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Abstract 

Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for 
immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, 
and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor 
progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolu-
tion, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this 
review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of 
the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate 
kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleo-
side phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is 
also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 
6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future 
opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
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Introduction
Ovarian cancer (OC) is the seventh most common can-
cer and the fifth leading cause of cancer-related death 
among women worldwide, with a 5-year relative sur-
vival rate of 49% [1, 2]. Primary debulking surgery and 
adjuvant platinum-based chemotherapy are the first-
line standard-of-care treatments [3]. More than 70% 
of patients experience will relapse after first-line treat-
ment and acquire drug resistance, which highlights the 
need for novel treatment options.

As one of the most abundant components in organ-
isms, purine, in addition to forming DNA and RNA, 
is involved in the stabilization of immune regulation 
and the formation of energy carriers and functions as 
an essential cofactor in biochemical reactions, thereby 
influencing the growth of both cancer and non-cancer 
cells [4, 5]. The metabolic enzymes implicated in purine 
metabolism cause imbalances in purine pools that 
interfere with cell proliferation, migration and death [6, 
7]. Furthermore, various purine antimetabolites exert 
antitumor effects through multiple mechanisms, such 
as direct toxicity, interference with the tumor micro-
environment (TME), inhibition of DNA synthesis and 
interference with DNA damage repair [8–12]. Disor-
ders of extracellular ATP (eATP), extracellular adeno-
sine (eADO) and subsequent purinergic signaling also 
delineate pro-oncogenic or anti-oncogenic outlines 
[13]. Overall, purine metabolism is closely related to 
tumor progression.

This review presents recent reports of major purine-
metabolizing enzymes in purine synthetic pathways 
(Table 1), outlines the multiplicity of purinergic signaling 
in OC development, gives an overview of the application 
of purine antimetabolites in OC, and discusses potential 
therapeutic strategies to target purine metabolism in OC.

Purine metabolism pathways
The stabilization of purine pools is determined by the 
balance between the synthesis and degradation of purine 
nucleotides (Fig.  1). The salvage pathway and de novo 
pathway are two different pathways for the synthesis 
of purine nucleotides in mammals. The salvage path-
way recycles the degraded purine bases or nucleosides 
via 5-phosphoribosyl-1-pyrophosphate (PRPP) and 
catalysis by adenine phosphoribosyltransferase (APRT) 
and hypoxanthine guanine phosphoribosyltransferase 
(HPRT). There are other enzymes involved in the recov-
ery of purines. Generally, this simple pathway meets 
most of the cellular requirements of a large percentage of 
normal cells with very low energy consumption [44, 45]. 
Rapidly dividing cancer cells rely more heavily on the de 
novo pathway, the basis for replenishing purine pools, to 
meet high energy demands [46]. The de novo pathway 
is triggered by a dynamic complex called purinosome 
[47]. Purinosome accumulates in the vicinity of mito-
chondria and microtubules to accelerate purine nucleo-
tide synthesis by catalyzing the important step PRPP to 
inosine monophosphate (IMP) [48–50]. Two important 
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rate-limiting enzymes, adenylosuccinate synthase (ADSS) 
and IMP dehydrogenase (IMPDH), catalyze the conver-
sion of intracellular IMP to succinyl-AMP and xantho-
sine monophosphate (XMP) and then to AMP and GMP 
which are gradually degraded to xanthine and eventually 
hydroxylated to uric acid (UA) under the action of xan-
thine oxidase (XO) [51].

Purine‑metabolizing enzymes and mechanisms 
in OC
Ectonucleoside triphosphate diphosphohydrolase 
and ectosolic‑5′‑nucleotidase
Ectonucleoside triphosphate diphosphohydrolase (CD39, 
EC 3.6.1.5) and ectosolic-5′-nucleotidase (CD73, EC 
3.1.3.5) are two membrane-bound ectonucleotidases. 
CD39 is the rate-limiting enzyme for the continuous 
dephosphorylation of eATP to extracellular AMP (eAMP) 
[52]. The 5’-nucleotidase activity of CD73 limits the rate 
of hydrolysis from eAMP to membrane-permeable eADO 
(Fig. 2) [53]. The eADO creates a highly immunosuppres-
sive microenvironment by inhibiting the cytotoxicity of 
CD8 + T cells and NK cells while increasing activation of 
Treg cells and M2 macrophages [54–57]. This implies the 
balance between eATP and adenosine, which is jointly 
maintained by CD39 and CD73, is closely related to the 
immune-suppressive tumor microenvironment.

Traditionally, CD39 is considered as a contactor 
between immune cells. Tumor-reactive T cells can be 
identified by the expression of CD39 alone or the co-
expression with CD103 [58, 59]. In recent years, it has 
been shown that CD39 is widely expressed in multi-
ple human cancers, and high-level CD39 is found in 
M2-polarized tumor-associated macrophages (TAMs) in 
OC tissues [10, 14, 15, 60, 61]. STAT3 induces the acqui-
sition of CD39 on cell surface in TME to suppress T cell 
response [62]. Noteworthy, it is IL-27 that mediates the 
immunosuppression with CD39 involvement, whose pol-
ymorphisms is related to the susceptibility to OC [10, 63]. 
Furthermore, CD73 is expressed on the surface of OC, 
and high-level CD73 appears to be significantly associ-
ated with poor prognosis in patients with high-grade 
serous OC, which, as mentioned previously, is probably 
because that CD73 indirectly suppresses CD8 + T cells 
and promotes immune escape [16].

Surprisingly, the study by Hoon Kyu Oh et  al. found 
that patients with CD73 overexpression present more fre-
quently with low stage, moderate differentiation, no lymph 
node metastasis, and negative cytologic results, which 
means that more CD73 may lead to a better prognosis [17]. 
A study regarding ovarian tumor-initiating cells found that 
CD73 is essential for OC initiation and growth, and is able 
to regulate tumor-initiating cells at the transcriptional 
level to promote expression of epithelial–mesenchymal 

transition (EMT)-related genes [64]. Besides, blocking 
CD73 reverses drug resistance in cisplatin-resistant OC 
cells [65]. Studies on other human tumors have reported 
that AKT signaling plays a role when CD73 promotes 
tumor progression and metastasis [66–69]. However, more 
mechanistic studies are needed in OC.

