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Background: The extent of the relationship between age and the presence

of breast cancer synchronous brain metastases (BCSBMs) and mortality has

not yet been well-identified or su�ciently quantified. We aimed to examine

the association of age with the presence of BCSBMs and all-cause and

cancer-specific mortality outcomes using the SEER database.

Methods: Age-associated risk of the presence and survival of BCSBMs were

evaluated on a continuous scale (restricted cubic spline, RCS) with logistic or

Cox regression models. The main endpoints were the presence of BCSBMs

and all-cause mortality or cancer-specific mortality. Cox proportional hazards

regression and competing risk models were used in survival analysis.

Results: Among 374,132 adult breast cancer patients, 1,441 (0.38%) had BMs.

The presence of BCSBMs displayed a U-shaped relationship with age, with the

highest point of the curve occurring at the age of 62. In both the younger

(age ≤ 61) and older (age ≥ 62) groups, the observed curve showed a nearly

linear relationship between age and the presence of BCSBMs. The relationship

between age and all-causemortality (ASM) and cancer-specificmortality (CSM)

was linear. Older age at diagnosis was associated with a higher risk of ASM

(HR 1.019, 95% CI: 1.013–1.024, p < 0.001) and CSM (HR 1.016, 95% CI:

1.010–1.023, p < 0.001) in multivariable Cox models. Age (sHR 1.007, 95% CI

1–1.013, p = 0.049) was substantially related to a significantly increased risk of

CSM in competing risk models.

Conclusion: Age had a non-linear U-shaped relationship with the presence of

BCSBMs and a linear relationship with BCSBMs mortality.
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breast cancer, brain metastases (BMs), restricted cubic spline (RCS), linearity, non-
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Introduction

The second most frequent solid tumor that can metastasize

to the central nervous system is breast cancer (BC) (1, 2).

Brain metastases (BMs) are expected to occur in 30–50% of

people withmetastatic BC (3–5). The brainmicroenvironment is

vastly different from that of extracranial lesions, with its distinct

cell types, architectural features, metabolic restrictions, and

immunological milieu, which influence the metastatic process

and treatment responses (6, 7). According to many important

studies, HER2-positive disease, the existence of more than two

metastatic sites at BC diagnosis, HR negative, and a more

advanced stage of the original tumor were all linked to a greater

risk of breast cancer BMs (4, 8, 9).

Despite this compelling evidence, there is less evidence about

the associations between age and the presence of breast cancer

synchronous brain metastases (BCSBMs). Studies on this topic

found different results, with some studies showing that breast

cancer BMs occurred more frequently among younger women

(10, 11), one study considering that age had no impact on the

presence of breast cancer BMs (12), some studies suggesting

that patients with older age had greater odds of having breast

cancer BMs (5, 9), and some studies regarding advanced age as a

risk factor for the presence of BMs (13, 14). There are currently

no reliable population-based estimations of the relationship

between age and the occurrence of breast cancer BMs.

Prior studies establish that BMs confer a life-threatening

prognosis for female BC patients (15–18). Diagnosed with BMs

represents an independent risk factor for shorter survival time

in a large cohort retrospective study, and it has been estimated

that there is a 58% rise in the risk of death from all causes

(15). Breast cancer patients previously had a median survival

period of 3–6 months from the time their BMs were discovered

(17). Another prospective study found that women with brain

metastases have a median survival of 26.3 months, compared to

44.6 months for women who do not suffer from brain metastases

(19). Furthermore, BMs have been shown to be a reliable

predictor of bone metastases in patients with infiltrating duct

carcinoma of the breast, which is associated with a worsening

prognosis (20).

Age is a significant determinant in cancer incidence and

survival, and it is also a considerable factor in BM survival

(13, 14, 21). Studies have shown that increasing age has generally

been associated with poorer survival of BMs (12–14). There

were, however, some inconsistent results (11, 22). Furthermore,

there is no credible data on the impact of age on the prognosis

of breast cancer patients with BMs.

We aimed to examine in detail the association of age with

the presence of synchronous BMs and all-cause and cancer-

specific mortality outcomes at diagnosis of BC using a large,

multicenter, contemporary, population-based cohort in the

United States from the Surveillance, Epidemiology, and End

Results (SEER) database.

Methods

Data sources and study population

We conducted a cohort study using data from the SEER

program, which contains demographic, illness, and treatment-

related information for 34.6 percent of cancer patients in the

United States at the time of primary malignancy diagnosis (23).

For patients diagnosed between 2010 and 2016, information

about the presence or absence of brain metastases at the time

of the initial systemic malignancy diagnosis was available. We

examined 388,413 individuals aged 18 and above who were

diagnosed with primary, invasive breast cancer between January

1, 2011, and December 31, 2016, in the SEER database.

We excluded individuals who were male (3 016 individuals),

lacked data for education and household income (64

individuals), were diagnosed with carcinoma in situ (561

individuals), lacked information on bone metastases (9 380

individuals), liver metastases (487 individuals), lung metastases

(443 individuals), and brain metastases (214 individuals).

We also excluded cases if survival time was unknown (26

individuals). The final analytical cohort for the association of

age and the presence of BCSBM included 374 132 participants.

Of these, a total of 1,441 individuals were identified as having

brain metastases. In addition, we excluded 6 participants whose

diagnosis was based on an autopsy or death certificate, as well as

one participant of undetermined race, leaving 1,434 participants

eligible for survival analysis. Our institutional review board

granted an exemption for this study since it is a secondary

analysis of existing data (SEER).

Covariates

Demographic variables included patients’ age, sex, median

household income, high school education percentage, year of

diagnosis, race/ethnicity, registry region, marital status, and

insurance status were reported by the SEER program. Clinical

covariates such as tumor site, histological subtypes, T-stage,

lymph nodal positive rate (LNPRate), and metastases in other

organs (bone, liver, lung, and brain) were also included in the

research. All the above variables were treated as factors, with the

exception of age, household income, and education proportion,

which were treated as continuous variables and given as mean

and standard deviation (SD). The presence or absence of other

organ metastases was confirmed before the start of treatment.

Endpoints

In the logistic regression models, the primary endpoint was

the presence of BMs at diagnosis. In Cox proportional hazard

models, the primary endpoints were all-cause mortality (ASM)
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TABLE 1 Baseline characteristics of study population.

