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Abstract: We present an economical approach to treat spin–orbit coupling (SOC) in the
state-averaged driven similarity renormalization group second-order perturbation theory
(SA-DSRG-PT2). The electron correlation is first introduced by forming the SA-DSRG-PT2
dressed spin-free Hamiltonian. This Hamiltonian is then augmented with the Breit–Pauli
Hamiltonian and diagonalized using spin-pure reference states to obtain the SOC-corrected
energy spectrum. The spin–orbit mean-field approximation is also assumed to reduce the
cost associated with the two-electron spin–orbit integrals. The resulting method is termed
BP1-SA-DSRG-PT2c, and it possesses the same computational scaling as the non-relativistic
counterpart, where only the one- and two-body density cumulants are required to obtain
the vertical transition energy. The accuracy of BP1-SA-DSRG-PT2c is assessed on a few
atoms and small molecules, including main-group diatomic molecules, transition-metal
atoms, and actinide dioxide cations. Numerical results suggest that BP1-SA-DSRG-PT2c
performs comparably to other internally contracted multireference perturbation theories
with SOC treated using the state interaction scheme.

Keywords: driven similarity renormalization group; perturbation theory; spin–orbit
coupling effects; excited states

1. Introduction
Second-order multireference perturbation theories (MRPT2s) are among the most

affordable approaches to describe molecules involving strongly correlated electrons [1–7].
These methods start from a multi-configuration zeroth-order wave function, followed by
a second-order energy correction using perturbation theory. Numerous MRPT2s have
been proposed over the years, among which the complete active space perturbation theory
(CASPT2) [1] and n-electron valence state perturbation theory (NEVPT2) [2,8] are perhaps
the most commonly applied. Both CASPT2 and NEVPT2 possess a high computational scal-
ing with respect to the number of active orbitals due to the requirement of the four-particle
reduced density matrix (4-RDM) and the orthogonalization procedure of the internally
contracted excited configurations. For electronic excited states, it is well documented that
the state-specific CASPT2 or NEVPT2 yields artificial crossings between potential energy
surfaces (PESs) of near-degenerate states [9,10]. This issue can be cured by the multi-state
(MS) formulation based on the quasi-degenerate (QD) perturbation theory [9–13], where
an effective Hamiltonian is diagonalized to allow for mixing between perturbed states.
Depending on the parametrization, solving the first-order wave functions scales at least
linearly with respect to the number of reference states [14].
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The recently proposed state-averaged (SA) driven similarity renormalization group
(DSRG) offers a state-universal approach to treat multiple near-degenerate states on an
equal footing [15,16]. In the SA-DSRG formalism, the dynamical electron correlation
is folded into an effective Hamiltonian via a single unitary transformation to the bare
Hamiltonian. The unitary transformation depends on a time-like parameter (s) called
the flow parameter. For a finite value of s, the Hamiltonian becomes band-diagonal in
the Fock space, and excitations that may cause the intruder-state problem [17,18] are
regularized. The ground- and excited-state energies are obtained by diagonalizing the
SA-DSRG Hamiltonian in the reference space.

The SA-DSRG Hamiltonian may be approximated using perturbation theory. With
a diagonal one-body, zeroth-order Hamiltonian, the resulting second-order perturbation
theory (SA-DSRG-PT2) necessitates only the state-averaged 1-, 2-, and 3-RDMs. It can be
shown that the computation of the 3-RDM in SA-DSRG-PT2 is unnecessary for the determi-
nation of vertical transition energies [19], making it applicable for large active spaces with
more than 45 active orbitals [20]. The SA-DSRG-PT2 method provides both a continuous
PES near the canonical intersection and size-intensive excitation energies [15]. Benchmarks
on valence- and core-excited states [19,21–23] indicate that SA-DSRG-PT2 achieves an
accuracy comparable to that of CASPT2 and NEVPT2 yet with reduced computational cost.

However, the application of SA-DSRG-PT2 to molecules containing heavy elements
has not been extensively explored. An accurate description of these molecules requires a
balanced treatment of electron correlation and relativistic effects. One of the concerning
relativistic effects is spin–orbit coupling (SOC), which plays an important role in spec-
troscopy [24,25], magnetism [26,27], and photochemistry [28–30]. A rigorous treatment of
the SOC effect is offered by the four-component multireference methods based on the Dirac–
Coulomb or Dirac–Coulomb–Breit Hamiltonian [31–34]. Examples include the relativistic
Fock-space coupled-cluster (FSCC) method [35], internally contracted multireference config-
uration interaction (ic-MRCI) [36], multireference Møller–Plesset perturbation theory [37],
CASPT2 [38,39], NEVPT2 [36], and SA-DSRG second- and third-order perturbation theories
(4c-DSRG-MRPT2/3) [40]. Nonetheless, the computational cost of these four-component
methods is considerably higher than that of their non-relativistic counterparts.

More affordable methods that incorporate the SOC effect can be formulated based on
a two-component relativistic Hamiltonian obtained by spin separation and the elimination
of positronic degrees of freedom to the Dirac Hamiltonian [32,33,41–44]. Two-component
Hamiltonians include the exact two-component (X2C) approach [45–51], regular approxi-
mation [52,53], the Douglas–Kroll–Hess (DKH) transformation [54–57], and the Breit–Pauli
(BP) Hamiltonian [58,59]. Using a two-component Hamiltonian, a simultaneous treatment
of electron correlation and the SOC effect can be achieved in a cost-efficient manner via the
state-interaction spin–orbit (SISO) approach [60,61], where the Hamiltonian is diagonalized
on the basis of spin-pure correlated states. Numerous methods have been developed to
incorporate the SOC effect within the SISO framework, such as the density matrix renor-
malization group [62,63], spin–orbit multireference multistate perturbation theory [64],
and QD-NEVPT2 [65,66].