Current researches have noted that the anticancer 
effect of CD39 or CD73 inhibitors depends overwhelm-
ingly on relieving T cell targeted immunosuppression 
and additionally on myeloid-deriver suppressor cells 
(MDSCs), which suggest CD39 and CD73 may serve as 
potential therapeutic targets for OC treatment [70–73]. 
A study found the antitumor activity can be mediated by 
blocking CD39 via eATP-P2X7-ASC-NALP3-inflammas-
ome-IL18 pathway [74]. Besides, CD39 inhibitor POM-1 
partially relieves the immunosuppressive function of 
TAMs [10]. As we would expect, anti-CD73 antibody 
reverses the immunosuppressive environment developed 
by docetaxel in OC but the inhibition of CD73 alone 
rather than CD39 is less effective [75]. Thus, the proto-
col for co-suppressing CD39 and CD73 is expected. An 
important finding is that metformin, the first-line drug 
for type-2 diabetes, blocks CD39 and CD73 by increasing 
AMPKα phosphorylation and inhibiting HIF-α pathway 
to interrupt immunosuppression caused by MDSC as 
well as enhance the anti-tumor activity of CD8 + T cells 
[14]. In addition, a pivotal immunosuppressive factor 
programmed death-1 receptor (PD-1) encourages tumor 
spread through interfering protective immunity [76]. 
Anti-PD-1 combined with anti-CD39 or anti-CD73 dem-
onstrates a more pronounced slowing of tumor growth 
[74, 77]. In any case, there is still a long way to go to clar-
ify the specific roles and mechanisms of CD39 and CD73, 
and deep studies will provide new insights into tumor 
immune networks.

Adenosine deaminase
Adenosine deaminase (ADA, EC 3.5.4.4) catalyzes the 
irreversible hydrolytic deamination of adenosine and 
deoxyadenosine, the final products of which are ino-
sine and deoxyinosine (Fig. 3) [18, 78, 79]. There are two 
isozymes of human ADA. ADA1 regulates adenosine 
concentration in the intracellular and interacts extracel-
lularly with the adenosine receptor or dipeptidyl pepti-
dase 4 (DDP4, EC 3.4.14.5) on the surface of immune 
cells [80, 81]. DDP4, expressed as a type II transmem-
brane protein, plays a pro-tumor role in a variety of 
human tumors and has the potential to act as a positive 
prognostic predictor [82]. It was reported that the inter-
action between ADA and DDP4 on the cell surface could 
regulate T cell activation and lymphocyte-epithelial cell 
adhesion [18, 83]. ADA2, with low abundance in humans, 
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is mainly found in serum and its deficiency is associated 
with autoinflammatory diseases [84–87].

ADA level is significantly elevated in the serum and 
peritoneal fluid of OC patients and is positively corre-
lated with pathological subtype and grade [19]. This may 
be a self-rescue measure in response to apoptosis caused 
by accumulation of toxic substrates adenosine and deoxy-
adenosine. D’Almeida SM et al. found that ADA, similar 
to CD39 inhibitors, partially blocked immunosuppres-
sion of TAMs [10]. At the same time, as a receptor of 
ADA, DDP4 is overexpressed strongly and the expres-
sion level is associated with FIGO stage or lymph node 
metastasis [88]. Besides, DDP4 increases the adhesion 
potency of OC to mesothelial cells with the participa-
tion of fibrin, and blocking DDP4 significantly inhibits 
cancer migration and invasiveness [89]. Sitagliptin, a 
selective DDP4 inhibitor, increases caspase 3/7 activity 
in OC by co-treatment with paclitaxel, and maintains 
apoptosis induction through the ERK and Akt signaling 
pathway [90, 91]. These studies imply that the application 
of ADA and DDP4 inhibitors seems to favor tumor-cell 
death. However, it is interesting to note that the addition 
of ADA reversed the decreased metastatic capacity of 
OC caused by adenosine [92]. Similarly, overexpression 

of DDP4 leads to enhanced chemosensitivity of OC cells 
to paclitaxel and reduced tumor cell invasiveness due to 
aberrant expression of E-cadherin, MMP-2 and TIMP 
[93–95]. These puzzling results suggest that ADA and 
DDP4 still need substantial and in-depth studies and 
their interaction could act as potential biomarkers or 
therapeutic targets in OC.

Adenosine deaminases acting on RNA(ADAR, EC 
3.5.4.37)catalyzes the deamidation of adenosine on 
dsRNA to inosine, which means A-to-I RNA editing 
(Fig. 3) [96]. There are three members of the ADAR fam-
ily: ADAR1 and ADAR2 are primarily used for RNA edit-
ing, and ADAR3 inhibits their editing activity by binding 
to substrates of the first two [97–99]. ADAR-triggered 
aberrant RNA editing regulation to promote tumor 
growth is widely observed in a variety of human solid 
tumors [100, 101]. The frequent over-editing of Cyclin 
I (CCNI) by ADAR1 in OC was found to produce pep-
tide products that activate T-cell responses and specifi-
cally kill tumor cells [21]. Marek Cybulski et al. detected 
that the immune responses to CCNI in the nucleus and 
cytoplasm of epithelial OC are related to abnormal cell 
cycle but not to chemosensitivity [102]. Furthermore, 
ADAR1 is reported to induce tumor progression by 

Fig. 1  De novo, salvage and degradation pathways of purine nucleotides under the regulation of purine-metabolizing enzymes. The de novo 
pathway converts PRPP to IMP and, ultimately, GMP and AMP that further involve in nucleotide synthesis. The salvage pathway recovers purine 
bases and purine nucleosides to generate purine nucleotides. The degraded purine base becomes Xan with eventual conversion to UA. Cyan: 
de novo pathway; red: salvage pathway; yellow: degradation pathway; gradient color: involved in multiple metabolic pathways; arrows: purine 
metabolic pathways; squares: purine-metabolizing enzymes involved in related pathways. R-5-P: ribose 5-phosphate; PRPP: 5-phosphoribosyl-1-py
rophosphate; Gln: glutamine; THF: Tetrahydrofolate; Asp: aspartate; Hyp: hypoxanthine; Ino: Inosine; IMP: inosine monophosphate; Xan: xanthine; 
XMP: xanthosine monophosphate; Gua: guanine; GMP: guanosine monophosphate; Ade: adenine; Ado: adenosine; AMP: ado monophosphate; 
SAMP: succinyl-AMP; UA: uric acid; PPAT: phosphoribosyl pyrophosphate amidotransferase; IMPDH: IMP dehydrogenase; GMPS: GMP synthase; ADSS: 
adenylosuccinate synthase; ADSL: adenylosuccinate lyase; HPRT: Hyp Gua phosphoribosyltransferase; APRT: Ade phosphoribosyltransferase; ADA: 
Ado deaminase; AK: adenylate kinase; PNP: purine nucleoside phosphorylase; XO: xanthine oxidase
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impairing Let-7d in malignant tumors [103]. Studies 
have found that miRNA Let-7d plays a suppressive role 
in a variety of human tumors and its overexpression may 
inhibit HMGA1 by regulating the p53 signaling pathway 
to enhance chemosensitivity [104–107]. These studies 
provide us with inspiration for gene editing to regulate 
tumor progression. Overall, this is a promising therapeu-
tic concept, but the specific mechanisms still need to be 
explored more deeply.