Variables Categories Patients with

cancer

(any stage):

N (%)

Group A*

N (%)

Group B*

N (%)

Patients with

brain

metastases at

diagnosis:

N (%)

Incidence

proportion of

brain

metastases

Age* Continuous 61.84 (13.56) 50.49 (7.77) 72.60 (7.96) - -

Year 2011 59,276 (15.84%) 29,711 (50.12) 29,565 (49.88) 230 (15.96) 0.39%

2012 60,510 (16.17%) 29,901 (49.41) 30,609 (50.59) 206 (14.3) 0.34%

2013 61,897 (16.54%) 30,227 (48.83) 31,670 (51.17) 258 (17.9) 0.42%

2014 62,904 (16.81%) 30,597 (48.64) 32,307 (51.36) 255 (17.7) 0.41%

2015 64,702 (17.29%) 31,076 (48.03) 33,626 (51.97) 271 (18.81) 0.42%

2016 64,843 (17.33%) 30,521 (47.07) 34,322 (52.93) 221 (15.34) 0.34%

Race NHW 254,330 (67.98%) 111,033 (43.66) 143,297 (56.34) 882 (61.21) 0.35%

NHB 41,359 (11.05%) 23,175 (56.03) 18,184 (43.97) 262 (18.18) 0.63%

NHAI/AN 2,078 (0.56%) 1,154 (55.53) 924 (44.47) 8 (0.56) 0.38%

NHAPI 31,764 (8.49%) 18,884 (59.45) 12,880 (40.55) 109 (7.56) 0.34%

Hispanic 42,459 (11.35%) 26,711 (62.91) 15748 (37.09) 179 (12.42) 0.42%

Others 2,142 (0.57%) 1,076 (50.23) 1,066 (49.77) 1 (0.07) 0.05%

Region Northeast 61,753 (16.51%) 30,181 (48.87) 31,572 (51.13) 265 (18.39) 0.43%

Midwest 32,796 (8.77%) 15,234 (46.45) 17,562 (53.55) 120 (8.33) 0.37%

South 81,533 (21.79%) 39,795 (48.81) 41,738 (51.19) 381 (26.44) 0.47%

West 198,050 (52.94%) 96,823 (48.89) 101,227 (51.11) 675 (46.84) 0.34%

Marital status Married 200,221 (53.52%) 110,259 (55.07) 89,962 (44.93) 601 (41.71) 0.3%

Others 173,911 (46.48%) 71,774 (41.27) 102,137 (58.73) 840 (58.29) 0.48%

Insurance status Insured 316,864 (84.69%) 146,250 (46.16) 170,614 (53.84) 986 (68.42) 0.31%

Others 57,268 (15.31%) 35,783 (62.48) 21,485 (37.52) 455 (31.58) 0.79%

Primary tumor site Central 18,861 (5.04%) 7,856 (41.65) 11,005 (58.35) 69 (4.79) 0.37%

Upper-inner 45,492 (12.16%) 21,983 (48.32) 23,509 (51.68) 70 (4.86) 0.15%

Lower-inner 20,571 (5.5%) 9,354 (45.47) 11,217 (54.53) 40 (2.78) 0.19%

Upper-outer 124,529 (33.28%) 62,423 (50.13) 62,106 (49.87) 285 (19.78) 0.23%

Lower-outer 27,880 (7.45%) 13,788 (49.45) 14,092 (50.55) 58 (4.02) 0.21%

Axillary tail 2,020 (0.54%) 1,069 (52.92) 951 (47.08) 17 (1.18) 0.84%

Others 134,779 (36.02%) 65,560 (48.64) 69,219 (51.36) 902 (62.6) 0.67%

T-Stage 1 216,452 (57.85%) 98,866 (45.68) 117,586 (54.32) 183 (12.7) 0.08%

2 107,688 (28.78%) 57,307 (53.22) 50,381 (46.78) 305 (21.17) 0.28%

3 22,452 (6%) 13,227 (58.91) 9,225 (41.09) 172 (11.94) 0.77%

4 15,481 (4.14%) 7,254 (46.86) 8,227 (53.14) 453 (31.44) 2.93%

Others 12,059 (3.22%) 5,379 (44.61) 6,680 (55.39) 328 (22.76) 2.72%

LNPRate 0–20% 221,250 (59.14%) 106,721 (48.24) 114,529 (51.76) 37 (2.57) 0.02%

21–40% 23,323 (6.23%) 13,757 (58.98) 9,566 (41.02) 18 (1.25) 0.08%

41–60% 14,493 (3.87%) 7,976 (55.03) 6,517 (44.97) 9 (0.62) 0.06%

61–80% 6,589 (1.76%) 3,623 (54.99) 2,966 (45.01) 13 (0.9) 0.2%

81–100% 45,984 (12.29%) 26,599 (57.84) 19,385 (42.16) 121 (8.4) 0.26%

Unexamined 50,291 (13.44%) 15,926 (31.67) 34,365 (68.33) 1,019 (70.71) 2.03%

Others 12,202 (3.26%) 7,431 (60.9) 4,771 (39.1) 224 (15.54) 1.84%

Subtype HR+/HER2– 256,413 (68.54%) 116,506 (45.44) 139,907 (54.56) 550 (38.17) 0.21%

HR+/HER2+ 37,293 (9.97%) 22,427 (60.14) 14,866 (39.86) 214 (14.85) 0.57%

HR–/HER2+ 15,779 (4.22%) 9,620 (60.97) 6,159 (39.03) 165 (11.45) 1.05%

(Continued)
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TABLE 1 (Continued)

Variables Categories Patients with

cancer

(any stage):

N (%)

Group A*

N (%)

Group B*

N (%)

Patients with

brain

metastases at

diagnosis:

N (%)

Incidence

proportion of

brain

metastases

Triple-negative 38,558 (10.31%) 21,842 (56.65) 16,716 (43.35) 256 (17.77) 0.66%

Unknown 26,089 (6.97%) 11,638 (44.61) 14,451 (55.39) 256 (17.77) 0.98%

Bone metastases No 360,946 (96.48%) 175,577 (48.64) 185,369 (51.36) 522 (36.22) 0.14%

Yes 13,186 (3.52%) 6,456 (48.96) 6,730 (51.04) 919 (63.78) 6.97%

Liver metastases No 369,081 (98.65%) 179,181 (48.55) 189,900 (51.45) 957 (66.41) 0.26%

Yes 5,051 (1.35%) 2,852 (56.46) 2,199 (43.54) 484 (33.59) 9.58%

Lung metastases No 367,815 (98.31%) 179,264 (48.74) 188,551 (51.26) 759 (52.67) 0.21%

Yes 6,317 (1.69%) 2,769 (43.83) 3,548 (56.17) 682 (47.33) 10.8%

Brain metastases No 372,691 (99.61%) 181,258 (48.63) 191,433 (51.37) - -

Yes 1,441 (0.39%) 775 (53.78) 666 (46.22) - -

Income* Continuous 0.66 (0.17) 0.66 (0.17) 0.65 (0.17) - -

Education* Continuous 13.66 (5.74) 13.72 (5.76) 13.61 (5.72) - -

Total - 374,132 (100) 182,033 (48.65) 192,099 (51.35) 1,441 (100) 0.38%

Income* , median household income, increased by per $10 000 annual; Education* , high school education percent, increased by per 10%; NHW, Non-HispanicWhite; NHB, Non-Hispanic

Black; NHAI/AN, Non-Hispanic American Indian/Alaska Native; NHAPI, Non-Hispanic Asian or Pacific Islander. Continuous variables* are given as mean (standard deviation). Group

A* , age≤ 61; Group B* , age ≥ 62.

and cancer-specific mortality (CSM) based on the International

Classification of Diseases, 10th revision (ICD-10) code recorded

as the underlying cause of death. In the competing risk models

that were analyzed using proportional subdistribution hazards

models, the primary endpoint was cancer-specific mortality,

while other causes of mortality were the competing risk (24, 25).

