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Experimental evidence for scale-induced category
convergence across populations
Douglas Guilbeault 1,2, Andrea Baronchelli 3,4 & Damon Centola 2,5,6,7✉

Individuals vary widely in how they categorize novel and ambiguous phenomena. This indi-

vidual variation has led influential theories in cognitive and social science to suggest that

communication in large social groups introduces path dependence in category formation,

which is expected to lead separate populations toward divergent cultural trajectories. Yet,

anthropological data indicates that large, independent societies consistently arrive at highly

similar category systems across a range of topics. How is it possible for diverse populations,

consisting of individuals with significant variation in how they categorize the world, to

independently construct similar category systems? Here, we investigate this puzzle experi-

mentally by creating an online “Grouping Game” in which we observe how people in small

and large populations collaboratively construct category systems for a continuum of

ambiguous stimuli. We find that solitary individuals and small groups produce highly diver-

gent category systems; however, across independent trials with unique participants, large

populations consistently converge on highly similar category systems. A formal model of

critical mass dynamics in social networks accurately predicts this process of scale-induced

category convergence. Our findings show how large communication networks can filter

lexical diversity among individuals to produce replicable society-level patterns, yielding

unexpected implications for cultural evolution.
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People exhibit substantial creativity and variation in how
they categorize novel and ambiguous phenomena1–6. This
observation has led decades of research to argue that

category formation in large social groups is unpredictable7–13.
Larger populations contain a greater diversity of people and thus a
greater diversity of categories that can be adopted through com-
munication networks, which are expected to lead to variable and
path-dependent cultural trajectories8–10,14–18. Meanwhile, there is
considerable evidence that independent populations consistently
arrive at highly similar category systems across a range of
topics19–21, including flora22, geometry23, emotion24, color25, and
kinship26. These findings pose a striking puzzle—how is it possible
for separate and diverse populations, composed of individuals
with significant variation in how they categorize the world, to
independently construct similar category systems19,27–29?

One explanation for the observed patterns of category con-
vergence across societies is that there are innate universals in
human psychology that arise independently of social
interaction10,19–22,30. However, because these theories explain
similarity across populations in terms of innate human categories,
they are limited in explaining how category convergence can
emerge when individuals widely vary in their categorization of
novel stimuli1–6,10. An alternative view holds that stochastic
dynamics can lead separate large populations to arrive at similar
category systems even when individuals vary in how they cate-
gorize the world. Formal models of voting behavior, for instance,
show that increasing sample size can increase the likelihood of
identifying the most popular choice in a population for both
binary31 and pluralistic choices32,33. Similarly, recent findings on
critical mass dynamics28,34 suggest that large populations have
the potential to promote the interpersonal spread of popular
linguistic conventions. Building on this work, our formal analyses
indicate that when the popularity of categories can be described

by a hypergeometric distribution (or binomial for infinite popu-
lations), then increasing population size can trigger “scale-
induced” category convergence, in which a small number of
categories are more likely to consistently reach critical mass34 and
spread35,36 in large populations, resulting in replicable evolu-
tionary trajectories (see Supplementary Information sections 1.1,
1.2, and 1.3 for model specification).

An empirical test of these predictions has not yet been possible
because it requires comparing the cultural trajectories of inde-
pendently evolving small and large populations to observe whe-
ther differences in population size directly affect the similarity of
the category systems that populations produce. In this study, we
developed an online experimental platform called the “Grouping
Game” that enabled real-time observation of novel category for-
mation in small and large populations (see ‘Methods’). We use
the Grouping Game to investigate this puzzle experimentally by
examining how small and large populations independently con-
struct category systems for a continuum of novel and ambiguous
stimuli. Solitary individuals and small groups produced highly
divergent category systems. Yet, across replicated studies with
unique subjects, separate large populations converged on highly
similar category systems. These findings offer insight into cate-
gory similarities across societies19–22, by showing how large
communication networks can filter lexical diversity in such a way
that leads communities toward convergent and replicable trajec-
tories in category creation.