Adenylate kinase
Adenylate kinase (AK, EC 2.7.4.3) catalyzes the revers-
ible transfer of phosphate group from ATP to AMP 
in purine synthesis pathway. AK-induced AMP signal 
changes affect adenosine pools status and energy infor-
mation through metabolic sensors, which subsequently 
balance ATP level to regulate energy metabolism [108, 
109]. AK family isozymes AK1-9 have been identified in 
human tissues [110], and existing studies have reported 
that AK1, 2, 4, 6 and 7 subtypes function in the regula-
tion of tumor growth, metabolism, energy allocation and 
invasion [111–114]. So far, researches on AK in OC have 
been focused on AK4 and AK7.

AK4 is mainly expressed in kidney, heart and liver 
tissues, probably caused by the high-mitochondrial 

content. Significantly elevated level of AK4 is also found 
in some highly aggressive tumors [115–117]. Research 
has revealed that AK4 stabilizes the purine nucleotide 
pools and balances energy through the regulation of 
AMPK [118], and is able to interact with HIF-1 to regu-
late mitochondrial activity and enhance cellular hypoxia 
tolerance by promoting hypoxia [116, 119]. Cellular drug 
resistance is enhanced due to the progress in resistance 
to hypoxia. The interaction of hypoxia on AK4 level is 
different in diverse cell lines [120], however, it is clear 
that changes in AK4 level are able to protect cells from 
environmental stimuli, and blocking AK4 can resist the 
protective mechanism of cells against hypoxic stress 
[119]. AK4 can be found in oocytes, follicular epithe-
lial cells and corpus luteum cells in normal ovary tissue 
[121]. AK4 is overexpressed in OC and the expression 
level is significantly correlated with tumor size and FIGO 
stage [26]. A meaningful finding is that upregulation of 
miRNA-3666 inhibits OC cell proliferation and migra-
tion by blocking the STAT3/AK4 axis and inducing apop-
tosis simultaneously [27]. Besides, AK4 favors tumor 
development and metastasis in an ATF3-dependent man-
ner [122], which interestingly plays contradictory roles of 
either inducing apoptosis or promoting proliferation in 
different types of OC [123, 124].

Fig. 2  CD39 and CD73 in TME of OC. CD39 and CD73 localized on the surface of OC cells inhibit immune responses mediated by T cells, MDSC, 
and TAM in TME, and also induce cisplatin resistance. CD39 and CD73 dephosphorylate eATP to eAMP, ultimately converting it to eAdo. STAT3 
induces cell surface acquiring CD39 in TME to promote immunosuppression. Metformin facilitates AMPKα phosphorylation and inhibits the HIF-α 
pathway to block the immunosuppression caused by high expression of CD39 and CD73 on MDSC. MDSC: myeloid-deriver suppressor cell; TAM: 
tumor-associated macrophage; TME: tumor microenvironment; eATP: extracellular ATP; eAMP: extracellular AMP; eAdo: extracellular Ado
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AK7 is mainly expressed in cilia-rich sites such as 
respiratory tract and fallopian tube [109, 110]. Ciliary 
structural abnormalities caused by AK7 damage often 
led to primary male infertility or primary ciliary dyski-
nesia [125–127]. Abnormal activation or loss of primary 
cilia will affect the progression and prognosis of diverse 
tumors. Study reported that cilia-related genes are lowly 
expressed in glioblastoma, breast cancer, OC and colon 
adenocarcinoma; in contrast, they are overexpressed in 
clear cell renal cell carcinoma, rectal adenocarcinoma, 
lung adenocarcinoma and lung squamous cell carcinoma 
[128]. It is well known that cilia play a key role in assist-
ing transport and picking in the female reproductive sys-
tem. Furthermore, some studies support the ability of 
cilia as angiopoietin (Ang) sensory organ to maintain the 
morphological and motor homeostasis of ovarian tissue 
[129, 130]. Recent studies support the standpoint that 
the majority of OC originate from the cilia-rich fallopian 
tube [131] and the Ang/Tie signaling pathway associated 
with cilia formation may be relevant to OC development 
and formation [129, 132] and the expression of Ang2 is 
closely related to angiogenesis in OC [133]. Thus, it is 
reasonable to speculate that AK7 may partially influence 
the ability of cilia to intervene in OC progression. Zhang 
et al. found that AK7 level in OC is significantly reduced 
by analysis of the TCGA database, the degree of which is 
positively correlated with tumor stage [25]. And this phe-
nomenon is mainly related to conduction pathways such 

as EMT, TGF-b signaling and UV response. More impor-
tantly, OC patients with lower AK7 expression have a 
worse prognosis. These studies not only suggest that 
AK7 exhibits potential as a prognostic indicator for OC 
but the possibility of future treatment by elevating AK7 
expression level or interfering with cilia activity.

Hypoxanthine guanine phosphoribosyltransferase
HPRT (EC 2.4.2.8) is one of the classical enzymes of 
the purine salvage pathway, which utilizes the transfer 
of ribose phosphate from PRPP to form IMP and GMP 
for DNA synthesis and repair [134]. As a housekeeping 
gene, HPRT is maintained at a low level in all somatic 
cells except the central nervous system [135]. HPRT defi-
ciency leads to failure of the salvage for hypoxanthine and 
guanine, increasing purine degradation and UA produc-
tion and triggering a series of diseases: partial deficiency 
causes gout-like symptoms, while complete deficiency 
results in Lesch-Nyhan syndrome [136]. Although other 
enzymes have complementary roles, these symptoms are 
unique to HPRT deficiency [134].