The months to the event were calculated from the time of

diagnosis to the end of follow-up or death.

Statistical analysis

The presence of BMs

Independent factors in demographic variables and clinical

covariates were used to determine whether independent factors

were associated with the presence of BMs at diagnosis. The

associations between age and the presence of BMs at diagnosis

were evaluated on a continuous scale with restricted cubic

spline curves (RCSs) based on logistic regression models with

4 knots at the 5th, 45th, 65th, and 90th percentiles of age (26).

The spline model was adjusted for variables that were found

to have significance in univariable logistic analysis (p ≤ 0.05).

Then, sensitivity analyses were carried out to see if the findings

were reliable.

Based on the cut-off value from the result of RCS,

we divided the cohort into two age groups. The mean

and SD were calculated for continuous variables, and the

proportion was calculated for categorical variables in each

age group. The t-test or chi-square test was used to calculate

statistical differences for continuous and categorical variables.

As the associations between age and the presence of BMs

were approximately linear below and above the cut-off

value, we additionally used multivariable logistic regression

models to calculate the odds ratio (OR) and 95% confidence

interval (CI).

The survival of BCSBMs

The hazard ratios of mortality were calculated using

univariable and multivariable Cox proportional hazards

regression models adjusted for possible confounders (27). We

used restricted cubic spline models fitted to Cox proportional

hazards models with 4 knots at the 5th, 45th, 65th, and 90th

percentiles of age (26). ASM and CSM spline models were

further adjusted for significant variables in ASM and CSM

univariable Cox regression models, respectively.

A competing mortality risk regression analysis on

cumulative incidence functions was conducted using Fine

and Gray models to better estimate breast CSM and better

account for the high rate of competing events (28, 29). The

researchers calculated unadjusted and adjusted subdistribution

hazard ratios (sHR) with 95% CI. The Cumulative Incidence

Function (CIF) allows for estimating the incidence of CSM

while accounting for competing risk.
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FIGURE 1

Analytical workflow.

FIGURE 2

Association between age and the presence of BCSBMs using a

restricted cubic spline regression model.

Statistical analyses were conducted using R

language program version 4.0.3 released on 10-10-2020

and STATA software version 14 (StataCorp).

The 2-tailed α values of <0.05 were considered

statistically significant.

Results

Of data from 374 132 adult patients from the SEER

database in the United States, Group A comprised 182,033

(48.6%) patients under the age of 61 (≤ 61), with a mean

(SD) age of 50.49 (7.77), whereas Group B (age ≥ 62

years old) contained 192,099 (51.35 %) patients with a

mean (SD) age of 72.60 (7.96). Among the entire cohort,

1,441 patients were diagnosed with BMs, accounting for

0.38% of the entire study population. Groups A and B

had 775 (53.78%) and 666 (46.22%) BCSBMs, respectively,

with the incidence proportion of BMs in Groups A and

B being 0.43 percent and 0.35 percent. Tables 1, 3, 4 show

the baseline characteristics of the entire cohort and the

BMs cohort.
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TABLE 2 Univariable and multivariable logistic regression models for the presence of breast cancer synchronous brain metastases.

Variables Categories Univariable Multivariable Multivariable Multivariable

Total Group A* Group B*

OR (95%CI) p-Value OR (95%CI) p-Value OR (95%CI) p-Value OR (95%CI) p-Value

Age Continuous 0.99 (0.99, 1) <0.001 0.99 (0.98, 0.99) <0.001 1.01 (1, 1.02) 0.036 0.96 (0.95, 0.97) <0.001

Year 2011 Ref. - - - - - -

2012 0.88 (0.73, 1.06) 0.172 - - - - - -

2013 1.07 (0.9, 1.28) 0.429 - - - - - -

2014 1.04 (0.87, 1.25) 0.63 - - - - - -

2015 1.08 (0.91, 1.29) 0.393 - - - - - -

2016 0.88 (0.73, 1.06) 0.168 - - - - - -

Race NHW Ref. Ref. Ref. Ref.

NHB 1.83 (1.6, 2.1) <0.001 0.98 (0.84, 1.15) 0.836 0.95 (0.77, 1.17) 0.632 1.04 (0.82, 1.32) 0.733

NHAI/AN 1.11 (0.55, 2.23) 0.768 0.998 (0.475, 2.101) 0.997 1.04 (0.4, 2.7) 0.936 0.9 (0.27, 2.96) 0.86

NHAPI 0.99 (0.81, 1.21) 0.917 0.97 (0.78, 1.2) 0.764 1.17 (0.9, 1.53) 0.239 0.63 (0.41, 0.96) 0.031

Hispanic 1.22 (1.04, 1.43) 0.017 1.05 (0.88, 1.26) 0.581 1.02 (0.8, 1.29) 0.89 1.22 (0.91, 1.62) 0.186

Others 0.13 (0.02, 0.95) 0.044 0.11 (0.01, 0.77) 0.026 0.2 (0.03, 1.48) 0.116 0 (0, 4.15*10,145) 0.942

Region Northeast Ref. Ref. Ref. Ref.

Midwest 0.85 (0.69, 1.06) 0.147 1.08 (0.84, 1.37) 0.559 1.22 (0.85, 1.74) 0.995 (0.71, 1.39) 0.978

South 1.09 (0.93, 1.27) 0.286 1.28 (1.05, 1.56) 0.014 1.5 (1.13, 1.99) 1.11 (0.84, 1.47) 0.469

West 0.79 (0.69, 0.91) 0.001 1.0q (0.859, 1.179) 0.935 1.19 (0.95, 1.51) 0.86 (0.69, 1.08) 0.191

Marital status Married Ref. Ref. Ref. Ref.

Others 1.61 (1.45, 1.79) <0.001 1.01 (0.894, 1.131) 0.922 0.95 (0.81, 1.12) 0.593 1.18 (0.99, 1.4) 0.064

Insurance

status

Insured Ref. Ref. Ref. Ref.

Others 2.57 (2.3, 2.87) <0.001 1.22 (1.07, 1.39) 0.003 1.32 (1.12, 1.56) 0.001 1.03 (0.83, 1.27) 0.802

Primary tumor

site

Central Ref. Ref. Ref. Ref.

