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Abstract

A fundamental step to predicting brain activity in healthy and diseased populations is characterizing the common
spatio-temporal response to a shared experience. Multivoxel pattern analysis allows us to investigate information encoding
through these patterns; however, we have yet to explore local, stimulus-driven, patterns of cortical activity during
naturalistic stimulation. We sought to examine these patterns with minimum interpolation—excluding functional
alignment—to characterize the most basic degree of shared response between subjects. We used an unbiased analytic
approach, combined with rich, naturalistic, and nonsemantic stimulation to estimate shared spatial patterns in functional
magnetic resonance imaging responses across a large group. We found that meso-scale spatial patterns were shared
nonuniformly across the visual cortex and represent information distinct from the shared temporal response. Shared spatial
patterns were stimulus-driven, modulated by pattern size, and more sensitive to the contrast of 3D versus 2D stimulus
differences than the temporal signals. Although the grand functional structure of the brain is understood to be common,
these results suggest that even at a meso-scale, we share common spatial structures with anatomical alignment alone. The
strength of this similarity varies across the cortex, suggesting some spatial structures are innately organized, whereas others
are shaped by factors such as learning and plasticity.
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Introduction
Spatio-temporal patterns across the cortex encode everyday
experiences in a common functional architecture. Functional
magnetic resonance imaging (fMRI) reveals much of this pattern
but classic time-series modeling (I.e., univariate generalized
linear model approaches) has been limited in understanding
information representation in the cortex (Sereno et al. 1995;
DeYoe et al. 1996; Engel et al. 1997). Multivoxel pattern
analysis (MVPA) techniques overcome this limit and have been
instrumental in assessing how the cortex stores, encodes, and
organizes information. Meso-scale responses to features such

as color, orientation, and edges can be used to build multivoxel
“decoders,” which can even serve to estimate the experience of
the subject (Naselaris et al. 2009; Zurawel et al. 2016). Spatial
patterns can carry category (Haxby et al. 2001) or task-related
information (Kriegeskorte et al. 2006), they can be robust even in
the absence of conscious perception (Sterzer et al. 2008; Schurger
et al. 2010), and these findings can generalize to nonvisual
modalities (Abrams et al. 2011). Some have suggested adapting
MVPA to the study of intersubject similarity, so we could also
measure common encoding mechanisms and representations in
the population (Cohen et al. 2017; Nastase et al. 2019), similar to
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past studies using the temporal responses (Hasson et al. 2004).
We sought to accomplish this by characterizing intersubject
similarity using local spatial patterns of the cortex during
naturalistic stimuli. Response patterns shared across individuals
would implicate common underlying brain structures and, once
characterized, would provide the basis of predicting brain activity
in both healthy and diseased populations.

The combination of intersubject similarity measures with
naturalistic viewing paradigms, such as the method of intersub-
ject correlation (“ISC”; Hasson et al. 2004), first demonstrated that
the shared temporal structure across subjects can be measured
even during such naturalistic conditions as freely watching a
movie. Naturalistic stimuli can be advantageous because while
artificial and highly controlled stimuli are designed for group
comparisons, their results may not be ecologically valid. There
is growing evidence that natural and artificial stimuli result
in different responses in the cortex (Basole et al. 2003; Felsen
et al. 2005; Koene and Zhaoping 2007). Task-based paradigms
may also impose top-down influence that drives generalizable
spatial patterns only during the specific conditions of the task
(Anllo-Vento et al. 1998; Williams et al. 2007). Even naturalistic
stimuli can have top-down influences through narrative
structure that drive common spatial patterns, potentially
obstructing, or confounding stimulus-driven patterns (Englander
et al. 2012; Naci et al. 2014; Lu et al. 2016). To characterize
stimulus-driven shared cortical patterns, we used a task-free
naturalistic stimulus that does not include narrative structure
and includes central fixation to minimize top-down attentional
and emotional influences. This simplification, compared to
prior intersubject similarity studies on the temporal structure,
allows us to probe the most basic degree of shared local spatial
structure across subjects before later defining its more complex
parameters.

Until recently, naturalistic stimuli could not be used with
spatial approaches such as MVPA to assess commonality due to
the limitations of subject-specific classifiers and poor between-
subject generalization. Subject-specific classifiers blind us to
shared spatial patterns, potentially losing information about the
shared architecture that may be useful to determine fundamen-
tal cortical elements. Even with search-light methods to derive
local classification performance metrics and then summarizing
these maps by alignment across subjects, we would obtain only
a map of local performance, not local patterns of activity, which
may relate more directly to stimulus-driven representations. In
contrast, transposing classifiers from 1 subject to another has
been claimed to be unreliable (Cox and Savoy 2003; Haxby et al.
2011), due to the loose relationship between functional and struc-
tural topography of the cortex (Watson et al. 1993; Tootell et al.
1995; Tahmasebi et al. 2012; Langs et al. 2016). When between-
subject multivoxel pattern classification (bsMVPC) is attempted
on the cortical response itself, almost no significant accuracy
is found (see Guntupalli et al. 2016, Fig. 2a). There are now 2
prominent methods to overcoming these barriers to characteriz-
ing common spatial patterns between subjects. The first is using
second-order statistics, and the second is functional alignment
techniques. We will explain the advantages and disadvantages
of each of these methods below, and how the present study fits
within this literature.