HPRT is closely associated with tumor development 
and is overexpressed in various malignancies. However, 
it has been reported that HPRT level is fluctuating in OC 
but stable in borderline ovarian tumor and normal ovar-
ian tissue, making it a suitable reference gene for bio-
chemical processes [33, 137]. HPRT performs a potential 
auxiliary role in DNA mismatch-repair. The reason for 

Fig. 3  Role and mechanism of ADAR, ADA and its receptor DDP in OC. ADAR mediates A to I RNA editing to elicit CD8 T cell response and interferes 
with HMGA1 via miRNA Let-7d acting on OC apoptosis and chemotherapy sensitivity. ADA enhances the immune potency of TAM in TME with the 
capacity to convert Ado to inosine. DDP4, an important receptor for ADA, facilitates the migration, invasion and adhesion to mesothelial cells of OC. 
The DDP inhibitor Sitagliptin, increases caspase 3/7 activity to induce OC apoptosis on the one hand, and maintains the effect of paclitaxel on OC 
apoptosis via ERK and Akt pathways on the other hand
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mismatch is that most DNA polymerases preferentially 
pair 7,8-dihydro-8-oxoguanine with adenine rather than 
cytosine during DNA oxidation [138]. The MutY DNA 
glycosylase homologue recognizes and repairs mis-
matches, whose level changes lead to opposite changes 
in the mutation rate of HPRT in OC cell line A2780 
[139]. It implies that high-level HPRT mutation is asso-
ciated with DNA mismatch activity. Nevertheless, HPRT 
mutation rate is reduced in OC with defects in DNA 
mismatch repair gene hMSH2 [140]. Also, HPRT muta-
tion may be in connection with tumor risk and chemo-
therapy resistance in OC [141–145]. These contradictory 
results suggest that more research is needed to eluci-
date the relationship between HPRT mutation and DNA 
mismatch repair and effects on tumors. In general, cur-
rent research on HPRT is focused on report gene, while 
tumor-related research on HPRT is relatively stagnant. 
In-depth investigations are still needed to explore its spe-
cific effects on tumors and therapeutic strategies.

Inosine monophosphate dehydrogenase
The catalytic oxidation of IMP to XMP by inosine 
monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) 
in cytoplasm is the NAD + -dependent rate-limiting 
step in de novo synthesis of GTP [146]. GTP, a classical 
signaling molecule that regulates various cellular activi-
ties as well as an energy supplier for protein synthesis, is 
elevated in a variety of tumor cells [147]. Although HPRT 
recovers guanines in salvage pathway, it is unable to meet 
the demand of malignant tumor cells. Elevated IMPDH 
activity enhances the ability of cancer cells to synthe-
size GTP, which provides raw material to supply rapid 
proliferation.

Abnormally high level of IMPDH is found in multiple 
malignancies, including OC [28, 148, 149]. Among the 
two isoforms of human IMPDH, IMPDH2 rather than 
IMPDH1 is upregulated in a variety of human tumors 
[29, 149–153]. Researches have reported that high 
expression of IMPDH2 in OC is associated with different 
tumor types, lower survival rates and higher stage, which 
implies a poorer prognosis [29]. IMPDH2 activates PI3K/
Akt and Wnt/β-catenin pathways to promote progression 
or drive EMT processes in diverse cancers [28, 148]. The 
abnormally increased activity makes IMPDH, especially 
IMPDH2, a new target for anti-cancer drug development.

Indeed, the use of IMPDH inhibitor as an antineo-
plastic agent has a long history [154]. A few studies have 
linked IMPDH inhibitor to apoptosis: downregulation of 
MEK/ERK pathway leads to Bcl-2 inhibition [155]; down-
regulation of the Src/PI3K/Akt pathway with inhibition of 
mTOR to activate Bax and Bak; inhibition of mTORC1 or 
c-Myc signaling reduces ribosomal RNA synthesis [147, 
156, 157]; drive of mitochondria-dependent mechanisms 

causes apoptosis [158]. Katherine Y et al. found that the 
addition of thiazole-4-carboxamide adenine dinucleotide, 
an intracellular active metabolite of tiazofurin, is effec-
tive in inhibiting IMPDH activity in OC [28]. Utilizing 
the IMPDH inhibitor benzamide riboside (BR) makes it 
possible to observe apoptosis induced by cell cycle arrest 
due to c-Myc and downstream Cdc25A inhibition [28, 30, 
159]. Unfortunately, BR-induced apoptosis is only seen in 
partial OC cell lines, and the specific regulatory mecha-
nisms between IMPDH inhibitor and apoptosis remain 
unknown. Furthermore, the development and applica-
tion of IMPDH inhibitor has been limited by unstable 
effects, adverse effects at high doses, and discrepancies in 
IMPDH levels in different tumors [154]. For now, it is still 
of much value to explore IMPDH such as immunosup-
pression or biomarkers and this may be an opportunity to 
reactivate it as an antitumor agent.

Purine nucleoside phosphorylase
Purine nucleoside phosphorylase (PNP, EC 2.4.2.1), 
which catalyzes the reversible phosphorylation of adeno-
sine, guanosine and inosine, is an important enzyme in 
salvage and degradation pathway [32]. Among them, 
homologous E.  coli PNP (ePNP) rather than human 
PNP is able to enrich purine pools with adenosine as a 
substrate [160]. Gene directed enzyme prodrug therapy 
(GDEPT), also known as suicide gene therapy, relies on 
transgenic methods to encode enzymes that convert 
non-toxic drug precursors into active toxic metabolites 
to target tumor cells injury [161]. The anti-tumor effect 
of selective expression of the suicide gene PNP has been 
observed in a variety of malignancy researches (Fig.  4) 
[162, 163]. PNP-GDEPT exerts anti-tumor activity in a 
unique way compared to others. It cleaves 6-methylpu-
rine-2’-deoxyriboside and fludarabine phosphate to toxic 
purine analogs 6-methylpurine and 2-Fluoroadenine, 
which inhibits nucleic acid and protein synthesis [164]. 
These toxins are then released into extracellular matrix 
and remain active [32]. That is, toxic metabolites can 
spread to surroundings to achieve significant bystander 
killing effect even if only few tumor cells express ePNP, 
which suggests a potential chemotherapeutic advantage 
[165, 166].

A few attempts of this approach have been tested in 
OC cells. V K Gadi et al. have successfully modeled ePNP 
bystander killing which exerts significant antitumor 
effects of OC in vitro and in vivo [166]. Other researchers 
reported that adenovirus-mediated PNP-GDEPT caused 
upregulation of Bax, Bik and Bok and downregulation 
of Bcl-2 [167]. Meanwhile, there was synergy between 
PNP-GDEPT and docetaxel or carboplatin on platinum-
resistant OC cells, implying the potential for reversing 
drug resistance. Unfortunately, this approach exhibited 
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a low success rate. In this regard, researchers combined 
PNP-GDEPT with high-body-temperature environment 
created by human telomerase reverse transcriptase and 
heat shock elements to improve PNP expression effi-
ciency [168]. Thus, while novel evidence is currently lim-
ited, these investigations may provide a new strategy for 
GDEPT in OC.