In this work, we address the SOC effect in SA-DSRG-PT2 by employing a two-
component Hamiltonian. The spin-free Hamiltonian (ĤSF) includes the scalar relativistic
effect via the one-electron spin-free X2C (SF-X2C1e) method [46–48,67], while the BP Hamil-
tonian (ĤSO) is used for the spin-dependent contribution. The BP spin–orbit operator is
commonly applied in the SISO framework [62,63,65,68]. The electron correlation effect is
first addressed by transforming ĤSF using SA-DSRG-PT2 with RDMs obtained from the
spin-pure complete active space configuration interaction (CASCI) states. Subsequently,
the transformed Hamiltonian is augmented with ĤSO and diagonalized using the CASCI
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states to obtain the SOC-corrected energies. Compared to the non-relativistic SA-DSRG-
PT2, additional computations for the one- and two-electron spin–orbit integrals in ĤSO

are required. To reduce this cost, we simplify ĤSO to an effective one-body operator by
invoking the spin–orbit mean-field (SOMF) approximation [69] with additional spin aver-
aging [70,71]. The resulting method is termed BP1-SA-DSRG-PT2c, as it is reduced to the
contracted variant of SA-DSRG-PT2 when neglecting ĤSO, and it includes the SOC effect
to the first order in perturbation theory using the BP Hamiltonian.

This article is organized as follows. In Section 2, we briefly review the standard
SA-DSRG-PT2 method and formally introduce the BP1-SA-DSRG-PT2c method. The
implementation of BP1-SA-DSRG-PT2c is discussed in Section 3. Then, in Section 4, we
apply the BP1-SA-DSRG-PT2c scheme to compute the zero-field splittings of a few main-
group elements and diatomic molecules; the excited-state energies of Cu, Ag, and Au
atoms; the vertical excitation energies of [UO2]+ and [NpO2]2+; and the energy barrier for
spin inversion of the single-molecule magnet (PMe3)2FeCl3. Finally, we summarize our
findings and suggest future improvements in Section 5.

2. Theory
2.1. State-Averaged Driven Similarity Renormalization Group Second-Order Perturbation Theory

The state-averaged driven similarity renormalization group second-order perturbation
theory (SA-DSRG-PT2) [15] starts by defining a vacuum under the generalized normal
ordering of Mukherjee and Kutzelnigg (MK-GNO) [72]. The vacuum is an ensemble of
n electronic states (E ≡ {Ψα

0 , α = 1, 2, . . . , n}) obtained from a state-averaged complete
active space self-consistent field (SA-CASSCF) computation. The MK-GNO defines the
operator normal ordering by requiring its ensemble average to be equal to zero. In the MK-
GNO formalism, the Wick contraction generates the SA density cumulants, defined as the
irreducible part of the SA-RDMs of the same order [72]. We then write the second-quantized
spin-free Hamiltonian in the normal-ordered form as

ĤSF = Ē0 + ∑
pq

f̄ q
p{âp

q}+
1
4 ∑

pqrs
vrs

pq{âpq
rs }, (1)

where Ē0 is the SA reference energy and the operator normal ordering is suggested by the
curly braces. In Equation (1), we adopt the tensor notation of Kutzelnigg, where a string of
spin-orbital creation and annihilation operators is given compactly as âpq···

rs··· = â†
p â†

q · · · âs âr.

The SA Fock matrix ( f̄ q
p = hq

p + ∑ij vqj
piγ̄

i
j) is also introduced in Equation (1), defined

using the SF-X2C1e one-electron integrals (hq
p); the antisymmetrized two-electron integrals

(vrs
pq ≡ ⟨pq||rs⟩); and the one-particle SA-RDM (γ̄i

j = ∑n
α=1 ωα ⟨Ψα

0 |â†
i âj|Ψα

0⟩ with ωα being
the weight of Ψα

0 in E). In this work, all states in E are assumed to be equally weighted,
that is, ωα = 1/n.

In SA-DSRG [15], we perform a single unitary transformation of the Hamiltonian
(ĤSF):

Ĥ → H̄(s) = Û†(s)ĤÛ(s). (2)

For brevity, we ignore the subscript “SF” in Equation (2) and the following. The unitary
operator Û(s) depends on the so-called flow parameter s ∈ [0, ∞) such that Û(0) is an
identity operator and H̄(0) = Ĥ. As s grows, the DSRG Hamiltonian H̄(s) becomes more
and more block-diagonal. The non-diagonal elements that connect the reference state to the
excited configurations gradually become zero, essentially folding in dynamical electron
correlation to the diagonal part of H̄(s). To this end, we write Û(s) = exp[Â(s)] in terms
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of an anti-Hermitian operator Â(s) = T̂(s)− T̂†(s), where T̂(s) is the s-dependent cluster
operator. The cluster amplitudes are determined by the DSRG flow equation:

H̄ij···
ab···(s) = [H̄ij···

ab···(s) + tij···
ab···(s)∆

ij···
ab···]e

−s(∆ij···
ab···)

