively) than the Central Valley population, consistent with in-
creased transcriptome plasticity. Greater transcriptome plasticity 
in a population may reflect increased environmental heterogeneity 
(Meier et al., 2014) or higher salinities (Hasan et al., 2017) in their 
natal habitats. The San Pablo population, which experiences variable 
and generally higher salinities than the Central Valley population 
due to saltwater intrusion in the rivers during early rearing (Feyrer 
et al., 2015), may require enhanced transcriptome plasticity to re-
spond to the changes in salinity. Furthermore, the greater number of 
transcripts that responded in the San Pablo population at 168 hr of 
salinity exposure may represent a critical acclimation response that 
leads to enhanced salinity tolerance relative to the Central Valley 
population.

Interestingly, we detected no statistical differences in plasma 
osmolality, muscle moisture, or gill Na+/K+‐ATPase activity between 
the two populations. This may have been due to a lack of statistical 
power because of low sample sizes (n = 4–6 per treatment) as dif-
ferences have been reported previously from the same study when 
larger sample sizes were assessed (Verhille et al., 2016). Despite no 
differences in the responses of these endpoints for the fish used in 
the present study, there are differences in the upper tolerance limits 
for salinity for the two populations (Verhille et al., 2016) and large 
differences in the transcriptome‐wide response. This may suggest 
that different molecular phenotypes can achieve the same func-
tional response for these osmoregulatory indices in the two pop-
ulations of Sacramento splittail. However, the transcriptome‐wide 
response patterns observed in the present study are consistent 
with the differences in salinity tolerance in the two populations of 
Sacramento splittail.

Gill remodeling can be an adaptive response to various envi-
ronmental stressors that may be fairly widespread among fishes 
(Nilsson, 2007). Remodeling of the gills in response to salinity ac-
climation has been shown to contribute to increased number of 

mitochondrial‐rich cells, alteration of the apical surface of gill cells, 
and increased Na+/K+‐ATPase activity, which are all necessary to fa-
cilitate ion excretion in saltwater (Foskett, Logsdon, Turner, Machen, 
& Bern, 1981; Hirose, Kaneko, Naito, & Takei, 2003; Hwang & Lee, 
2007; Karnaky, Ernst, & Philpott, 1976; Sinha, Matey, Giblen, Blust, & 
Boeck, 2014). Altered expression of genes associated with cytoskel-
eton reorganization is involved in transcriptome responses to salin-
ity changes in several other fishes (Evans & Somero, 2008; Gibbons 
et al., 2017; Lai et al., 2015; Lam et al., 2014) and has been linked to 
gill cellular remodeling (Whitehead, Zhang, Roach, & Galvez, 2013). 
Additionally, the gill cellular remodeling occurs faster in euryhaline 
fishes when compared to more stenohaline species (Whitehead et 
al., 2013). Increased levels of transcripts associated with extracel-
lular matrix and cell adhesion in the fish from the San Pablo popu-
lation are consistent with gill restructuring during acclimation. Gill 
restructuring in response to higher salinity levels suggests adaptive 
plasticity that would facilitate enhanced salinity tolerance in the San 
Pablo population.

The San Pablo population showed activation of the Wnt signaling 
pathway during acclimation. This included increased expression of 
transcripts in the frizzled family that function as receptors for se-
creted Wnt proteins and play a critical role in development and cell 
proliferation (Huang & Klein, 2004). Changes in the expression of 
receptors that control regulatory networks are key contributors to 
population divergence in fishes (Di Poi, Bélanger, Amyot, Rogers, & 
Aubin‐Horth, 2016). Our data support this assertion as the salinity‐
tolerant San Pablo population had upregulated receptors that con-
trol the Wnt signaling pathway. Upregulation of the Wnt signaling 
pathway may be required for an adaptive response to increases in 
salinity and did not occur in the relatively salinity‐sensitive Central 
Valley population. The Wnt signaling pathway is critical to adult 
tissue maintenance, remodeling and regeneration, embryo devel-
opment, and many cellular processes that include cell motility and 
cytoskeleton restructuring (Angers & Moon, 2009; Lai, Chien, & 
Moon, 2009), and is associated with cellular remodeling in fishes (Cui 
et al., 2014). Protein Wnt‐11 is a main ligand, and CDC42 effector 
protein 3 is a key regulator, of the planar cell polarity branch of the β‐
catenin‐independent Wnt signaling pathway that is associated with 
cytoskeleton remodeling (Angers & Moon, 2009; Lai et al., 2009). 
Both Protein Wnt‐11 and CDC42 effector protein 3 were upregu-
lated in the San Pablo population fish.