Results
Figure 1 displays the category systems that emerged in distinct
small and large populations. Figure 1a shows that small popula-
tions (N= 2) produced highly divergent category systems. Only
6% of labels were shared across independent dyads, and there was

15

Category system that emerged in
small populations (N=2)

Category system that emerged in
large populations (N=50)

14
13
12
11
10
9

Tr
ia

ls

Tr
ia

ls

8
7
6
5
4
3
2

Image continuum

abunny
amen
ball

ball

ballup
bed
bell
bone
boo
book

book
bookup
bowtie
btrfly
bunny

bunny
cheer
closed
clubs
couch

couch

couple

crossx
dino
downba
earsup
floaty
fly
gloves
golf
hiarms

hiball
hockey
hole
hug
jump
kissin
loball
lotusf
love

man
meding
menace
moth
ohmmm
ov
person
pinch
plate

power
rabbit
read
readin
seated
shamoo
shark
shrug
sit

sittin
sofa
spread
squat
stop
tall
teepee
third
tllest

upball
vase
vball
whale
wide
wings
x
xo
yoga

yoga
kiss
hiball
frog
crab

tall
loball

Image continuum

1

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

a b

Fig. 1 Larger populations promote category convergence across populations. Comparing the level of convergence in category systems that emerged in
small (N= 2) (a) and large (N= 50) (b) populations. Each row displays the category system constructed by a single unique population in each condition
after 100 rounds of interaction. The horizontal axis displays the image continuum of shapes, consisting of 1500 slices. Density distributions display the
frequency of successful coordination for each label, as well as the region of the continuum to which each label referred. Each color indicates a unique label.
Similarity in the category systems across independent populations indicates convergence.
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no consistency in how these dyads partitioned the continuum
(p < 0.001, n= 80, Kruskal–Wallis H Test). As a result, dyads
varied not only with respect to the labels they adopted for the
same regions of the continuum, but also with respect to the
regions of the continuum they successfully categorized. (Com-
plementary analyses showing the same results for the N= 1
condition are provided in the Supplementary Information sec-
tion 1.7; Figs. S6 and S7). By contrast, large populations (N= 50)
generated remarkably similar vocabularies (50% Jaccard Index,
p < 0.001, n= 95, Wilcoxon Rank Sum Test, two-sided) and
similar partitions of the continuum (p= 0.87, n= 15,
Kruskal–Wallis H Test), indicating convergence in how these
independent populations categorized the novel stimuli (Fig. 1b).

These findings appear puzzling at first since larger populations
are expected to increase the unpredictability of category forma-
tion as a result of containing a greater diversity of individuals, and
thus a greater number of categories that are introduced and
available for adoption. Yet, our results indicate that increasing
population size—and thereby increasing the diversity of cate-
gories—can counterintuitively lead to convergent trajectories in
category formation across populations.

Our theoretical predictions for these convergence dynamics
provide an excellent fit with our experimental findings (Fig. 2)
(see Supplementary Information section 1.2 for model specifica-
tion; Fig. S2). Across all experimental conditions, label diversity

significantly increased with population size (p < 0.001, n= 120,
Jonckheere-Terpstra Test). Figure 2 shows that greater label
diversity within populations predicts greater similarity in the
category systems that emerge between populations of the same
size (p < 0.001, n= 120, Jonckheere-Terpstra Test). We find these
convergence dynamics not just for the labels that were used, but
also for how participants partitioned the continuum into distinct
regions (Supplementary Information section 1.8; Fig. S8).

Robustness experiments (Supplementary Information sec-
tion 1.9) show that providing more rounds of interaction for the
dyads (>125) did not increase their rate of convergence. Instead, it
further entrenched their divergent category systems.