2
. (3)

We require the non-diagonal many-body components of H̄(s) [H̄ij···
ab···(s)] to be equal to

those of the source operator derived from the single-reference similarity renormalization
group [73,74]. In Equation (3), ∆ij···

ab··· = ϵi + ϵj + · · · − ϵa − ϵb are the Møller–Plesset energy

denominators defined using semicanonical orbital energies and tij···
ab···(s) are cluster ampli-

tudes. Here, indices i, j . . . label the hole orbitals, while a, b . . . label the particle orbitals.
To derive the SA-DSRG-PT2 equations, we first partition the Hamiltonian Ĥ into a

zeroth-order contribution Ĥ(0) plus the first-order perturbation Ĥ(1) = Ĥ − Ĥ(0). The
zeroth-order Hamiltonian Ĥ(0) includes the averaged reference energy Ē0 and the diagonal
blocks of the SA Fock operator F̂ (0):

Ĥ(0) = Ē0 + F̂ (0), (4)

F̂ (0) =
C

∑
mn

f̄ n,(0)
m {âm

n }+
A

∑
uv

f̄ v,(0)
u {âu

v}+
V

∑
e f

f̄ f ,(0)
e {âe

f }. (5)

Here, the summation indices run over the core (C), active (A), and virtual (V) orbitals. In
the semicanonical basis [74], the SA Fock matrices of these three blocks are diagonal such
that Equation (5) can be written compactly as F̂ (0) = ∑p ϵp{âp

p} using the semicanonical

orbital energies (ϵp = f̄ p,(0)
p ). In SA-DSRG-PT2, we approximate H̄(s) using perturbation

theory and consider all terms up to the second order [15]:

H̄[2](s) = Ĥ+ [Ĥ, Â(1)(s)] +
1
2
[[Ĥ(0), Â(1)(s)], Â(1)(s)], (6)

where Â(1)(s) can be determined using the first-order DSRG flow equation. It can be easily
shown that the first-order cluster amplitudes are given by [15]

ti,(1)
a (s) = [ f̄ i,(1)

a +
A

∑
ux

∆x
uγ̄x

utiu,(1)
ax (s)]

1 − e−s(∆i
a)

2

∆i
a

, (7)

tij,(1)
ab (s) = vij,(1)

ab
1 − e−s(∆ij

ab)
2

∆ij
ab

. (8)

From Equations (7) and (8), it is evident that the amplitudes are regularized in the presence
of small energy denominators, thereby alleviating the associated intruder-state problem.
As such, one needs to choose a reasonable s value so that enough dynamical correlation is
included without introducing unphysical amplitudes. In practice, the value of s is chosen
based on various benchmarks [19,22,40], especially when H̄(s) is approximated using the
second-order perturbation theory.

To obtain the ground- and excited-state energies, we diagonalize H̄[2](s) using a set of
complete active space configuration interaction (CASCI) states:

m

∑
β

⟨Ψα
0 |H̄[2](s)|Ψβ

0 ⟩Cα′
β (s) = Cα′

α (s)Eα′(s), α′ = 1, . . . , m, (9)

where the number of states m is not necessarily identical to that included in E (i.e., m ≥ n).
When m = n, Equation (9) is known as the contracted SA-DSRG-PT2 scheme in Ref. [15],
termed SA-DSRG-PT2c. For m > n, the additional states in Equation (9) provide extra



Molecules 2025, 30, 2082 5 of 17

degrees of freedom that relax the targeted n states [16]. If m includes all CASCI states,
Equation (9) becomes equivalent to diagonalizing H̄[2](s) in the CASCI configuration space,
resulting in the SA-DSRG-PT2 scheme [15]. In this work, we ignore the normal-ordered
three-body contributions of H̄[2](s), which are found to yield minimal impact with respect
to the single-point energies [75].

Several factors contribute to the computational cost of SA-DSRG-PT2c. First, all one-
and two-electron integrals are transformed into the molecular orbital (MO) basis. This
process scales as O(N5), with N being the number of MOs. Second, the evaluation of
H̄[2](s) necessitates the SA one-, two-, and three-body density cumulants of reference [74].
However, the three-body cumulants can be safely ignored if only the vertical transition
energies are requested [19]. Assuming that these SA density cumulants are available,
the cost of computing H̄[2](s) scales as O(V2C2 + V2 A4 + VA6), where C, A, and V denote
the numbers of core, active, and virtual orbitals, respectively. This computational cost is
generally lower than that of CASPT2 and NEVPT2, both of which involve four-particle
RDMs. Lastly, building the matrix elements of Equation (9) requires the transition 1- and
2-RDMs between n(n − 1) distinct pairs of reference states. For a limited number of states,
the overall cost is dominated by the second step of building H̄[2](s).