Fish populations show the capacity to adapt to local environ-
mental conditions throughout their natural ranges (Eliason et al., 
2011; Hecht, Matala, Hess, & Narum, 2015; Taylor, 1991). Local 
salinities may drive adaptive divergence (Brennan et al., 2018; 
Dennenmoser, Vamosi, Nolte, & Rogers, 2017); however, significant 
variation often occurs in genomic regions associated with immune 
responses (Dionne et al., 2007; Eizaguirre et al., 2012; Evans et al., 
2010; Miller et al., 2001; this study). Between populations, selection 
on genomic regions associated with immune function is a significant 
driver of adaptive divergence (Zueva et al., 2014). The genomic di-
versity in immune response genes may be driven by local pathogen 
communities in addition to differences in life‐history characteristics 
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(e.g., migratory strategies) between populations (Miller et al., 2001). 
The SNPs detected in Sacramento splittail that were significant in 
our analyses largely occurred in transcripts associated with an im-
mune response, in particular an adaptive immune response. The role 
of major histocompatibility complex (MHC) diversity among popula-
tions is well established in fishes (Dionne et al., 2007; Eizaguirre et 
al., 2012; Evans et al., 2010; Miller et al., 2001), and our data support 
this trend as we detected variation in MHC‐related genes between 
the two Sacramento splittail populations. Our data suggest that 
there is a signal of genomic divergence between the two popula-
tions of Sacramento splittail; however, the strongest patterns were 
related to immune function rather than a salinity response.

Sacramento splittail evolution and population structure will 
likely be heavily determined by future climate conditions (Feyrer et 
al., 2015). Climate variability is predicted to increase due to climate 
change (Karl & Trenberth, 2003), which may lead to frequent severe 
droughts in coastal regions. During dry years and periods of drought, 
such as those that have occurred recently in California, salinity levels 
within the estuary increase to those above the tolerance limits for 
Sacramento splittail, therefore reducing connectivity between the 
populations. High salinities in the San Francisco Estuary may pre-
vent gene flow between Sacramento splittail populations (Baerwald 
et al., 2007; Feyrer et al., 2015), and this lack of habitat connectivity 
during periods of high salinity may have contributed to the divergent 
transcriptomic responses observed in the present study. The Central 
Valley population is likely more susceptible to future saltwater in-
trusion based on upper salinity tolerances (Verhille et al., 2016) and 
reduced transcriptome plasticity compared with the San Pablo pop-
ulation. Conversely, the San Pablo population is potentially better 
adapted for future climate change scenarios that may lead to greater 
saltwater intrusion into coastal rivers, but has a smaller effective 
population size and is therefore more susceptible to genetic drift 
and extirpation. Our data demonstrate that these populations of 
Sacramento splittail have divergent transcriptomic responses to sa-
linity, suggestive of local adaptation; however, persistence of these 
populations and this species will depend on sufficient minimal fresh-
water flows into the estuary that keep salinity levels below tolerance 
thresholds in critical habitats. Precipitation variability and extreme 
weather conditions in the future, in addition to greater human de-
mand for freshwater, will contribute to reduced river flows leading to 
saltwater intrusion into coastal rivers and increased salinity variabil-
ity in estuaries, potentially reducing habitat connectivity between 
mesohaline coastal fish populations and contributing to population 
divergence over time.
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