We propose a simple mechanism to explain our findings. We
suggest that larger populations amplify the spread of initially
more frequent labels37, leading these common labels to reach a
“tipping point”34, after which they diffuse and become widely
adopted35,36. Figure 3a shows the frequency with which every
label was independently suggested by participants across all stu-
dies. Consistent with Zipf’s law38, a small number of labels like
“crab” and “bunny” were common, meaning they were more
likely to arise separately from distinct participants, whereas the
vast majority of labels were rare, meaning they were only intro-
duced by a small number of individuals (Fig. 3a).

Figure 3b shows the relationship between population size and
critical mass dynamics (formal model and detailed analyses
provided in the Supplementary Information section 1.3; Fig. S2).
In small populations, common labels were not sufficiently rein-
forced to reach the tipping point needed to trigger widespread
adoption35,36. Consequently, small populations (N= 2) were
significantly more likely to adopt rare labels (p < 0.001, n= 80,
Wilcoxon Signed Rank Test, two-sided), leading these popula-
tions to follow divergent evolutionary trajectories. However,
increasing population size significantly increased the likelihood
that common labels (like “crab” and “bunny”) would be rein-
forced and adopted (p < 0.001, n= 120, Jonckheere-Terpstra
Test), while significantly reducing the likelihood that rare labels
would spread (p < 0.001, n= 120, Jonckheere-Terpstra Test). Our
findings indicate a direct relationship between population size
and category convergence across independent populations
(Fig. 3c). For large populations (N= 50), the likelihood of com-
mon labels becoming widely adopted approaches unity, leading to
consistent and replicable trajectories in collective category for-
mation (Fig. 3b, c and S2).

A crucial implication of our theory is that category similarities
across social groups do not solely depend upon cognitively salient
features of the labels themselves, but also upon the labels’ fre-
quency in the population. An established intuition is that certain
categories gain popularity because they have intrinsic appeal (e.g.,
because of their ‘natural’ descriptive fit with the stimuli)39. How-
ever, even when the most popular labels (e.g., “crab” and “bunny”)
were attempted in dyads, they regularly failed to gain acceptance
(Supplementary Information section 1.3; Fig. S2). This suggests
that the adoption of these labels is not strictly determined by their
cognitive appeal, but rather by the fact that they are more likely to
be reinforced and reach critical mass in larger populations.

To evaluate this hypothesis, we experimentally tested the fol-
lowing counterfactual: if we artificially inflated the popularity of
infrequent labels to reach critical mass, would this trigger con-
vergence on those labels rather than on more cognitively appealing
ones? We conducted six robustness trials (N= 24) in which each
network contained a minority of confederate subjects (37%) tasked
with spreading a novel category system based on infrequent labels
(see Supplementary Information section 1.10 for full details on
experimental design; Fig. S9). For instance, we trained confederates
to use the rare label “sumo” (Fig. 3a) for the same regions of the
visual continuum associated with the most popular label in our
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Fig. 2 Convergence in the vocabularies that emerged in populations of
different sizes, for N= 2 (black dots), N= 6 (blue diamonds), N= 8
(purple squares), N= 24 (green triangles), and N= 50 (yellow circles).
Vertical axis reports the average similarity in vocabulary (average Jaccard
Index) between each network trial and all other networks of the same
population size. Horizontal axis displays category diversity, measured as
the average number of unique labels encountered by subjects in a
population. Data points represent experimental results (80 dyads and
15 social networks of each size). Black trend line shows model predictions
(averaged over 50 simulated trials; 100 rounds each trial; dmin= 0.01;
|L|= 5000; b= 1); see Supplementary Information section 1.2 for model
specification (equation S1). The measure of center indicated by the model
trend line is the mean Jaccard Index among simulated trials of the same
population size, ordered by the average category diversity in each trial (Fig.
S1). Error bands show 95% confidence intervals.
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initial studies, “crab” (Fig. 1b). Figure 4 shows that although “crab”
appeared in each robustness trial, “sumo” consistently out-
competed “crab”. In every robustness trial, populations adopted
the confederates’ labels across each region of the continuum,
yielding significantly more convergent category systems (58%
Jaccard Index) than those that emerged in N= 24 populations
without confederates (35% Jaccard Index) (p < 0.01, n= 21, Wil-
coxon Rank Sum Test, two-sided; Figs. S10–S12).