2.2. Incorporating Spin–Orbit Coupling in SA-DSRG-PT2

To integrate SOC in SA-DSRG-PT2, we examine the following two-component rela-
tivistic Hamiltonian:

Ĥ2c = ĤSF + ĤSO, (10)

where ĤSF represents the spin-free contribution that includes the scalar relativistic effect.
This effect is addressed using the SF-X2C1e approach [46–48,67], which modifies the one-
electron integrals of the non-relativistic Hamiltonian in SA-CASSCF and SA-DSRG-PT2. For
the spin–orbit contribution (ĤSO) in Equation (10), we consider the BP Hamiltonian [58,59]
under the spin–orbit mean-field (SOMF) approximation [69,71]:

ĤSO = ∑
ξ

∑
pq

Fξ
pqD̂ξ

pq, (11)

where ξ = x, y, z indicates the component along the axis of a Cartesian coordinate system
and D̂ξ

pq represents the one-electron spin excitation operators:

D̂x
pq =

1
2
(â†

p↑ âq↓ + â†
p↓ âq↑), (12)

D̂y
pq =

i
2
(â†

p↓ âq↑ − â†
p↑ âq↓), (13)

D̂z
pq =

1
2
(â†

p↑ âq↑ − â†
p↓ âq↓). (14)

In Equation (11), the effective one-body matrix elements are given by

F ξ
pq = hξ

pq + ∑
rs

Γ̄rs(gξ
pqrs −

3
2

gξ
psrq −

3
2

gξ
rqps), (15)

where Γ̄rs = γ̄
r↑
s↑ + γ̄

r↓
s↓ is the SA-CASSCF spin-free one-particle RDM. Equation (15) is a

multireference extension of the original SOMF scheme with spin averaging obtained by
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replacing the Hartree–Fock 1-RDM with Γ̄rs [65,76]. The one- (hξ
pq) and two-electron (gξ

pqrs)
spin–orbit integrals are defined as

hξ
pq =

α2

2
⟨ϕp(1)|ĥξ(1)|ϕq(1)⟩ , (16)

gξ
pqrs =

α2

2
⟨ϕp(1)ϕr(2)|ĝξ(1, 2)|ϕq(1)ϕs(2)⟩ , (17)

with α = 1/c being the fine-structure constant, along with the following operators:

ĥξ(i) = ∑
A

ZAr−3
iA [riA × p̂(i)]ξ , (18)

ĝξ(i, j) = −r−3
ij [rij × p̂(i)]ξ . (19)

Here, p̂(i) is the momentum operator of the i-th electron and the vector riA of magnitude
riA is the position of electron i relative to nucleus A of charge ZA. Vector rij is defined
analogously, except that it corresponds to the relative position between electrons i and
j. We note that the summation indices (p, q, r, s) in Equations (11) and (15) correspond to
spatial MOs, in contrast to the spin-orbital labels employed in Section 2.1.

Treating ĤSO as a perturbation to the spin-free Hamiltonian, we modify the SA-DSRG-
PT2c effective Hamiltonian [Equation (9)] as

H̃[2]
α′β′(s) = ⟨Ψα′

0 |H̄[2](s) + ĤSO|Ψ
β′

0 ⟩ , (20)

which is subsequently diagonalized to obtain the SOC-corrected energies. Note that the
state labels (i.e., α′ and β′) in Equation (20) indicate all spin multiplets for the m CASCI
states considered in Equation (9). Comparing Equation (20) to Equation (9), additional
computations involve building the spin–orbit integrals [Equations (16) and (17)] and the

transition 1-RDMs of ⟨Ψα′
0 |D̂ξ

pq|Ψ
β′

0 ⟩. Nonetheless, the computational scaling remains the
same. Comparing to the CASCI SISO approach [replacing H̄[2](s) with Ĥ in Equation (20)],
the diagonal matrix elements and the couplings between spin-pure states are modified
by the DSRG treatment of electron correlation. Because Equation (20) incorporates the
SOC effect up to the first order in perturbation theory with the BP Hamiltonian, we denote
this formalism as BP1-SA-DSRG-PT2c. However, for brevity, we drop the “BP1” prefix
whenever possible in the following.

3. Implementation
The BP1-SA-DSRG-PT2c approach can be summarized as follows. We first perform an

n-state SA-CASSCF computation to obtain the optimized MOs and the CASCI states used to
construct the MK-GNO vacuum. The SA-DSRG-PT2 equations are then solved. As shown
in Ref. [77], computing ⟨Ψα

0 |H̄[2](s)|Ψβ
0 ⟩ necessitates only the scalar term of H̄[2](s) and the

one- and two-body components labeled completely by the active indices. These DSRG-
dressed one- and two-electron terms are contracted with the transition 1- and 2-RDMs of the
m spin-pure CASCI states, yielding the contributions to H̃[2]

α′β′(s) [Equation (20)]. To account

for the SOC effect, we compute the SOMF spin–orbit integrals [F ξ
pq; Equation (15)] using

the spin-traced 1-RDM (Γ̄rs) of SA-CASSCF. Then, we contract these spin–orbit integrals

with the transition 1-RDMs (⟨Ψα′
0 |D̂ξ

pq|Ψ
β′

0 ⟩) for all spin states of the m CASCI states, thereby

finalizing the construction of H̃[2]
α′β′(s). Lastly, the BP1-SA-DSRG-PT2c energies are obtained

by diagonalizing H̃[2]
α′β′(s).

We implemented the above procedure in our in-house Python script. The one- and
two-electron integrals of the bare Hamiltonian (Ĥ) were obtained using PSI4 [78]. The
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open-source FORTE [79] code was employed to obtain the spin-free 1-RDM of SA-CASSCF,
the CASCI states used to build H̃[2]

α′β′(s), and the SA-DSRG-PT2-transformed Hamiltonian

H̄[2](s) . The PYSCF [80] interface of the Libcint integral library [81] was adopted to acquire
the spin–orbit integrals. Notably, the two-electron contributions to F ξ

pq were computed on
the fly using the JK contraction algorithm [82].