Other purine‑metabolizing enzyme
Dihydrofolate reductase (DHFR, EC 1.5.1.3) and 
5,10-methylenetetrahydrofolate reductase (MTHFR, 
EC 1.5.1.20) are not conventional purine metaboliz-
ing enzymes as they control the metabolism of purines 
and pyrimidines indirectly by regulating folate synthesis 
(Fig.  5). Folate acts as a raw material and coenzyme as 
well as a methyl donor in the biosynthesis of nucleotides 
[169]. DHFR reduces dihydrofolate to tetrahydrofolate 
(THF) which subsequently acquires one-carbon units 
from amino acids to install methyl groups [170]. MTHFR 
continues to convert methylene-THF to methyl-THF for 
further participation in nucleic acid biosynthesis. In fact, 
methyl-THF, methylene-THF and formyl-THF are inter-
converted to provide one-carbon units for methionine 
cycle pathway, thymidylate synthesis pathway and purine 
synthesis pathway in turn [171]. Studies have reported 
that folate-mediated one-carbon metabolism plays an 
important supporting role for rapidly proliferating cells, 
especially tumor cells [169] and DNA methylation is 
expected to be used as an early diagnostic marker for var-
ious malignancies [172–174]. Overall, folate metabolism, 
the upstream of purine metabolism, serves an important 
role in tumor development.

Multiple studies have shown that the overexpres-
sion of DHFR is associated with platinum resistance in 
OC [36–38]. Interestingly, Jia Chen et  al. reported that 
DHFR expression is increased in benign ovarian tumor 
but decreased in malignant OC with a significant cor-
relation with omentum metastasis [39]. In this case, 
however, DHFR expression is still significantly higher 
in platinum-resistant patients than platinum-sensitive 
patients, highlighting the potential diagnostic value of 
DHFR in chemoresistance. Actually, the commonly used 
chemotherapy drug methotrexate (MTX) targets DHFR 
to block THF production to inhibit rapidly proliferating 
tumor cells [175]; however, given its toxicity and resist-
ance, there has been a search for new DHFR inhibitors. 
Pemetrexed, a DHFR and thymidylate synthase inhibitor, 
activates AMPK and inhibits mTOR signaling pathway 
by synergizing with temozolomide (TMZ) to obstruct 
tumor growth [176]. Berberine disturbs folate-metabo-
lizing enzymes including DHFR to reduce the viability of 
OC cells, especially platinum-resistant cells. In addition, 

there is evidence that some compounds with quinoxaline 
structures are not cross-resistant with cisplatin and show 
remarkably inhibition on OC growth, demonstrating the 
potential as DHFR inhibitors [37, 177].

As a rate-limiting enzyme for folate metabolism, 
MTHFR with low viability slows down the synthesis 
and repair of nucleotides and disrupts the methylation 
of homocysteine [178, 179]. Defective MTHFR in OC 
combined with overexpression of high-affinity folate-
binding proteins lead to increased folate uptake, imply-
ing that low-activity MTHFR is a potential risk factor 
for OC [40]. Current studies have found that MTHFR 
single nucleotide polymorphisms (SNPs), particularly 
C677T polymorphism which affects enzyme activity, 
are likely to increase tumor risk [41, 180]. Many stud-
ies on the association of C677T with susceptibility and 
risk of OC in Asians rather than whites have been per-
formed [181–184]. However, no effect of C677T poly-
morphism in Asians was found in a 2012 meta-analysis, 
possibly because of the limitation of sample size [42]. 
A possible association between high folic acid intake 
and low patient survival was reported in research by S 
C Dixon et  al. [43]. However, an interesting finding is 
that a reduced risk of OC in Chinese with high folate 
intake was more pronounced in MTHFR 677CC muta-
tion, but no such protection was observed in Austral-
ians [185, 186]. This discrepancy could be attributed to 
the limitations of the sample and ethnicity, emphasiz-
ing the need for more research. Recently investigators 
have examined the effect of MTHFR on the efficacy of 
5-fluorouracil (5-FU) chemotherapy in OC patients. 
Silencing HOX transcript antisense RNA elevates the 
sensitivity to 5-FU due to decreased MTHFR meth-
ylation [187]. Besides, MTHFR SNP has been found 
correlated with prognosis or hematologic toxicity in 
5-FU-treated patients in other human tumors [188–
190]. Yet research on this link in OC has remained an 
under-explored domain and more in-depth explora-
tions are needed.

Purinergic signaling in OC
Key agonist, eATP and eADO
The extracellular purine, mainly eATP and eADO, has 
active traffic with intracellular signals. In normal physi-
ological environments, high eATP and low eADO levels 
are maintained through exocytosis or vesicles [191]. Nev-
ertheless, the overall level is subject to strict limitations 
[192]. The eATP concentration increases dramatically 
with intracellular ATP in disordered TME (even up to 
two times the intracellular concentration), which may be 
due to active release from tumor cells or immune cells, 
or to abnormal metabolites. As previously described, 
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CD39 and CD73 contribute to the progressive dephos-
phorylation of eATP to eADO. Continuous stimulation 
of ATP causes active phospholipase D to promote ATP 
degradation [193]. Meanwhile, hypoxia effectively stimu-
lates adenosine release [194–196], possibly due to HIF-
1α-induced adenosine kinase inhibition that impedes the 
conversion of ADO to AMP and thus promotes its efflux 
[197], or possibly as a consequence of retaliatory metab-
olism [196]. The cascade response results in abnormal 
levels of both intra- and extracellular ATP and ADO to 
regulate tumor development via purinergic signaling as 
autocrine or paracrine messengers [13].

Generally, eATP and eADO are considered as impor-
tant signals to regulate immunity with pro-inflammatory 
and anti-inflammatory effects, respectively [198, 199]. 
The sharp increase in eADO hinders immune cell acti-
vation to exert pro-cancer effects and reduces survival 
of OC patients [200–203]. This effect is closely related 
to purinergic receptors, which will be described later 
(Fig.  6). For other malignant features of ovarian can-
cer, eATP and eADO also play see-saw roles. The eATP 
activates corresponding purinergic receptors and its co-
expressed KCa3.1 channel, triggering subsequent com-
plex electrical membrane responses that contribute to 
cancer migration [204]. Conversely, eADO supplementa-
tion or its analogs have been reported to inhibit the abil-
ity of OC to invasion or angiogenesis, partially dependent 
on the promotion of RhoGDI2 subsequently related gene 
expression [205, 206]. The effect of adenosine analog sup-
plementation on OC chemoresistance likewise depends 

on the type of receptor activated [207]. Notably, low 
doses of adenosine were associated with G0/G1 phase 
arrest, whereas high concentrations of adenosine induced 
both early and late apoptosis in a dose-dependent man-
ner by activating the Bcl-2/Bax and caspase-3 pathway in 
OC cells [208]. These complex effects shift our thinking 
to future studies of eATP/eADP ratios rather than single 
substance levels.