Discussion
The “social constructivist” view of cultural evolution suggests that
large communication networks contain greater individual varia-
tion, which leads to greater divergence and unpredictability in the
evolution of category systems7–15,18. Here, we show that while
increasing the size of communication networks does, in fact,
significantly increase the diversity of categories that people
encounter, it does not increase divergence. Rather, it increases
category convergence across independent populations. Our
results suggest that convergence in category formation across
independent populations is significantly shaped by the commu-
nication networks in which people are embedded.

These findings offer experimental insight into past observa-
tional data on category similarities across societies19–26. Our
findings suggest that communication in large social networks can
help filter cognitive and lexical diversity in such a way that
promotes the replicable development of similar category systems

across separate communities. Importantly, we observe scale-
induced category convergence for an arbitrary and novel con-
tinuum of stimuli that lacks pre-existing objective boundaries,
whereas some mathematical models assume that well-defined
objective boundaries are essential for producing stable con-
vergence dynamics in the emergence of vocabularies40–42. We
anticipate that future research may extend our findings to study
how population dynamics can improve both the stability and
accuracy of category systems in domains with objective truth
conditions. In particular, we anticipate that future studies may
apply our findings to address challenging issues in content
moderation and classification, for instance to eliminate individual
biases in large-scale citizen science efforts and related human
crowdsourcing tasks, such as Galaxy Zoo43 or Gravity Spy44, and
to improve consistency in the classification of acceptable and
unacceptable content on social media45.

Methods
This research was approved by the Institutional Review Board at the University of
Pennsylvania, where the study was conducted, and it included informed consent by
all participants.

A total of 1480 subjects were recruited from Amazon Mechanical Turk to
participate in an online language game28,34,46 called “The Grouping Game” (Fig. 5).
Each trial consisted of unique individuals, producing independent experimental
observations. All subjects were required to live in the U.S. with English as their first
language. When logging into the Grouping Game, subjects were randomized into
either a dyad, or a network of 6, 8, 24, or 50 people. We conducted additional trials
using an alternative version of the Grouping Game constructed for solitary players
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(N= 1), which generated results consistent with our findings for dyads (Figs. S2
and S3). We collected 80 dyads (N= 2) and 15 social networks for each population
size (i.e., N= 6, N= 8, N= 24, and N= 50). There were no differences in the
distribution of demographic traits across conditions, in terms of gender (p= 0.56),
ethnicity (p= 0.42), and age (p= 0.67) (Kruskal–Wallis H Test). All data were
collected between September 2018 and February 2020.

We created a continuum of novel shapes that defined the space of visual stimuli
for the Grouping Game (Fig. 5c). Analogous to the visible color spectrum, our
continuum was a smooth geometrical progression that was not inherently parti-
tioned27. We evenly divided this continuum into 1500 slices. Each slice was a
unique shape.

Upon arriving to the study, participants viewed instructions on how to play the
Grouping Game. In the game, participants played a series of pairwise one-shot
coordination games, where a single coordination game constituted a single round.
In each round, participants were randomly paired with another participant in their
network. In all conditions, participants could be paired with any other participant,
creating fully connected (i.e., homogeneously mixing) populations.