4. Numerical Results
4.1. Calibration of the Parameters of BP1-SA-DSRG-PT2c

We first assess the accuracy of BP1-SA-DSRG-PT2c on the spin–orbit zero-field split-
ting (ZFS) in the 2Π ground state of FO and IO molecules by adjusting the active space,
the number of CASCI states (m), and the DSRG flow parameter (s). Two active spaces were
examined. The smaller one includes all the valence orbitals of oxygen and the halogen
atom, resulting in an active space of 13 electrons in 8 orbitals, denoted as (13e,8o). The
larger (13e,11o) active space augments the above eight active orbitals with an additional set
of π and one σ anti-bonding orbital (see Figure 1). In the SA-CASSCF computation, only
the doubly degenerate ground state is taken into account, as our focus is the ZFS of the 2Π
ground state. Unless otherwise noted, we employed the uncontracted (unc) ANO-RCC
basis set [83] throughout this work. Moreover, the density-fitted two-electron integrals
were assumed in this work, and the auxiliary basis set was automatically generated [84].

F–O I–O

Figure 1. The CASSCF (13e,11o) orbitals of FO and IO, where the 8 valence orbitals are boxed.

Figure 2 plots the ground-state ZFSs of FO and IO molecules computed using SA-
DSRG-PT2c, along with those of CASCI, where H̄[2](s) is replaced by the bare spin-free
Hamiltonian (Ĥ) in the SISO diagonalization [Equation (20)]. The DSRG treatment of
electron correlation generally brings the ZFS result closer to the experimental value. Com-
paring the two active spaces, the larger active space offers a better starting point for the
DSRG correction to the Hamiltonian. We also tried to perform the small active-space
SA-DSRG-PT2c/(13e,8o) computations using the CASSCF (13e,11o) orbitals. The resulting
ZFS values appear identical to those of SA-DSRG-PT2c/(13e,11o), indicating that the SOC
matrix elements are sensitive to the quality of valence orbitals. A fast convergence of
the ground-state ZFS is observed with respect to the number of CASCI states (m), where
m ∼ 10 (doublet states) is enough to obtain a converged result. This behavior is expected
because the ground-state ZFS is mainly determined by the coupling within the ground 2Π
multiplet, and that with other states provides a secondary correction. Both the DSRG trans-
formation and the SOMF integrals assume the SA-CASSCF RDMs, resulting in identical
matrix elements (H̃[2]

α′β′ ) between the ground 2Π multiplet.
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Figure 2. Zero-field splittings in the ground 2Π state of FO and IO molecules obtained using BP1-SA-
DSRG-PT2c/unc-ANO-RCC with s = 0.5 E−2

h .

In Figure 3, we plot the ground-state ZFS of FO and IO as a function of s while keeping
the m value fixed at 15 and 16 for FO and IO, respectively. For the (13e,8o) active space,
the ZFS value remains largely constant in the tested range of s ∈ [0.2, 2.0] E−2

h , differing
by no more than 2 % of the ZFS value predicted at s = 0.5 E−2

h . For the larger (13e,11o)
active space, better agreement with the experimental value is obtained using a small value
of s, which is consistent with our previous benchmark on vertical excitation energies
against theoretical best estimates [19]. As a result, we adopt s = 0.5 E−2

h in the following
computations. This value of s is more or less universal and has also been shown to yield
reasonably accurate results on global potential energy surfaces [15] and vertical transition
energies [19].
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Figure 3. Zero-field splittings in the ground 2Π state of FO and IO molecules obtained using BP1-
SA-DSRG-PT2c/unc-ANO-RCC with varying s values. The number of CASCI states is m = 15 and
m = 16 for FO and IO, respectively.

4.2. Main-Group Atoms and Diatomic Molecules

We now focus on the ZFS in the doublet ground state of a few main-group elements and
diatomic molecules, where both theoretical and experimental reference data are available.
These open-shell species include the group 13 and 17 atoms, the group 14 and 16 hydrides,
and the halogen monoxides. We directly took the molecular geometry, the active space,
and the number of CASCI states in the SISO diagonalization from Ref. [66]. Two sets of
SA-CASSCF orbitals were employed. The first was obtained by averaging only the ground
doublet state (i.e., n = 2), while the other included all states used in SISO (i.e., n = m). The
unc-ANO-RCC-VTZP basis set [83] was adopted for the group 14 hydrides to be consistent
with that used in QD-NEVPT2 [66].

The ZFS results of SA-DSRG-PT2c are reported in Table 1. The use of two different sets
of SA-CASSCF orbitals in SA-DSRG-PT2c yields fairly consistent results, which differ by
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3.6%, on average, from the experimental value. The most striking difference is observed for
the IO molecule (278 cm−1, 13.3%), where the coupling between the ground 2Π multiplet
is found to be stronger for n = m than that for n = 2. Significant deviations are observed
between BP1-SA-DSRG-PT2c and 4c-DSRG-MRPT2 for Ga and Cl atoms, which is likely
caused by the error introduced in the BP Hamiltonian for the late period 3 elements of
the periodic table [66], while the comparable result of Br is likely fortuitous. In Figure 4,
we compare the BP1-SA-DSRG-PT2c results against those of BP1-QD-NEVPT2 by plotting
the percentage of the mean absolute error (MAE) relative to the experimental data. When
using the same set of SA-CASSCF orbitals, SA-DSRG-PT2c and QD-NEVPT2 offer similar
accuracy, and the MAE of each period differs by no more than 1.5 %. We note that only
1- and 2-RDMs are required to obtain the ZFS of SA-DSRG-PT2c, making it a cheaper
alternative to the QD-NEVPT2 method.