Purinergic receptors and their therapeutic potential
Previous studies have shown that purinergic receptors 
are expressed in almost all immune cells, and an increas-
ing number of studies have identified the presence of 
purinergic receptors in tumor cells [209]. The identified 
purinergic receptors include P1 receptors that medi-
ate signals triggered by adenosine and P2 receptors that 
respond to adenine and uridine nucleotides. In general, 
P1 receptors and P2 receptors mediate pro-inflammatory 
and anti-inflammatory responses, respectively, which 
should actually be more dependent on specific receptor 
types and signaling transduction ratios [210].

P1 receptors
P1 receptors, also known as adenosine receptors, are 
divided into four subtypes, A1R, A2AR, A2BR and A3R, 
of which A2R is a key factor in protecting tissues from 
excessive immune responses and commonly expressed 
in a variety of human tumours [211–214]. A2AR is a 
high-affinity receptor involved in the regulation of T-cell 
function to promote immune evasion, and inhibits the 

Fig. 4  Application of PNP-GDEPT in OC. PNP cleaved MePdR and Fludarabine phosphate to the toxic products MeP and 2-FA. Implementation 
of GDEPT using ePNP or adenovirus-mediated PNP is able to induce apoptosis in OC cells and exert the bystander effect. PNP-GDEPT acts 
synergistically with docetaxel and cisplatin and high-body-temperature environment enhance the expression efficiency of ePNP. GDEPT: gene 
directed enzyme prodrug therapy; ePNP: E. coli PNP; MePdR: 6-methylpurine-2’-deoxyriboside; MeP: 6-methylpurine; 2-FA: 2-Fluoroadenine
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secretion of defensive substances by neutrophils to atten-
uate the inflammatory response [54, 215]. A2BR appears 
to have low affinity and is more expressed in macrophages 
and dendritic cells. Another study found that activation 
of A2BR was able to interfere with TME via MDSCs to 
promote cancer growth [216]. Besides, the high-affinity 
receptors A1R and A3R are considered as immune-pro-
moting adenosine receptors, possibly because of pro-
moting IL-10 expression or inhibiting cAMP production 
[217, 218]. Therefore, adenosine receptors deserve to be 
another target of intervention in tumor immunotherapy 
and hold considerable promise.

A2BR and A3R are the predominantly expressed aden-
osine receptors in OC [219]. It has been reported that 
activation of A2BR significantly increases cAMP levels 
in OC, while activation of A3R exerts the opposite effect, 
and the other two receptors do not affect cAMP levels, 
implying that A2BR and A3R are major functional adeno-
sine receptors in OC. In addition, A2BR activation signif-
icantly inhibits the migration ability of OC and maintains 
the epithelioid phenotype [220]. Kaplan–Meier survival 
analyses showed that OC patients with low A2BR expres-
sion levels, especially with early-stage OC, had shorter 
OS. Interestingly, however, Hajiahmadi et  al. found that 
either the A2BR agonist NECA or the A3R agonist IB-
MECA dose-dependently inhibited OC cell viability in a 
manner that related to the loss of mitochondrial mem-
brane potential to activate apoptosis [221, 222]. Although 

these findings reflect the potential OC-inhibitory effect 
of activating A2R and A3R, changes in cAMP, which link 
essential malignant features such as invasion, metastasis, 
apoptosis resistance and chemoresistance, are not men-
tioned [223–225]. The non-dominantly expressed aden-
osine receptor, A2AR, plays a role in assisting chimeric 
antigen receptor (CAR) T cells from hindrance by the 
immunosuppressive microenvironment [226]. Liu G et al. 
found that anti-mesothelin CAR T cells released more 
TNF-α and IFN-γ after suppressing A2AR, and extremely 
enhanced anti-OC efficacy, which provided a new per-
spective for OC treatment [227]. It should be emphasized 
that the complex regulatory mechanisms and effects are 
still not completely clear because different cell status, 
receptor types, and environmental conditions may cause 
influences, and further studies to identify the pro- or 
anti-cancer roles played by adenosine receptors and the 
specific mechanisms are urgent and necessary.

In fact, targeting adenosine receptors has shown anti-
cancer therapeutic potential in OC. Theobromine, a 
non-selective adenosine receptor antagonist, inhibits 
OC angiogenic activity by reducing vascular endothe-
lial growth factor production [228]. Further studies 
revealed that the inhibition of angiogenesis was associ-
ated with A2BR interaction of CD45 lymphocytes [229, 
230]. However, blind application of the adenosine ana-
logue ZM241385, an A2R antagonist, may increase the 
resistance to cisplatin [207], and the A1R antagonist 

Fig. 5  Role of DHFR and MTHFR in OC. DHFR and MTHFR are involved in the formation of important one-carbon units for purine metabolism. 
DHFR promotes drug resistance and inhibits omentum metastasis, while resisting apoptosis caused by TMZ through AMPK pathway activation and 
mTOR pathway inhibition. Berberine, PTX, MTX, and some quinoxalines (453R&311S) have been found to act as DHFR inhibitors. MTHFR inhibits FBP 
expression and enhances drug sensitivity, which is inhibited by HOTAIR. TMZ: temozolomide; PTX: pemetrexed; MTX: methotrexate; 453R: 3-methy
l-7-trifluoromethyl-2(R)-[3,4,5-trimethoxyanilino]-quinoxaline; 311S: 3-piperazinilmethyl-2[4(oxymethyl)-phenoxy]-quinoxaline; FBP: folate binding 
protein
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PSB36 brought a sensitizing effect. Overall, activation 
of adenosine receptors can be anti- and pro-cancer, and 
the opposing efficacy of their dual action may bring val-
uable insights for future clinical therapeutic interven-
tions with further studies.