Upper-inner 0.42 (0.3, 0.59) <0.001 0.97 (0.68, 1.37) 0.85 1.41 (0.85, 2.34) 0.19 0.7 (0.43, 1.15) 0.155

Lower-inner 0.53 (0.36, 0.78) 0.001 1.04 (0.69, 1.57) 0.841 1.46 (0.82, 2.62) 0.201 0.79 (0.44, 1.42) 0.428

Upper-outer 0.62 (0.48, 0.81) <0.001 1.08 (0.82, 1.43) 0.582 1.39 (0.91, 2.13) 0.126 0.89 (0.61, 1.3) 0.543

Lower-outer 0.57 (0.4, 0.81) 0.002 1.03 (0.71, 1.49) 0.874 1.23 (0.71, 2.1) 0.461 0.91 (0.55, 1.5) 0.704

Axillary tail 2.31 (1.36, 3.94) 0.002 2.07 (1.17, 3.65) 0.012 2.3 (0.99, 5.34) 0.054 2.06 (0.95, 4.46) 0.067

Others 1.83 (1.44, 2.35) <0.001 1.37 (1.05, 1.77) 0.019 1.72 (1.15, 2.56) 0.009 1.16 (0.82, 1.63) 0.405

T-Stage 1 Ref. Ref. Ref. Ref.

2 3.36 (2.79, 4.03) <0.001 1.33 (1.1, 1.62) 0.003 1.1 (0.85, 1.42) 0.487 1.74 (1.3, 2.32) <0.001

3 9.12 (7.41, 11.24) <0.001 1.66 (1.32, 2.08) <0.001 1.12 (0.82, 1.54) 0.461 2.71 (1.94, 3.77) <0.001

4 35.62 (29.98, 42.33) <0.001 1.97 (1.62, 2.41) <0.001 1.69 (1.3, 2.21) <0.001 2.27 (1.69, 3.07) <0.001

Others 33.04 (27.55, 39.63) <0.001 2.47 (2.01, 3.03) <0.001 2.06 (1.55, 2.73) <0.001 3.02 (2.23, 4.09) <0.001

LNPRate 0–20% Ref. Ref. Ref. Ref.

21–40% 4.62 (2.63, 8.11) <0.001 3.45 (1.96, 6.08) <0.001 4.9 (2.46, 9.75) <0.001 1.81 (0.61, 5.41) 0.288

41–60% 3.71 (1.79, 7.7) <0.001 2.69 (1.3, 5.6) 0.008 3.98 (1.68, 9.46) 0.002 1.34 (0.31, 5.82) 0.698

61–80% 11.82 (6.28, 22.24) <0.001 6.61 (3.49, 12.53) <0.001 8.94 (4.03, 19.85) <0.001 4.42 (1.47, 13.29) 0.008

81–100% 15.77 (10.91, 22.8) <0.001 8.86 (6.09, 12.9) <0.001 9.87 (5.97, 16.32) <0.001 8.26 (4.69, 14.56) <0.001

Unexamined 123.64 (89.06, 171.67) <0.001 27.52 (19.47, 38.89) <0.001 30.85 (19.2, 49.57) <0.001 26.98 (16.22, 44.88) <0.001

Others 111.81 (78.92, 158.39) <0.001 20.66 (14.33, 29.77) <0.001 21.97 (13.39, 36.06) <0.001 22.01 (12.75, 38) <0.001

Subtype HR+/HER2− Ref. Ref. Ref. Ref.

HR+/HER2+ 2.68 (2.29, 3.15) <0.001 1.51 (1.27, 1.79) <0.001 1.57 (1.26, 1.97) <0.001 1.48 (1.13, 1.94) 0.004

HR−/HER2+ 4.92 (4.13, 5.85) <0.001 2.48 (2.04, 3.02) <0.001 2.58 (2.01, 3.33) <0.001 2.43 (1.78, 3.31) <0.001

(Continued)
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TABLE 2 (Continued)

Variables Categories Univariable Multivariable Multivariable Multivariable

Total Group A* Group B*

OR (95%CI) p-Value OR (95%CI) p-Value OR (95%CI) p-Value OR (95%CI) p-Value

Triple-negative 3.11 (2.68, 3.61) <0.001 2.68 (2.28, 3.15) <0.001 2.99 (2.4, 3.72) <0.001 2.45 (1.92, 3.12) <0.001

Unknown 4.61 (3.97, 5.35) <0.001 1.47 (1.25, 1.74) <0.001 1.65 (1.29, 2.11) <0.001 1.39 (1.11, 1.75) 0.004

Bone

metastases

No Ref. Ref. Ref. Ref.

Yes 51.73 (46.39, 57.68) <0.001 5.2 (4.53, 5.96) <0.001 6.33 (5.2, 7.7) <0.001 3.94 (3.25, 4.78) <0.001

No Ref. Ref. Ref. Ref.

Yes 40.77 (36.4, 45.65) <0.001 1.88 (1.64, 2.15) <0.001 1.68 (1.4, 2.02) <0.001 2.18 (1.78, 2.66) <0.001

Lung

metastases

No Ref. Ref. Ref. Ref.

Yes 58.53 (52.61, 65.12) <0.001 4.31 (3.79, 4.89) <0.001 3.95 (3.3, 4.71) <0.001 4.44 (3.7, 5.34) <0.001

Income* Continuous 0.61 (0.45, 0.83) <0.001 1.31 (0.89, 1.93) 0.175 1.28 (0.75, 2.19) 0.373 1.45 (0.82, 2.55) 0.202

Education* Continuous 1 (1.99, 1) 0.724 - - - - - -

Income* , median household income, increased by per $10 000 annual; Education* , high school education percent, increased by per 10%; NHW, Non-HispanicWhite; NHB, Non-Hispanic

Black; NHAI/AN, Non-Hispanic American Indian/Alaska Native; NHAPI, Non-Hispanic Asian or Pacific Islander. Group A* , age ≤ 61; Group B* , age ≥ 62.

Age and the presence of BMs

Figure 1 depicts the full analytical process. In univariable

logistic regression, age (increased by per 1, odds ratio [OR],

0.99, 95%CI: 0.99–1, p < 0.001), non-Hispanic Black (NHB)

(vs. non-Hispanic White [NHW], p < 0.001), Hispanic (vs.

NHW, p = 0.017), West region (vs. Northeast, p = 0.001),

other marital status (vs. married, p < 0.001), other insurance

status (vs. insured, p < 0.001), tumor located in upper-inner

or lower-inner or upper-outer or lower-outer or axillary tail

of breast (vs. central, p < 0.001, p = 0.001, p < 0.001, p =

0.002, and p = 0.002, respectively), T-stage 2 or 3 or 4 (vs.

1, p < 0.001 for each one), LNPRate between 21 and 40% or

between 41 and 60% or between 61 and 80% or between 81

and 100% (vs. 0–20%, p < 0.001 for each one), HR+/HER2+

or HR−/HER2+ or triple-negative subtype (vs. HR+/HER2−

subtype, p < 0.001 for each one), and metastasized to bone

or liver or lung at diagnosis (vs. Not to, p < 0.001 for

each one) were related to significantly greater odds of having

BMs at diagnosis. Median household income (increased by

per $10,000 annual, p < 0.001) was at lower risk of presence

of BMs at diagnosed. Restricted cubic spline revealed a U-

shaped relationship between age and the presence of BMs

after controlling for the aforementioned possible confounders

(Figure 2). The risk of having BMs increased rapidly until

approximately the age of 62, after which it began to decline

rapidly (P for non-linearity < 0.001). The results for sensitivity

analyses are shown in Supplementary Figure 1. In multivariable

logistic regression models, each year of age conferred a 1% (95%

CI: 1–1.02, p = 0.036, p for non-linearity = 0.163) increase in

the OR to develop BMs in Group A (age ≤ 61) and a 4% (95%

CI: 0.95–0.97, p < 0.001, p for non-linearity = 0.067) decrease

in the OR to develop BMs in Group B (age ≥ 62). Detailed data

is shown in Table 2.