Table 1. Spin–orbit zero-field splitting (ZFS, in cm−1) in the 2P ground term of atoms and the 2Π
ground term of diatomic molecules.

System
SA-DSRG-PT2c a

QD-NEVPT2 b 4c-DSRG-MRPT2 c
Experiment

n = 2 n = m ZFS Ref.

B 14.7 14.9 15.0 13.99 15.3 [85]
Al 104.0 105.8 107.6 106.70 112 [85]
Ga 844.0 865.7 887.4 743.28 826 [85]
In 2459.6 2470.5 2560.8 2213 [85]
Tl 11,591.0 12,065.6 12,475.8 7793 [85]
F 401.5 401.5 401.5 384.70 404 [85]
Cl 789.7 789.7 789.7 867.69 882 [85]
Br 3574.4 3574.4 3574.4 3546.46 3685 [85]
I 8150.1 8150.1 8150.0 7603 [85]
CH 27.8 28.5 29.0 27 [86]
SiH 131.2 131.9 128.0 142 [86]
GeH 880.4 864.1 864.1 892 [86]
SnH 2433.1 2311.8 2286.3 2178 [86]
OH 139.8 149.2 152.5 139 [86]
SH 354.7 374.4 375.6 377 [86]
SeH 1742.9 1832.7 1836.7 1763 [87]
TeH 4080.9 4271.0 4293.5 3816 [88]
FO 187.8 180.0 180.0 197 [89]
ClO 270.0 280.3 299.7 322 [90]
BrO 741.4 853.2 961.9 975 [91]
IO 1593.3 1871.7 2303.8 2091 [92]

a This work: first-order SOC using the BP Hamiltonian, s = 0.5 E−2
h . b Ref. [66]: first-order SOC using the BP

Hamiltonian. c Ref. [40]: unc-cc-pVTZ basis set, s = 0.24 E−2
h .
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and diatomic molecules relative to the experimental data, classified by according to the group (left)
and the period (right) of the periodic table. See Table 1 for the ZFS value of each individual system.
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4.3. Transition-Metal Elements: Cu, Ag, and Au

In this section, we explore the SOC effect in the excited 2D term of Cu, Ag, and Au
atoms using BP1-SA-DSRG-PT2c. The 2D term involves strongly correlated d electrons
resulting from the nd9(n + 1)s2 (n = 3, 4, 5) configuration. Consistent with previous
work [60,62], the active orbitals consist of the valence nd and (n + 1)s orbitals and an
additional set of (n + 1)d orbitals, leading to the (11e,11o) active space. Only the ground 2S
and the lowest 2D states were averaged in SA-CASSCF and to construct the SA-DSRG-PT2
Hamiltonian with equal weights (0.5 for 2S and 0.5 for 2D).

Table 2 reports the SA-DSRG-PT2c predictions compared against those of CASPT2 and
DMRG, as well as experimental values. The J-averaged excitation energies of SA-DSRG-
PT2c are significantly improved over those of SA-CASSCF, with the mean absolute error
(relative to experiments) reduced from 0.41 to 0.05 eV. We mention that the ZFS values
of SA-DSRG-PT2c are identical to those of SA-CASSCF because only the ground 2S and
2D states are considered in the SISO step. A large deviation (0.21 eV) on the ZFS of Au
is observed between SA-DSRG-PT2c and CASPT2. Two aspects may contribute to this
difference. The major factor is the use of state-specific CASSCF orbitals in the CASPT2
computations [60] versus the SA-CASSCF orbitals in SA-DSRG-PT2c. To this end, extending
the active space in SISO improves accuracy with the state-averaged orbitals, as suggested
by the DMRG data in Table 2. The other factor stems from the use of the BP Hamiltonian
in SA-DSRG-PT2c, which is considered a low-Z approximation. Nonetheless for Au, this
effect is found to be small (∼0.01 eV) [66].

Table 2. Excitation energies (relative to 2S, in eV) for the lowest 2D term of Cu, Ag, and Au atoms.

System State SA-CASSCF a SA-DSRG-PT2c a CASPT2 b DMRG c Exp. d

Cu

2D (no SOC) 1.66 1.36 1.49
2D5/2 1.55 1.26 1.43 1.31 1.39
2D3/2 1.81 1.52 1.69 1.57 1.64
ZFS 0.26 0.26 0.26 0.26 0.25

Ag

2D (no SOC) 4.46 3.98 3.97
2D5/2 4.23 3.75 3.75
2D3/2 4.80 4.33 4.30
ZFS 0.58 0.58 0.55

Au

2D (no SOC) 2.30 1.74 1.58 1.62 1.74
2D5/2 1.61 1.05 0.97 1.02 1.14
2D3/2 3.33 2.77 2.49 2.55 2.66
ZFS 1.72 1.72 1.51 1.53 1.52

a This work: the SA-CASSCF orbitals, the unc-ANO-RCC basis set, the BP Hamiltonian for SOC, and s = 0.5 E−2
h .

b Ref. [60]: the state-specific CASSCF orbitals, the ANO-L basis set, and the DKH Hamiltonian for SOC. c Ref. [62]:
the SA-CASSCF orbitals, the ANO-RCC-VTZP basis set without g functions, the (19e,45o) active space for Cu,
the (43e,57o) active space for Au, and the BP Hamiltonian for SOC. d Ref. [85].