Between-subject comparisons with MVPA can be enhanced
by using representational similarity analysis (RSA) to abstract
the response pattern to a “signature” of the cortical repre-
sentation (Kriegeskorte et al. 2008; see Guntupalli et al. 2016),

Figure 3a, or using large-scale patterns covering much of the
cortex (Shinkareva et al. 2008; Shinkareva et al. 2011). Large-
scale patterns do not capture information representations of the
cortex, but rather, represent the global activity of functional
modules. In contrast, RSA reveals distinct information in
spatial representations across subjects, even during natural-
istic stimulation (Chen et al. 2020). RSA and other second-
order techniques (e.g., shared-response model) are extremely
useful when comparing and integrating between methods,
conditions, models, and populations. However, this technique
does not allow for the direct characterization of the stimulus-
driven cortical response. The current study directly uses the
BOLD response to characterize local spatial pattern similarity
across subjects and, in doing so, reveals that shared cortical
responses to naturalistic stimuli are nonuniform across the
cortex.

Another way to enhance between-subject comparisons with
MVPA is to enforce better functional correspondence between
subjects. Several methods have been developed to functionally
align subjects either by their time series alone, or the full spatio-
temporal response together, called “hyperalignment” (Sabuncu
et al. 2010; Haxby et al. 2011; Guntupalli et al. 2016). Other
methods include modeling a shared response across subjects
using functional data, or incorporating functional connectivity
to surface-based alignment, among others (Robinson et al. 2014;
Chen et al. 2015; Nenning et al. 2017).

With the increasing number of choices for functional
alignment comes an increased uncertainty of the effects of each
method on the cortical response. For example, if the functional
alignment method uses searchlights over the whole brain, such
as with hyperalignment, then the size of the searchlight used
will influence the alignment outcome. Moreover, this localized
approach ignores more large-scale patterns in functional
correspondence, such as the effect of cognitive processing
level (Tahmasebi et al. 2012). Meanwhile, the mere act of re-
alignment necessitates interpolation, thereby disrupting the
local measured responses of the cortex and shifting focus
onto distributed population responses, which may not be
ideal in all cases. We measured local cortical responses with
anatomical alignment alone to demonstrate that shared meso-
scale representations can indeed be found before functional
alignment and thus can be included in future functional align-
ment techniques to preserve as much of the stimulus-driven
response as possible before applying transformations to said
responses.

In sum, using MVPA methods on naturalistic stimuli to
characterize and potentially predict shared cortical spatial
patterns can be best achieved by first establishing the degree and
distribution of common patterns with minimal alterations from
the stimulus-driven activity. We designed our study to have the
least amount of interpolation by directly analyzing the cortical
response patterns (first-order) and without functional alignment
while still using naturalistic stimuli. We measured a large
number of subjects, while they watched non-narrative movie
scenes that minimized top-down influences, then analyzed
with an unbiased method to determine the distribution of
shared cortical spatial patterns. We were able to verify that our
estimate of shared cortical patterns was indeed stimulus-driven
and not simply an epiphenomenon of anatomical alignment.
Importantly, we find that the distribution is not uniform, and
these results have important implications for future MVPA
studies.
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Materials and Methods
Procedure and Stimuli