FIGURE 3

Association between age and all-cause mortality (A) and

cancer-specific mortality (B) using restricted cubic spline

regression models.

Age and mortality

A median (interquartile range) of 16 (6–32) months was the

time period of mortality ascertainment, corresponding to 1,042

deaths from all causes and 807 deaths caused by cancer. RCS
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TABLE 3 Distribution of breast cancer synchronous brain metastases all-cause mortality and hazard risk associated with various prognostic factors.

Variables Categories Deaths N (%) Univariable Multivariable

HR (95%) p-Value HR (95%) p-Value

Age Continuous 1,042 (100) 1.018 (1.013, 1.024) <0.001 1.019 (1.013, 1.024) <0.001

Year 2011 208 (19.96) Ref. Ref.

2012 178 (17.08) 0.957 (0.782, 1.170) 0.665

2013 210 (20.15) 0.948 (0.780, 1.153) 0.594

2014 199 (19.1) 1.077 (0.882, 1.314) 0.468

2015 170 (16.31) 0.997 (0.809, 1.229) 0.978

2016 77 (7.39) 0.895 (0.683, 1.173) 0.422

Race NHW 637 (61.13) Ref. Ref.

NHB 213 (20.44) 1.301 (1.113, 1.519) 0.001 1.266 (1.071, 1.496) 0.006

NHAI/AN 5 (0.48) 0.603 (0.250, 1.453) 0.259 0.783 (0.322, 1.905) 0.590

NHAPI 70 (6.72) 0.968 (0.756, 1.239) 0.793 1.180 (0.912, 1.527) 0.208

Hispanic 117 (11.23) 0.859 (0.705, 1.046) 0.131 0.909 (0.739, 1.118) 0.366

Region Northeast 194 (18.62) Ref. Ref.

Midwest 97 (9.31) 1.214 (0.951, 1.549) 0.119 1.008 (0.776, 1.310) 0.951

South 293 (28.12) 0.956 (0.797, 1.146) 0.628 0.915 (0.733, 1.143) 0.434

West 458 (43.95) 0.840 (0.710, 0.993) 0.042 0.927 (0.774, 1.110) 0.407

Marital status Married 405 (38.87) Ref. Ref.

Others 637 (61.13) 1.350 (1.192, 1.530) <0.001 1.211 (1.062, 1.380) 0.004

Insurance status Insured 722 (69.29) Ref. Ref.

Others 320 (30.71) 1.026 (0.899, 1.170) 0.704

Primary tumor site Central 45 (4.32) Ref. Ref.

Upper-inner 57 (5.47) 1.593 (1.078, 2.356) 0.020 1.591 (1.071, 2.363) 0.022

Lower-inner 26 (2.5) 0.892 (0.550, 1.446) 0.641 1.026 (0.629, 1.675) 0.917

Upper-outer 188 (18.04) 1.113 (0.804, 1.541) 0.520 1.340 (0.963, 1.865) 0.082

Lower-outer 41 (3.93) 1.255 (0.822, 1.917) 0.292 1.461 (0.952, 2.242) 0.083

Axillary tail 14 (1.34) 1.495 (0.820, 2.725) 0.189 1.766 (0.957, 3.262) 0.069

Others 671 (64.4) 1.324 (0.979, 1.791) 0.068 1.430 (1.052, 1.944) 0.022

T-Stage 1 131 (12.57) Ref. Ref.

2 203 (19.48) 0.968 (0.777, 1.207) 0.774

3 126 (12.09) 1.057 (0.828, 1.350) 0.655

4 340 (32.63) 1.190 (0.973, 1.456) 0.091

Others 242 (23.22) 1.137 (0.919, 1.407) 0.236

LNPRate 0–20% 21 (2.02) Ref. Ref.

21–40% 11 (1.06) 0.775 (0.373, 1.607) 0.493 0.875 (0.419, 1.827) 0.722

41–60% 5 (0.48) 0.694 (0.261, 1.841) 0.463 0.782 (0.293, 2.086) 0.624

61–80% 10 (0.96) 1.087 (0.512, 2.309) 0.829 1.267 (0.594, 2.704) 0.541

81–100% 83 (7.97) 1.177 (0.729,1.899) 0.506 1.208 (0.744,1.964) 0.445

Unexamined 758 (72.74) 1.599 (1.036, 2.468) 0.034 1.505 (0.967, 2.343) 0.070

Others 154 (14.78) 1.384 (0.877, 2.185) 0.163 1.423 (0.894, 2.262) 0.137

Subtype HR+/HER2– 369 (35.41) Ref. Ref.

HR+/HER2+ 129 (12.38) 0.766 (0.626, 0.936) 0.009 0.770 (0.627, 0.945) 0.012

HR–/HER2+ 112 (10.75) 1.090 (0.882, 1.346) 0.427 1.076 (0.865, 1.338) 0.513

Triple-negative 215 (20.63) 2.020 (1.702, 2.398) <0.001 2.111 (1.763, 2.529) <0.001

Unknown 217 (20.83) 1.986 (1.678, 2.351) <0.001 1.882 (1.579, 2.242) <0.001

Bone metastases No 388 (37.24) Ref. Ref.

Yes 654 (62.76) 0.878 (0.775, 0.996) 0.043 0.899 (0.784, 1.030) 0.123
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TABLE 3 (Continued)

Variables Categories Deaths N (%) Univariable Multivariable

HR (95%) p-Value HR (95%) p-Value

Liver metastases No 672 (64.49) Ref. Ref.

Yes 370 (35.51) 1.372 (1.208, 1.559) <0.001 1.543 (1.344, 1.770) <0.001

Lung metastases No 538 (51.63) Ref. Ref.

Yes 504 (48.37) 1.217 (1.077, 1.374) 0.002 1.119 (0.985, 1.273) 0.085

Income* Continuous 1,042 (100) 0.570 (0.405, 0.800) 0.001 0.497 (0.324, 0.763) 0.001

Education* Continuous 1,042 (100) 1.000 (0.990, 1.011) 0.971 - -

Income* , median household income, increased by per $10 000 annual; Education* , high school education percent, increased by per 10%; NHW, Non-HispanicWhite; NHB, Non-Hispanic

Black; NHAI/AN, Non-Hispanic American Indian/Alaska Native; NHAPI, Non-Hispanic Asian or Pacific Islander.

indicated an ascending all-cause mortality risk with increasing

age (Figure 3A, p for non-linearity = 0.264), controlled for

median household income, race, region, marital status, tumor

site, LNPRate, histological subtype, and metastasized to bone,

liver, and lung. There was also an escalating cancer-specific

mortality risk with increasing age (Figure 3B, p for non-linearity

= 0.473), controlled for median household income, race, marital

status, insurance status, T-stage, histological subtype, and

metastasized to the liver and lung. Additionally, in multivariable

Cox proportional-hazard models, the adjusted HRs of age for

mortality due to all-cause and cancer-specific were HR = 1.019

(95% CI: 1.013–1.024, p < 0.001) and HR = 1.016 (95%

CI: 1.010–1.023, p < 0.001), respectively. The corresponding

detailed results of the unadjusted and adjusted Cox models are

shown in Tables 3, 4.