4.4. Actinide Oxides: [UO2]+ and [NpO2]2+

Lastly, we compute the lowest 2Φu and 2∆u terms of [UO2]+ and [NpO2]2+ molecules.
In these systems, the spin–orbit coupling effect appears to be vital and interleaves the
electronic states as 2Φ5/2u < 2∆3/2u < 2Φ7/2u < 2∆5/2u [66,93–97]. For both molecules,
we employed the (7e,10o) active space and the ANO-RCC-VTZP basis set [83]. Only the
lowest 2Φu and 2∆u terms were included in SA-CASSCF and SA-DSRG-PT2, with equal
weights, while 25 doublet states were considered in the SISO procedure. The geometries of
[UO2]+ and [NpO2]2+ were taken from Ref. [66] with rU – O = 1.802 Å and rNp – O = 1.70 Å,
respectively.

The excitation energies of [UO2]+ and [NpO2]2+ are reported in Tables 3 and 4, re-
spectively. We compare the SA-DSRG-PT2c results to those of QD-NEVPT2, single-state
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and extended multi-state (XMS) CASPT2, intermediate Hamiltonian FSCC theory with
singles and doubles (IHFSCCSD), and the stochastic heat-bath configuration interaction
(SHCI). We take the latter two as theoretical best estimates, as they adopt a spinor reference
state. Nonetheless, the virtual space was truncated in IHFSCCSD and SHCI computations.
For [UO2]+ (Table 3), all methods predict a similar vertical transition energy (VTE) of
2∆3/2u, deviating from the experimental value by no more than 0.03 eV. The ZFS values of
IHFSCCSD are generally lower than those based on SISO. For example, the SA-DSRG-PT2c
values of ZFS(2Φ7/2u − 2Φ5/2u) and ZFS (2∆5/2u − 2∆3/2u) are 0.14 and 0.17 eV larger than
those of IHFSCCSD, respectively. As pointed out in Ref. [66], the accuracy of QD-NEVPT2
can be improved by treating both electron correlation and SOC with the DKH Hamiltonian
at the second order in perturbation theory. Indeed, better agreement with IHFSCCSD is
observed for DKH2-QD-NEVPT2 than BP1-QD-NEVPT2.

Table 3. Vertical transition energies (relative to 2Φ5/2u, in eV) of [UO2]+.

Method 2∆3/2u
2Φ7/2u

2∆5/2u

SA-DSRG-PT2c a,b 0.35 0.85 0.99
QD-NEVPT2 a,c 0.36 0.80 0.98
CASPT2 a,d 0.32 0.83 0.98
QD-NEVPT2 a,e 0.35 0.76 0.95
IHFSCCSD f 0.34 0.71 0.81
Exp. g 0.33

a The (7e,10o) active space and the ANO-RCC-VTZP basis set were employed. b This work: SOC treated at the first
order using the BP Hamiltonian, s = 0.5 E−2

h . c Ref. [66]: SOC treated at the first order using the BP Hamiltonian.
d Ref. [94]: SOC treated at the first order using the DKH Hamiltonian, rU – O = 1.809 Å. e Ref. [66]: SOC treated at
the second order using the DKH Hamiltonian. f Ref. [98]: four-component computations with the Dirac–Coulomb
Hamiltonian; the Faegri basis set for U and the unc-cc-pVTZ basis set for O; 24 electrons (6p65f36d17s2 of U and
2s22p4 of O) were correlated; spinors with energies larger than 6 a.u. were excluded; rU – O = 1.739 Å. g Ref. [99].

Table 4. Vertical transition energies (relative to 2Φ5/2u, in eV) of [NpO2]2+.

Method 2∆3/2u
2Φ7/2u

2∆5/2u
SA-DSRG-PT2c a,b 0.38 1.02 1.16
QD-NEVPT2 a,c 0.45 1.00 1.15
XMS-CASPT2 a,d 0.45 0.98 1.18
CASPT2 a,e 0.38 1.00 1.15
QD-NEVPT2 a,f 0.45 0.94 1.11
IHFSCCSD g 0.44 0.90 1.11
SHCI h 0.43 0.89 1.10

a The (7e,10o) active space and the ANO-RCC-VTZP basis set were employed. b This work: SOC treated at the first
order using the BP Hamiltonian, s = 0.5 E−2

h . c Ref. [66]: SOC treated at the first order using the BP Hamiltonian.
d Ref. [96]: SOC treated at the first order using the DKH Hamiltonian. e Ref. [94]: SOC treated at the first order
using the DKH Hamiltonian, rNp – O = 1.712 Å. f Ref. [66]: SOC treated at the second order using the DKH
Hamiltonian. g Ref. [93]: four-component computations with the Dirac–Coulomb Hamiltonian; the double-ζ basis
set of Dyall for Np and the unc-cc-pVTZ basis set for O; 24 electrons were correlated; spinors with energies larger
than 6 a.u. were excluded; rNp – O = 1.701 Å. h Ref. [97]: spinor computations with the X2C atomic mean-field
Hamiltonian; the unc-ANO-RCC basis set for Np and the unc-cc-pVTZ basis set for O; the (13e,60o) active space.