Fifty-four subjects were recruited from the McGill student com-
munity (27 females, 27 males, ages 18–44, mean age 25.3) and pro-
vided informed written consent in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki)
and approved by the Research Ethics Board of the McGill Univer-
sity Health Center. All participants were right-handed and had
normal or corrected-to-normal vision and were able to perceive
depth in stereoscopic 3D movies. Participants watched 2 clips
compiled from “Under the Sea 3-D: IMAX” (Hall 2009) during an
fMRI scan. Each clip was of 5 min in length and was presented
in monoscopic (2D) and stereoscopic (3D), totaling 4 clips and
20 min of viewing time. Clips were presented in random order
to each subject. The 3D clips were presented on an magnetic
resonance-compatible liquid crystal display screen (1920 × 1080
resolution; BOLDscreen 3D by Cambridge Research Systems Ltd,
United Kingdom) and viewed through circular polarizers. The
video subtended 17◦ × 9.4◦. The display of the stimulus and syn-
chronization of the stimulus to acquisition start time was done
using Stereoscopic Player (http://www.3dtv.at) controlled with
MATLAB r2014b (The MathWorks, Inc.) via ActiveX. To isolate
visual processes in this study, no audio was included with the
stimulus. A white fixation cross was presented at the center of
the screen for the entire duration of the stimuli and participants
were instructed to fixate on the cross. Although free viewing is
preferable for many naturalistic stimuli studies for its improved
engagement and similarity to real-world vision, it is not compat-
ible with our analysis. Fixation is necessary to enforce compa-
rability between subjects in our study because we are looking
at local spatial patterns of activation on the cortex, meaning
the stimulus presented to those receptive fields must match as
closely as possible between subjects in order to compare the
pattern of response. Each clip was preceded with 4 s of a blank
black screen including the fixation point. There was also a small
flickering pattern at the bottom right corner of the screen that
was used in another experiment for timing purposes. The entire
scan lasted approximately 45 min, after which we asked each
subject whether they saw two of the clips in 3D.

Data Acquisition

Acquisition was performed on a full-body 3T Siemens TIM Trio
with a 32-channel head coil for anatomical images and 20-
channel posterior coil for functional images. Functional images
were acquired using a T2∗-weighted BOLD sequence (resolu-
tion = 3 mm3, repetition time (TR) = 2000 ms, echo time (TE) =
30 ms, flip angle = 76, matrix size = 64 × 64, field of view (FOV) =
192 × 192, number of slices = 37, slice thickness = 3 mm), and
anatomical images were acquired using a T1-weighted multi-
echo magnetization prepared - rapid gradient echo (MEMPRAGE)
sequence (resolution = 1 mm3). Preprocessing of fMRI data was
performed using analysis of functional neuroImages (AFNI)
(Cox 1996), with special attention paid to minimize spatial
blurring. Specifically, after slice-time correction, all spatial
transformations (i.e., motion correction, distortion correction,
and registration to anatomical image) were concatenated and
applied in a single step. The time series was additionally
detrended and denoised by the ANATICOR model (Jo et al.
2010). This denoising model computes nuisance regressors
in neighborhoods of white matter voxels to remove local
structured noise sources from the fMRI time series. Surfaces were
extracted using Freesurfer (http://surfer.nmr.mgh.harvard.edu/)

and visually inspected and subsequently manually corrected
for errors in the calcarine cortex. We chose to conduct surface-
based group level analyses, which offer greater statistical power
due to better domain-matching across subjects while preserving
individual subjects’ topology (Saad and Reynolds 2012). The
resulting surface meshes (36 000 nodes on each hemisphere)
of each subject can then be directly compared, whereas the
topology of the original surface is preserved and each node on 1
subject’s mesh corresponds to the same node on another subject.

Intersubject Spatial Pattern Correlation

We calculated the ISC of the spatial patterns inside searchlights
that were centered on each surface node of the brain, similar to
previous studies (Chen et al. 2016b; Zadbood et al. 2017; Nastase
et al. 2019). Searchlights were generated using AFNI’s ROIgrow
function at 5 different searchlight radii 3, 5, 7, 9, and 11 mm,
but the 3 mm radius searchlights at times contained too few
nodes for statistical analysis (e.g., only 4 nodes) and hence was
dropped from further analysis. In attempting to constrain our
analyses to local and relatively fine-scale spatial patterns, we
favored the smaller searchlight sizes and thus also excluded the
11 mm searchlight from further analysis.

For each node, we calculated Pearson’s correlation between
every pair of subjects at every time point and stored the z
values—all statistical inferences used these Z-transformed val-
ues. The mean of the upper triangle of this square matrix at a
given time point then represents the intersubject spatial pattern
correlation (ISPC) at that node (see Fig. 1). This group level mean
of pairwise correlations can also be interpreted as a measure of
the similarity of any individual subject to the mean of all other
subjects, or alternatively, how well an individual can be aligned
by their local spatial pattern to all other subjects.