In addition, we evaluated CSM using a competing risk

model. The CIF curves for the observed risk of CSM are

shown in Supplementary Figure 2. Table 5 shows the results of

multivariable competing-risk regression analyses predicting the

time to CSM. Age (increased by per 1, sHR 1.007, 95% CI 1–

1.013, p = 0.049), other marital status (vs. married, sHR 1.191,

95% CI 1.016–1.397, p < 0.001), other insurance status (vs.

insured, sHR 1.221, 95% CI 1.034–1.442, p < 0.001), T-stage 3

(vs. 1, sHR 1.438, 95% CI 1.057–1.956, p= 0.021), T-stage 4 (vs.

1, sHR 1.612, 95% CI 1.242–2.091, p < 0.001), triple-negative

subtype (vs. HR+/HER2− subtype, sHR 1.693, 95% CI 1.374–

2.086, p< 0.001), andmetastasized to liver (vs. not to, sHR 1.367,

95% CI 1.163–1.607, p < 0.001) were significantly associated

with an increased risk for CSM.

Discussion

In a large population-based retrospective cohort study, we

examined the complicated association between age and the

presence and survival of BCSBMs. As far as we know, this is an

epidemiologic study with great interest and novelty based on the

SEER program that will generally offer a superior understanding

of variation in the onset and prognosis of BCSBMs. The

presence of BCSBMs was shown to have a U-shaped relationship

with age, with the maximum HR occurring at the age of 62.

The association between age and all-cause and cause-specific

mortality, on the other hand, resembled linear behavior.

Comparison with other studies

In recent years, there has been an increasing amount of

literature on the epidemiology of BMs at the diagnosis of

systemic malignancy (12–14, 30). Using data from the SEER

database from 2010 to 2013, Martin et al. (13) and Cagney

et al. (14) found that 0.41 percent of adult breast cancer patients

have synchronous BMs in the United States. In earlier research

assessing the 2014–2016 SEER data, we found that 0.42 percent

of midlife breast cancer diagnosed in the United States have

synchronous BMs. The current study found similar results, and

the incidence fraction of BCSBMs remained generally steady

from 2011 to 2016.

In reviewing the above-mentioned literature, no solid

evidence was found for the association between age and the

presence of BMs. As mentioned in the research of Cagney et al.

(14) among all patients with cancer, age 41–60 years (vs. age

18–40 y, OR 1.55, 95% CI: 1.39–1.71, p < 0.05) was associated

with higher risk of having synchronous BMs, whereas age > 80

years (vs. age 18–40 y, OR 0.60, p < 0.05) had significantly lower

odds and age 61–80 years had non-significantly greater odds (vs.

age 18–40 y, OR 1.08, p > 0.05). According to another study

concentrating on BCSBMs, the relationship between age and the

occurrence of synchronous BMs was more elusive and harder

to reconcile because OR values of age 41–60 years, 61–80 years,

and > 80 years (vs. age 18–40 years) were all non-applicable

(13). We reason that these seemingly misleading results might

be due to the use of age as a categorical variable in the adjusted

logistic regression model. Naturally, we assumed that treating

age as a continuous variable would help to ameliorate the

situation and lead to a positive conclusion. In this case, however,

age (increased by per 1, OR 1, 95% CI: 0.99–1.00, p = 0.49)
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TABLE 4 Distribution of breast cancer synchronous brain metastases cancer-specific mortality and hazard risk associated with various prognostic

factors.

Variables Categories Deaths N (%) Univariable Multivariable

HR (95%) p-Value HR (95%) p-Value

Age 807 (100%) 1.013 (1.007, 1.019) <0.001 1.016 (1.010, 1.023) <0.001

Year 2011 167 (20.69%) Ref. Ref.

2012 132 (16.36%) 0.886 (0.704, 1.11) 0.300 - -

2013 172 (21.31%) 0.972 (0.782, 1.207) 0.797 - -

2014 148 (18.34%) 0.996 (0.794, 1.249) 0.970 - -

2015 127 (15.74%) 0.923 (0.727, 1.171) 0.507 - -

2016 61 (7.56%) 0.889 (0.656 1.204) 0.447 - -

Race NHW 493 (61.09%) Ref. Ref.

NHB 165 (20.45%) 1.302 (1.091, 1.553) 0.003 1.153 (0.959, 1.387) 0.131

NHAI/AN 5 (0.62%) 0.790 (0.327, 1.906) 0.599 1.094 (0.449, 2.665) 0.843

NHAPI 55 (6.82%) 0.983 (0.743, 1.299) 0.901 1.071 (0.803, 1.427) 0.642

Hispanic 89 (11.03%) 0.846 (0.675, 1.06) 0.147 0.843 (0.669, 1.063) 0.149

Region Northeast 148 (18.34%) Ref. Ref.

Midwest 75 (9.29%) 1.231 (0.932, 1.625) 0.143 - -

South 233 (28.87%) 1.000 (0.814, 1.229) 0.999 - -

West 351 (43.49%) 0.847 (0.699, 1.026) 0.090 - -

Marital status Married 304 (37.67%) Ref. Ref.

Others 503 (62.33%) 1.418 (1.229, 1.635) 0.001 1.266 (1.090, 1.472) 0.002

Insurance status Insured 536 (66.42%) Ref. Ref.

Others 271 (33.58%) 1.175 (1.015, 1.36) 0.030 1.165 (0.994, 1.365) 0.060

Primary tumor site Central 36 (4.46%) Ref. Ref.

Upper-inner 43 (5.33%) 1.493 (0.958, 2.325) 0.076 - -

Lower-inner 16 (1.98%) 0.679 (0.376, 1.224) 0.197 - -

Upper-outer 149 (18.46%) 1.0994 (0.764, 1.582) 0.610 - -

Lower-outer 31 (3.84%) 1.181 (0.731, 1.910) 0.497 - -

Axillary tail 6 (0.74%) 0.783 (0.330, 1.859) 0.579 - -

Others 526 (65.18%) 1.289 (0.919, 1.806) 0.142 - -

T-Stage 1 82 (10.16%) Ref. Ref.