P2 receptors
P2 receptors consist of two subfamilies, P2XRs and 
P2YRs. P2XRs are ATP-gated non-selective cationic 
conductance channels with seven isoforms (P2X1-7R) 
that are expressed in a variety of tumor cells, immune 
cells, and stromal cells [209]. The eATP is a recog-
nized agonist, and some non-nucleotide compounds 
have been reported to modulate it as well [231–233]. 
P2XRs, especially P2X7R, are the ones that have 
been focused on for their multiple roles in mediating 
tumor growth, metastasis, invasion, drug resistance, 
and death, in addition to pro- and anti-inflammatory 

effects [234–238]. Overexpression of P2X7R in OC 
contributes to cell proliferation and viability [239, 
240]. Vázquez-Cuevas FG et al. found that activation of 
P2X7R caused an increase in intracellular Ca(2+) con-
centration and phosphorylation of ERK and AKT, but 
did not cause apoptosis [241]. Notably, eATP, or actu-
ally mainly the activation of P2X7R, promotes NLPR3 
inflammasome activation and assembly, followed by 
activation of caspase 1, which is dependent on ATP 
induction and subsequently K(+) efflux [75]. Mean-
while, P2X7R drives IL-1β maturation in response to 
activation of the NLRP3 inflammasome [242]. It was 
shown that excessive NLRP3 in OC promotes EMT 
[243, 244] and mediates gemcitabine resistance [245] 
through the Wnt/β-catenin signaling pathway, and 
is associated with poorer OS [246]. Once NLRP3 is 
absent, the expression of P2X7R will be promoted, 
which contributes to cancer growth as a negative 

Fig. 6  Purinergic signaling pathway in OC. Extra- and intracellular adenosine and ATP are key agonists. Purinergic receptors are expressed in 
a variety of cells in OC TME. Activation or antagonism of these receptors, as well as interaction with other signaling will ultimately affect the 
progression and malignant features of OC
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feedback loop [247]. Co-localization of P2X7R/NLRP3 
in the adipocyte plasma membrane of omental tissue of 
OC patients implies its possible contribution to tumor 
metastasis [248]. However, it is noteworthy that antag-
onizing P2X7R inhibits pyroptosis via NLRP3/caspase1 
and promotes apoptosis mediated by Bcl-2/caspase9/
caspase3 pathway at the same time [249]. In addition, 
P2X7R stimulation in alternative activated M2 mac-
rophages has been reported to release abundant anti-
inflammatory proteins, suggesting a contribution to 
the inflammation resolution [238]. The P2X7R/NLRP3 
complex lacks detailed studies in OC, and the pro- 
and anti-inflammatory and even pro- and anti-cancer 
responses it mediates are incompletely understood as 
well. The balance between mutually inhibited pyropto-
sis and apoptosis may bring a fresh perspective to pre-
cisely fight OC.

P2YRs are G protein-coupled and contain a total of 
eight isoforms (P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, 
P2Y12R, P2Y13R and P2Y14R) in mammals. Compared 
to P2XRs, P2YRs are more sensitive to slight changes in 
local nucleotide or agonist concentrations [250]. These 
members are activated by different nucleotides, and 
only P2Y2R and P2Y11R are responsive to ATP [251]. 
The prominent contribution of P2YRs in tumor growth 
and metastasis cannot be ignored, which is associated 
with the regulation of intracellular Ca(2+) concentra-
tion and subsequently cAMP changes. In this regard, 
P2Y1R, P2Y2R, P2Y4R, P2Y6R bind to Gq-dominated 
protein subunits to activate PLCβ/IP3/DAG signaling 
pathway to increase intracellular Ca(2+) concentration, 
which may be affected by the acidic intracellular envi-
ronment [251, 252]. P2Y12-14R couple to Gi/o to inhibit 
adenylate cyclase activity to reduce intracellular cAMP 
levels. As previously described, low levels of ATP stimu-
late P2Y2R, and activate co-localized KCa3.1 channels to 
promote migration of OC cells [204]. Martínez-Ramírez 
AS et  al. suggested that the contribution of P2Y2R to 
OC cell migration may derive from an interaction with 
EGFR [253]. In addition, there is an increasing number 
of studies reporting the special status of platelets in OC. 
OC cells induce platelets activation, and in turn, platelets 
stimulate OC growth [254, 255]. Cho MS et al. revealed 
that activation of P2Y12R on platelets by ticagrelor con-
tributes to OC growth, for which eADP secreted by OC 
cells is an important activator [256]. P2Y2R and P2Y12R 
may play as pivots in OC progression, however, more 
specific mechanisms need to be further investigated.

Altogether, the understanding of purinergic receptors 
in OC is currently incompletely clear. More in-depth 
studies need to be conducted to map a detailed puriner-
gic signaling network in OC to provide novel insights for 
precise treatment.

Purine antimetabolites
Purine antimetabolites are one of the classical approaches 
to antitumor, which are chemical analogues of purine 
metabolism substrates and block purine metabolism 
by two mechanisms: mimic physiological substrates 
and compete for the same metabolic enzyme binding 
site to interfere with biochemical reaction rates result-
ing in reduced production of normal metabolites [257]; 
bind to the active site and generate inactive or even 
toxic metabolites which cause DNA damage and induce 
apoptosis [258]. Purine antimetabolites are mainly clas-
sified into thiopurines and purine deoxynucleoside ana-
logues according to the structure and mechanism [257]. 
Current researches on OC focuses on 6-thioguanine 
(6-TG), 6-mercaptopurine (6-MP), MTX and fludara-
bine (Table  2). Besides, here we classify clopidogrel, 
which targets purinergic receptors, as an atypical purine 
antimetabolite.

6-TG is a guanosine analogue that is converted by 
HPRT to toxic 6-thioguanine nucleotides, which exert 
pharmacological effects by binding to DNA [11]. It has 
been suggested that 6-TG may be an effective thera-
peutic agent for BRCA-deficient tumors, especially for 
platinum-resistant and PARP inhibitor-resistant tumors 
[259]. This is due to the fact that homologous recombi-
nation is reactivated in resistant cells without complete 
recovery from the damage caused by 6-TG. Unfortu-
nately, long-term treatment is not recommended because 
of its hepatotoxicity [270]. 6-MP is a structural analogue 
of hypoxanthine with a similar mechanism as 6-TG and a 
lower toxicity [271]. After treatment with 6-MP and MTX 
for two months, 30% of OC patients with BRCA muta-
tions showed stable disease status afterwards, and 14% 
showed longer-term clinical benefit [260]. Nevertheless, 
neutropenia and anemia are the most common adverse 
effects. A phase II clinical trial continues to evaluate the 
safety of 6-MP, which may provide an attack on BRCA-
deficient OC [270]. The mechanism of MTX resistance 
to purine metabolism was described above. MTX was 
recently reported to induce apoptosis by increasing ROS, 
inducing DNA damage and modulating mitochondrial 
membrane potential [261]. Oral low-dose MTX and 
cyclophosphamide may serve as maintenance therapy 
after chemotherapy for patients with advanced OC [272]. 
Furthermore, Courtney A Penn et  al. found that thera-
peutic combination of MTX and nanoparticle targeting 
TAM for OC exhibited superior activity over cisplatin 
alone [262]. At the same time, MTX ovarian toxicity can-
not be ignored [273]. As for fludarabine, a fluorinated 
nucleotide analogue of vidarabine, is relatively resistant 
to ADA inactivation [274]. It is first converted to 9-β-D-
arabino-furanosyl-2-fluoradenine (F-ara-A) that can be 
taken up by cells, and then to F-ara-A triphosphate which 
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inhibits nucleotide reductase, DNA polymerase and DNA 
ligase, and ultimately causes impaired DNA synthesis 
and apoptosis [12]. Fludarabine was found to reduce OC 
migration and adhesion by inhibiting the FAK/STAT1 
pathway [263] and was able to inhibit VEGF via Hif-1α 
and PI3K/AKT signaling pathways to arrest the progres-
sion of OC [264]. Moreover, it exerts synergistic effects 
with cisplatin, seemingly supporting its potential as a 
modulator of chemotherapeutic agents [265]. Two clini-
cal trials utilize fludarabine as an immunosuppressant to 
deplete lymphocytes for allogeneic NK cell therapy in OC 
patients [275, 276]. There were also some important dif-
ferences in other purine antimetabolites that contribute 
to the development of OC [277]. These conflicting roles 
indicate the need for more research and clinical trials on 
purine antimetabolites in OC. Additionally, interven-
tions on purinergic signaling are the result of atypical 
purine antimetabolites, which lack sufficient evidence for 
therapeutic trials in OC. High-dose clopidogrel has been 
shown to cause high-level P2Y12 blockade [267]. A con-
cern is that clopidogrel may increase the risk of toxicity 
when used with paclitaxel, as was found in a 60-year-old 
patient with OC [268]. A higher risk is also seen in the 
report by Park SH et al. [269]. It remains to be considered 
whether interventions on purinergic signaling pathways 
can provide benefits to OC patients.