Each round of the game proceeded as follows. First, each subject was randomly
paired with another subject in their network (in the dyads, participants were always
paired with the same person). Second, in each pair on each round, one subject was
randomly assigned to be the “speaker” (Fig. 5a) and the other was the “hearer”
(Fig. 5b). Third, the speaker in each pair was shown three randomly selected slices
(or shapes) from the visual continuum, which were presented side by side (Fig. 5).
One of the three shapes was randomly highlighted only for the speaker. The
speaker was given 30 seconds to enter a label of their own creation into a free text-
entry window, with the aim of helping their partner to distinguish the highlighted
shape from the other two presented shapes. The only restriction on label pro-
duction was that speakers were not allowed more than six characters to prevent
highly detailed sentence-like descriptions that could not fail to coordinate. Even
with this character limit, nearly 5000 unique labels were introduced. Fourth, the
hearer in each pair was shown the same set of three shapes as the speaker but in an
alternate order (Fig. 5b). The hearer was then given 30 seconds to identify the shape
corresponding to the speaker’s label (Fig. 5b). If the hearer selected the correct
shape, both players received a successful payment (10¢). If the speaker failed to
select the correct shape, both players were financially penalized (1¢). Every
experimental trial of the Grouping Game lasted 60 min. In every trial, each subject
played at least 100 rounds.

The image continuum was held constant across conditions. In every trial, every
subject was presented with a uniform distribution of images drawn equally from all
regions of the continuum (see Supplementary Information section 1.4; Fig. S3). The
algorithm that randomly selected three images to display each round was designed
so that participants were never shown the same shape twice. All images displayed
for a given scene were at least 75 frames apart along the continuum, following prior
theoretical models27,47. This design induced subjects to categorize the images,
because in this environment, subjects would only use the same label on multiple
rounds if they were grouping distinct images under a single category. The set of
three images displayed on each round were unique to each pairing, such that two
separate speaker and hearer pairs interacting at the same time would see distinct
image sets on a given round.

Participants had no information about the labels used by other members of the
population except for their partner’s response in the round in which they were
paired28,34. In every network (N= 2, N= 6, N= 8, N= 24, and N= 50), subjects
received identical instructions. Subjects did not have information about their part-
ner’s identity, nor the size of their network. A manipulation check confirms that
subjects’ knowledge about their network was held constant across experimental
conditions (Supplementary Information section 1.5; Fig. S4). Any differences in the
category systems that emerged across experimental conditions can be attributed to
the direct effects of population size on the dynamics of category formation.

To identify the categories that emerged in each condition of each trial, we used
DBSCAN (Density-based spatial clustering of applications with noise)48. A key
advantage of DBSCAN is that it does not require one to specify the number of
clusters in the data a priori, as opposed to k-means clustering. The DBSCAN
algorithm involves two key parameters: MinPts, which determines the minimum
number of points that must be included in each cluster, and ε, which denotes the
radius of the neighborhood around a point x that is used when identifying clusters.
For each condition in each trial, we ran DBSCAN to identify clusters of labels based
on their values along two features: the total number of successful coordination
events associated with a label across the entire population, and the total number of
cumulative adopters overtime associated with each label. We ran DBSCAN sepa-
rately for each condition in each trial because increasing population size sig-
nificantly increases the number of possible successful coordination events and
adopters that can be associated with a label. Following standard methodology, for
each application of DBSCAN48, MinPts was set to 3 (the number of dimensions
plus one) and ε was chosen by plotting the k-distances among points and using the
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knee of the plot to identify the optimal ε. Emergent categories were identified as the
unique cluster of labels with the highest values in terms of their total number of
successful uses and their total number of adopters. In practice, DBSCAN identified
3–5 labels as emergent categories. All results are robust to varying vocabulary size
across a wide range of fixed sizes (see Supplementary Information Section 1.6; Fig.
S5). In cases where two categories were successful for the same region of the
continuum, the label with the highest number of coordination successes was
deemed the most successful category for this region.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data underlying this study are publicly available at: https://github.com/drguilbe/
categories2020; https://ndg.asc.upenn.edu/uncategorized/network-dynamics-of-category-
emergence/. Source data are provided with this paper.

Code availability
The source code for this study is publicly available at: https://github.com/drguilbe/
categories2020; https://ndg.asc.upenn.edu/uncategorized/network-dynamics-of-category-
emergence/.
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