2 156 (19.33%) 1.191 (0.911, 1.556) 0.202 1.234 (0.942, 1.618) 0.127

3 102 (12.64%) 1.378 (1.030, 1.843) 0.031 1.340 (0.998, 1.801) 0.052

4 287 (35.56%) 1.615 (1.263, 2.064) <0.001 1.536 (1.197, 1.972) 0.001

Others 180 (22.3%) 1.353 (1.042, 1.757) 0.023 1.331 (1.022, 1.733) 0.034

LNPRate 0–20% 19 (2.35%) Ref. Ref.

21–40% 10 (1.24%) 0.779 (0.362, 1.676) 0.522 - -

41–60% 5 (0.62%) 0.771 (0.288, 2.066) 0.605 - -

61–80% 8 (0.99%) 0.965 (0.422, 2.206) 0.933 - -

81–100% 64 (7.93%) 0.999 (0.598, 1.667) 0.995 - -

Unexamined 577 (71.5%) 1.334 (0.844, 2.109) 0.217 - -

Others 124 (15.37%) 1.230 (0.758, 1.993) 0.404 - -

Subtype HR+/HER2– 289 (35.81%) Ref. Ref.

HR+/HER2+ 110 (13.63%) 0.836 (0.670, 1.041) 0.109 0.865 (0.693, 1.081) 0.202

HR–/HER2+ 90 (11.15%) 1.118 (0.883, 1.417) 0.355 1.072 (0.842, 1.364) 0.573

Triple-negative 169 (20.94%) 2.014 (1.659, 2.444) <0.001 2.185 (1.792, 2.665) <0.001

Unknown 149 (18.46%) 1.715 (1.406, 2.092) <0.001 1.777 (1.448, 2.181) <0.001
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TABLE 4 (Continued)

Variables Categories Deaths N (%) Univariable Multivariable

HR (95%) p-Value HR (95%) p-Value

Bone metastases No 286 (35.44%) Ref. Ref.

Yes 521 (64.56%) 0.952 (0.824, 1.100) 0.507 - -

Liver metastases No 506 (62.7%) Ref. Ref.

Yes 301 (37.3%) 1.480 (1.282, 1.707) <0.001 1.616 (1.389, 1.880) <0.001

Lung metastases No 405 (50.19%) Ref. Ref.

Yes 402 (49.81%) 1.288 (1.122, 1.479) <0.001 1.169 (1.012, 1.350) 0.033

Income* Continuous 807 (100%) 0.403 (0.273, 0.596) <0.001 0.408 (0.271, 0.615) <0.001

Education* Continuous 807 (100%) 1.006 (0.994, 1.018) 0.317 - -

Income* , median household income, increased by per $10 000 annual; Education* , high school education percent, increased by per 10%; NHW, Non-HispanicWhite; NHB, Non-Hispanic

Black; NHAI/AN, Non-Hispanic American Indian/Alaska Native; NHAPI, Non-Hispanic Asian or Pacific Islander.

was not related to the presence of BMs (12). Another report

discovered that age ≤ 40 years (vs. age > 40 years, HR 2.10,

95% CI 1.02–4.36) was associated with an increased risk of

developing metachronous BMs in HER2-positive breast cancer

(31). Additional research showed no information on the effect

of age on the occurrence of BCSBMs (11, 32, 33).

A possible explanation for this might be that prior research

relied on the essential assumption that the presence of BMs was

related linearly to age (12–14, 33). For ordinal or continuous

factors, the linearity assumption may be inappropriate, and

more elaborate interactions may be necessary (34). Conversely,

cubic splines are commonly used because they offer a lot of

flexibility when it comes to fitting data, are visually smooth

due to their continuous first and second derivatives, and have

fewer fit constants than higher degree splines (35–39). In this

study, we discovered that using a regression spline to solve

such situations is a preferable option. Our findings on age were

not in line with the previous findings, whereby we observed

a U-shaped association (p for non-linearity <0.001) with the

presence of BMs after accounting for potential confounders.

Further research revealed that the relationships between age

and the occurrence of BCSBMs are approximately linear in

both the younger (p for non-linearity = 0.163) and older

(p for non-linearity = 0.068) age groups. Consequently, we

were able to convert a complex non-linear association into a

linear one. Undoubtedly, therefore, age may represent a clinical

marker for early identification of a population at high risk for

having BCSBMs.

The National Comprehensive Cancer Network (NCCN),

American Society of Clinical Oncology (ASCO), and European

School of Oncology-Metastatic Breast Cancer guidelines for

breast cancer do not recommend routine imaging assessment

or continued imaging reassessment of BMs for breast cancer

because the overall incidence of BMs is relatively low in the

general BC population and there is no proven benefit from non-

randomized retrospective studies (40–42). Imaging assessment

of the brain is recommended only after the appearance of

central nervous system symptoms (43, 44). Nonetheless, timely

identification of BMs is critical for BC patients since it may allow

better therapeutic responses than delays in diagnosis (45, 46).

Research finds that the combination of early detection and

advanced therapies (both local and systemic) ultimately leads to

more favorable outcomes (47). Although routine screening of all

BC patients is not justified, screening people who are at high risk

might be beneficial.

For all malignancies, age is a well-validated prognosticator

related to survival (21, 48, 49). And previous studies have

found that being younger at the time of BCSBMs diagnosis is

one of the characteristics that predicts a better outcome (12–

14, 50, 51). To determine the association between age and the

survival of BCSBMs, many researchers used Cox proportional

hazards models (13, 22, 52). To our knowledge, none of them

has carried out a comprehensive analysis to determine whether

a Cox model would be appropriate in this circumstance. Our

current study has significant strengths that compensate for the

lack of information. Linear associations between age and ASM

(p for non-linearity = 0.264) and CSM (p for non-linearity

= 0.473) were discovered in this investigation. Those results

suggest that the HR and 95%CI of age obtained by Cox models

are reasonable.

However, one study found that in multivariate Cox

regression analysis, younger age at first diagnosis of BMs in

breast cancer patients was a predictor of shorter OS (52). We

believe what the authors stated was a mistake after reviewing the

original findings in the Supplementary material, which indicated

that the risk of all-cause death rose with age (increased by per

1, HR = 1.02, 95% CI 1.01–1.03, p < 0.001). Another study

found that in a univariable Coxmodel, age did not correlate with

breast cancer BMs survival time (22). A possible explanation

for this might be the potentially inappropriate classification of

age groups. The research of Martin et al., on the other hand,

performs better (13). Martin’s study has strength in using Fine
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TABLE 5 Proportional subdistribution hazards models for breast cancer synchronous brain metastases.

Variables Categories Univariable Multivariable

sHR (95%CI) p-Value sHR (95%CI) p-Value

Age Continuous 1.004 (0.997, 1.009) 0.226 1.007 (1.000, 1.013) 0.049

Year 2011 Ref. . Ref. -

2012 0.834 (0.665, 1.047) 0.117 0.792 (0.628, 0.999) 0.049

2013 0.868 (0.700, 1.077) 0.198 0.804 (0.648, 0.998) 0.047

2014 0.819 (0.654, 1.026) 0.083 0.753 (0.596, 0.951) 0.017

2015 0.715 (0.560, 0.915) 0.008 0.634 (0.491, 0.818) <0.001

2016 0.732 (0.525, 1.019) 0.064 0.664 (0.473, 0.933) 0.018

Race NHW Ref. Ref.