Conclusions
Homeostasis of purine pools in vitro and in vivo is essen-
tial for the maintenance of healthy state and normal 
function of cells. The depletion of purine in normal cells 
can be saved by an increase in purine synthesis [278]. 
In some cases, excessive purine consumption is beyond 
the capacity of synthesis and is unable to be compen-
sated. For example, excessive DNA synthesis in S1 phase 
leads to a dramatic increase in purine consumption, or 
a plethora of purine neurotransmitters are released dur-
ing the active phase of certain neurons [279]. Imbalance 
of purine pools contributes to dysregulation of genomic 
stability and ultimately to metabolic disease or tumor 

development [280, 281]. Herein, we summarize the 
role of major purine-metabolizing enzymes, describe 
purinergic signaling pathways, outline the roles and 
mechanisms of partial purine antimetabolites and point 
out potential therapeutic strategies for targeting purine 
metabolism in OC.

In fact, purine-metabolizing enzymes also participate 
in other biological processes. For instance, CD39 and 
ADA are involved in immune regulation [18, 58, 59, 83]; 
IMPDH carries out the function of a transcription fac-
tor [282]; SAM Domain And HD Domain-Containing 
Protein-1 assists in regulating the cell cycle [283] and 
phosphoribosylaminoimidazole succinocarboxamide 
synthetase is correlated with DNA damage repair [284, 
285]. It can help to identify new interventions in tumor 
process if we focus on purine metabolic processes and 
understand the mechanisms of action of the relevant 
enzymes as well as the interaction with other biological 
processes. Additionally, uncontrolled tumor proliferation 
due to excessive purine synthesis plays a role in chemore-
sistance, which may be sensitized by inhibitors of purine 
metabolism [286]. Purine antimetabolites and other anti-
purine-metabolizing agents may provide an additional 
line of attack that would be a promising strategy to over-
come tumor resistance in combination with conventional 
chemotherapy.

However, it cannot be denied that purine metabolism 
in OC has not been comprehensively studied and is 
still at a relatively superficial stage. So far, most stud-
ies have only briefly described purine-metabolizing 
enzyme changes and subsequent cell apoptosis, without 
exploring the relationship and mechanisms between 
the two in detail. Several studies even showed contra-
dictory treatment results, probably caused by the lack 
of samples. Evidence above casts doubt on the credibil-
ity of the link between the two. Besides, it is difficult to 
determine whether adenosine disorders are caused by 
enzyme effect or an action of Adenosine itself, or are 
related to adenosine receptors. Likewise, it is a critical 
option to activate or antagonize purinergic receptors 

Table 2  The basic information and effects of 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel in OC

CAS number Molecular Formula Target FDA-
Approved 
Date

Effects in OC Ref

6-Thioguanine 154–42-7 C5H5N5S PRPP amidotransferase 1966 Not exactly [259]

6-Mercaptopurine 50–44-2 C5H4N4S PRPP amidotransferase 1953 Antitumor [260]

Methotrexate 59–05-2 C20H22N8O5 DHFR 1971 Antitumor [261, 262]

Fludarabine 21,679–14-1 C10H12FN5O4 Nucleotide reductase; DNA 
polymerase; DNA ligase

1991 Antitumor [263–266]

Clopidogrel 113,665–84-2 C16H16ClNO2S P2Y12R (in platelets) 1997 Not exactly [267–269]
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in OC. The interaction of purinergic signaling with 
hypoxia or NLRP3 inflammasomes is also a valuable 
reflection on how to intervene to obtain maximum 
benefit. Another limitation is that basic researches on 
OC treatment options targeting purine metaboliz-
ing enzymes or purinergic signaling pathways are cur-
rently stagnant and lack the support of clinical research 
results. Therefore, it is necessary to focus on the associ-
ation of purine metabolism with other human tumors, 
which may open up new possibilities for OC research.

Recent studies have reported that multiple kinases 
interfere with tumor progression by affecting purine 
de novo pathway via regulation of important transcrip-
tion factors or intervention with rate-limiting enzymes: 
DYRK3 regulates ATF4 transcriptional activity and 
inhibits PPAT to suppress hepatocellular carcinoma 
proliferation and metastasis [287]; UHMK1 modulates 
the NCOA3/ATF4 axis and may activates ATIC to pro-
mote gastric cancer development [288]; CLK3 stabilizes 
the USP13/Fbxl14/c-Myc axis to enhance cholangiocar-
cinoma aggressiveness [289]. These outcomes broaden 
the horizon, including targets beyond the enzymes that 
are directly involved in purine metabolism.

In any case, more researches are needed to under-
stand the mechanisms of aberrant purine metabolism 
in OC. In-depth knowledge of purine metabolic pro-
cesses may help to better understand cancer-related 
metabolic reprogramming and develop new inhibitors 
accordingly, which presents exciting opportunities for 
OC therapy. We will investigate this in more depth in 
the future and believe that this may become a promis-
ing novel strategy for OC therapy. 
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