For [NpO2]2+ (Table 4), the SA-DSRG-PT2c values are most consistent with those
of CASPT2 and differ by 0.01 eV, on average. Taking the SHCI results as the reference,
the SA-DSRG-PT2c method overestimates the ZFS of 2Φu and 2∆u by 0.13 and 0.11 eV,
respectively. Similar to [UO2]+, a superior accuracy is obtained by QD-NEVPT2 when SOC
is treated at the second order with the DKH Hamiltonian. This observation suggests that
SA-DSRG-PT2c may also benefit from a consistent second-order description of electron
correlation and spin–orbit coupling.
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4.5. Mononuclear Single-Molecule Magnet: (PMe3)2FeCl3
Finally, we show that the current formalism can be applied to medium-sized molecules.

In particular, we consider the energy barrier (U) for spin inversion of (PMe3)2FeCl3, which
originates from the ZFS of the doubly degenerate quartet ground state [100] (see Figure 5).
We took the molecular geometry from Ref. [101], which was optimized using CAM-
B3LYP/def2-TZVP. Following Ref. [101], we adopted the CAS(9e,7o) active space, which
includes the set of 3d orbitals of Fe and two 3p orbitals of P atoms. Four quartet states and
ten sextet states were averaged in SA-CASSCF and SA-DSRG-PT2, with equal weights,
and the same number of states was used in the SISO procedure. The unc-cc-pVTZ basis
set [102,103] was used, leading to 966 basis functions.

H C

En
er
gy

P Cl
–3/2 –1/2 1/2 3/2

MsFe

SOC

D3h

U

Figure 5. The molecular structure of (PMe3)2FeCl3 (left) and an energy-splitting sketch of the doubly
degenerate quartet ground state under spin–orbit couplings (right).

The experimental effective barrier height obtained by fitting the magnetic relaxation
time versus inverse temperature appears to be Ueff = 81 cm−1 [100]. An alternative value
may be calculated using the experimentally fitted axial ZFS (D = −50 cm−1 [100]) as
U = |D|(S2 − 1/4) = 100 cm−1 [104]. The SA-DSRG-PT2c prediction of the barrier height
is U = 103 cm−1, showing an excellent agreement with the alternative experimental value.
The SA-DSRG-PT2c value is also comparable to that of CASPT2 (81 cm−1) [101]. This
deviation is likely caused by the use of different spin–orbit operators, where the CASPT2
computations adopted the first-order DKH Hamiltonian.

Before we conclude, we mention the wall time and resources used in the BP1-SA-
DSRG-PT2c computation on (PMe3)2FeCl3. From a theoretical perspective, the BP1-SA-
DSRG-PT2c scheme is directly comparable to that of SOMF-QDNEVPT2 [65]. Given that the
two approaches employ the same SISO procedure for SOC, the difference in computational
cost results from the underlying methods, namely SA-DSRG-PT2c and QDNEVPT2. For
SA-DSRG-PT2c, forming the Hamiltonian H̄[2](s) took 155 s using 50 threads of the AMD
EPYC 7H12 chip, and the actual memory usage was around 4 GB. Using the same setting,
the QDNEVPT2 computation took 3045 s because the first-order wave function of each state
had to be solved individually. This comparison highlights the computational efficiency
of SA-DSRG-PT2c.

5. Conclusions
In conclusion, we have presented a cost-effective approach to incorporate spin–orbit

couplings in the state-averaged driven similarity renormalization group second-order
perturbation theory. This approach belongs to the state-interaction spin–orbit framework,
where any two-component Hamiltonian can be used. In this work, the scalar relativistic
effect is addressed by the one-electron exact two-component method, and the Breit–Pauli
Hamiltonian is adopted for the spin–orbit part with the mean-field approximation. The
resulting BP1-SA-DSRG-PT2c method inherits the computational scaling from its non-
relativistic counterpart, where the one- and two-body density cumulants of the reference
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wave functions are necessary to obtain vertical transition energies. As such, the BP1-SA-
DSRG-PT2c approach is computationally more favorable than other internally contracted
second-order multireference perturbation theories, which require the more expensive
computation of higher-body reduced density matrices of the reference wave function.
Numerical tests of zero-field splittings and excitation energies of atoms and small molecules
show that SA-DSRG-PT2c yields an accuracy comparable to that of QD-NEVPT2 [65] and
CASPT2 [60].

We note that the BP-SA-DSRG-PT2c formalism is not expected to perform well for
heavy elements due to the use of a BP spin–orbit operator. Indeed, a deterioration of
accuracy is clearly observed moving down the periodic table (see Tables 1 and 2). For
actinide oxides, the deviation of ZFS relative to the four-component method becomes sig-
nificant (>0.1 eV). However, four-component methods remain computationally demanding,
and electrons and/or spinors may be truncated to make the computation feasible (see
Tables 3 and 4). To this end, two-component methods provide a balance between accuracy
and affordability. Given the increasing error in the BP Hamiltonian for elements beyond
the third row of the periodic table, it is plausible to replace it with other more robust
spin–orbit operators [44,66,105], including X2C and the first-order DKH Hamiltonians. For
heavy elements, it may also be beneficial to treat the spin–orbit contribution directly as a
first-order perturbation to build the DSRG Hamiltonian, thereby achieving a consistent
treatment of electron correlation and SOC. The results of gold atoms reveal the importance
of using state-specific orbitals, which remains unexplored for multi-state or SA-DSRG [75].
We believe that this work paves the way for these interesting future developments.
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