NHB 1.247 (1.035, 1.503) 0.02 1.082 (0.877, 1.335) 0.464

NHAI/AN 0.843 (0.430, 1.655) 0.62 1.122 (0.621, 2.028) 0.702

NHAPI 0.881 (0.657, 1.180) 0.396 0.976 (0.716, 1.332) 0.88

Hispanic 0.852 (0.677, 1.072) 0.173 0.856 (0.669, 1.094) 0.214

Region Northeast Ref. Ref.

Midwest 1.131 (0.833, 1.537) 0.43 0.889 (0.633, 1.248) 0.495

South 1.089 (0.877, 1.350) 0.44 0.822 (0.623, 1.084) 0.165

West 0.881 (0.719, 1.079) 0.221 0.831 (0.663, 1.042) 0.108

Marital status Married Ref. Ref.

Others 1.316 (1.137, 1.525) <0.001 1.191 (1.016, 1.397) 0.031

Insurance status Insured Ref. Ref.

Others 1.267 (1.089, 1.475) 0.002 1.221 (1.034, 1.442) 0.018

Primary tumor site Central Ref. Ref.

Upper-inner 1.252 (0.809, 1.940) 0.313 1.226 (0.771, 1.952) 0.389

Lower-inner 0.589 (0.320, 1.083) 0.089 0.689 (0.364, 1.306) 0.254

Upper-outer 1.103 (0.772, 1.575) 0.591 1.195 (0.810, 1.763) 0.369

Lower-outer 1.126 (0.691, 1.836) 0.634 1.337 (0.806, 2.217) 0.26

Axillary tail 0.514 (0.187, 1.413) 0.197 0.555 (0.188, 1.639) 0.286

Others 1.175 (0.843, 1.638) 0.34 1.183 (0.821, 1.704) 0.367

T-Stage 1 Ref. Ref.

2 1.227 (0.934, 1.610) 0.141 1.270 (0.961, 1.678) 0.093

3 1.445 (1.081, 1.930) 0.013 1.438 (1.057, 1.956) 0.021

4 1.689 (1.321, 2.160) <0.001 1.612 (1.242, 2.091) <0.001

Others 1.244 (0.950, 1.627) 0.112 1.235 (0.929, 1.642) 0.146

LNPRate 0–20% Ref. Ref.

21–40% 0.846 (0.432, 1.657) 0.626 0.893 (0.455, 1.750) 0.741

41–60% 0.824 (0.414, 1.642) 0.583 0.997 (0.441, 2.255) 0.994

61–80% 0.991 (0.448, 2.193) 0.982 0.923 (0.442, 1.927) 0.83

81–100% 0.894 (0.549, 1.456) 0.653 0.815 (0.508, 1.308) 0.397

Unexamined 1.023 (0.656, 1.595) 0.919 0.962 (0.626, 1.478) 0.861

Others 0.998 (0.624, 1.595) 0.993 1.031 (0.654, 1.625) 0.894

Subtype HR+/HER2– Ref. Ref.

HR+/HER2+ 0.950 (0.764, 1.181) 0.643 0.949 (0.755, 1.193) 0.655

HR–/HER2+ 1.030 (0.813, 1.305) 0.804 0.954 (0.744, 1.222) 0.708

Triple-negative 1.581 (1.299, 1.924) <0.001 1.693 (1.374, 2.086) <0.001

Unknown 1.117 (0.887, 1.406) 0.346 1.135 (0.890, 1.447) 0.308

Bone metastases No Ref. Ref.

Yes 1.023 (0.879, 1.191) 0.771 1.001 (0.848, 1.181) 0.994

(Continued)
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TABLE 5 (Continued)

Variables Categories Univariable Multivariable

sHR (95%CI) p-Value sHR (95%CI) p-Value

Liver metastases No Ref. Ref.

Yes 1.361 (1.170, 1.583) <0.001 1.367 (1.163, 1.607) <0.001

Lung metastases No Ref. Ref.

Yes 1.242 (1.075, 1.435) 0.003 1.114 (0.957, 1.298) 0.163

Income* Continuous 0.367 (0.245, 0.552) <0.001 0.320 (0.169, 0.608) 0.001

Education* Continuous 1.010 (0.998, 1.021) 0.113 0.998 (0.982, 1.014) 0.767

Income* , median household income, increased by per $10 000 annual; Education* , high school education percent, increased by per 10%; NHW, Non-HispanicWhite; NHB, Non-Hispanic

Black; NHAI/AN, Non-Hispanic American Indian/Alaska Native; NHAPI, Non-Hispanic Asian or Pacific Islander.

andGray’s competing risk regressionmodels to analyze BCSBMs

CSM (13). Yet, the study did not include CIF curves or sHR

values for each variable. Here, we presented the sHR for the

occurrence of CSM and gave plots of all cumulative incidences

for categorical variables, as indicated by a prior study (24).

Mortality risk tends to increase with age in all regressionmodels,

and age-related increases in the risk of CSM are substantially

overestimated by the standard Cox model (53).

Age is commonly utilized as a covariate in investigations

to build prognostic models for predicting the survival of BC

patients with BMs, such as a recursive partitioning analysis

(RPA) strategy (54) and graded prognostic assessment (GPA)

(55, 56). In the era of individualized therapy, the accurate

prediction of BC patients with BMs is critical for optimizing

care (18, 57). To some extent, the current study is significant in

determining the ability of prognostic tools in future research and

an improved prognosis for those individuals.

Strengths and limitations

The discovery of a U-shaped association between age

and the presence of cancer, as well as approximate linear

behaviors between age and ASM and CSM, in a large, nationally

representative sample of US general cancer patients from the

SEER database with rigorous capture of death events, which was

undetected by previous excellent work, is a major strength of our

study. At the same time, the results of our competing risk model

help to compensate for the lack of survival analyses.

Our research, however, has several limitations. First, in the

current research, only the presence or absence of BMs at the

diagnosis of the study population was provided. Data onwhether

metastases develop in the brain in the subsequent course of

the disease is not available at this time for the SEER program.

Our study did not include the data of some patients who

later acquired brain metastases, which might have influenced

the accuracy of the results (58). Second, the SEER program

is a population-based study being carried out primarily in the

United States, which has concerns for generalizability outside of

the United States (59, 60). Third, we did not report sHR for the

competing event, which may have resulted in a bias toward a

better understanding of BCSBMs survival (61, 62).

Conclusion

In conclusion, utilizing a nationally representative database

from the United States, this study discovered that age had a non-

linear U-shaped relationship with the presence of BCSBMs and a

linear relationship with BCSBMs mortality. This article lays the

groundwork for future studies. And a better understanding of

the complex associationmight aid in developing age-appropriate

public health guidelines.
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