A nonparametric significance test is suitable for naturalistic
stimuli because it requires minimal assumptions about the data,
deals with the multiple comparisons problem over the whole
brain and does not require an a priori experimental model. The
spatial pattern inside each searchlight was permutated 10 000
times using a Fourier phase randomization routine adapted from
Prichard and Theiler (1994), which randomizes the phase of the
components while retaining the global power. This method is
frequently used in visual object recognition studies as a control
condition because it scrambles an image while retaining many
of the original visual properties, including higher-order statis-
tics (Nichols and Holmes 2001; Nichols and Hayasaka 2003). It
has also been used on magnetoencephalography time series to
create a null distribution while respecting time-series statistics
such as autocorrelation (Chang et al. 2015). We chose to adapt
the Fourier-scrambling method for our spatial pattern analy-
sis because it embodies our null hypothesis the most accu-
rately—that there is no common spatial pattern found between
subjects in each searchlight, therefore scrambling the pattern
inside the searchlight will have no effect on ISPC. The null
hypothesis treats subjects as a random effect because there is
no relationship between subjects, and this method of scram-
bling disrupts only local activation patterns. For each permu-
tation, the Pearson’s correlation coefficient was measured in
the same manner as in the real data. Each permutation itera-
tion involved taking the maximum correlation coefficient across
all searchlights over the entire brain. The null distribution is
therefore made up of the 10 000 maximums, one for each per-
mutation iteration. Since the null distribution is composed of
absolute maximums, we strictly control for family-wise error rate
(Nichols and Holmes 2001; Nichols and Hayasaka 2003). Each of
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Figure 1. At each TR (leftmost panels of movie frames) of the scan during movie viewing, we calculated the spatial pattern correlation (Pearson’s r) between subjects

within the same searchlight (red circle on brain) and calculated the group mean (lower triangle of ISC matrix). This value is then projected back onto a template brain

(rightmost brain) at the central node of the searchlight (red dot), and the process is repeated for all searchlights and for all TRs. Lastly, the correlations are aggregated

over time by averaging over TRs, producing the final estimate of ISPC.

the 4 movie clips received its own set of 10 000 permutations.
A single threshold test for significance was performed using the
95th percentile of each null distribution, as outlined in Nichols
and Holmes (2001), and applied to ISPC results of each movie
clip. More specifically, each movie clip produced 1 set of ISPC
coefficients, 1 value for each node on the cortical surface, and
coefficients, which fell above the significance threshold were
deemed significant. Alternate methods of conducting ISCs have
been outlined in Chen et al. (2016a), who suggest subject-wise
bootstrapping over element-wise permutations; however, past
literature on intersubject temporal correlations during movie
viewing tend to use scene scrambling (a type of element-wise
permutation method), so we used this method as well for greater
comparability.

Data Visualization

All significant searchlights were projected onto the Standard-60
mesh (in AFNI’s SUMA) by assigning the mean spatial pattern
correlation across time of the searchlight to the central surface
node of the searchlight. We used the Python toolbox “Pycortex”
(Gao et al. 2015) for final surface visualizations. Visual areas were
defined by the Wang et al. (2015) probabilistic atlas composed of
25 topographic maps. For all subsequent analysis, we report data
generated from 9 mm searchlights.

ISPC Variation May Relate to Other Known Maps of the
Visual System

To compare spatial pattern similarity across visual areas, we used
a sub-sampling method on the pairwise correlation coefficients
to generate 27 subsamples of our 53 subject pairs. The sub-
sampling was performed on the upper triangle of the pairwise
correlation matrix composed of z-scores, calculated as a part of
the ISPC analysis described previously. For each surface node
and each time point, subsamples were obtained by randomly
sampling the pairs without replacement. Once all subsample
groups were created, the z-scores were averaged across pairs
within a subsample, and finally, averaged over time points. The
resulting values are analogous to ISPC, except, instead of 1 group-
level value describing intersubject similarity per node, we have
a value for each of our 27 subsamples. Subsampling allowed
us to estimate a measure of reliability of our intersubject pat-
tern correlation—regions that have high intersubject pattern
correlation but low reliability would exhibit higher variability

in the correlation estimate across subsamples. We compared
ISPC values between 21 visual areas defined by the probabilistic
atlas of Wang et al. (2015) (we concatenated the dorsal and
ventral portions of V1, V2, and V3 individually) using pairwise
t-tests with Benjamini–Hochberg false discovery rate (FDR) (BH-
FDR) correction (Benjamini and Hochberg 1995). Due to overlap
in searchlights at the borders of visual areas, our comparisons
between these areas may be reducing the effect size of dif-
ferences between visual areas; however, due to our hypothesis
that visual areas will exhibit significant differences in ISPC, we
chose not to remove these searchlights and instead include as
much data as possible. Of particular interest was the comparison
between V1, V2, and V3 due to their similarly robust retinotopic
organization known to be similar across individuals, and thus a
comparison between them would resolve whether variation in
ISPC was related to retinotopic mapping.

The visual pathways may also explain variation in ISPC. We
compared early (V1, V2, and V3), ventral stream (V4, LO1, LO2,
VO1, VO2, PHC1, and PHC2), and dorsal stream (V3a, V3b, hMT,
MST, IPS0-IPS5, and SPL1) areas using 2-sample t-tests with BH-
FDR correction on our 27 subsamples.

ISPC Variation Is Not a Consequence of Anatomical
Alignment

To account for the possibility that the variation in spatial pattern
similarity in different visual areas was due to differences in the
anatomical alignment between subjects, we compared anatom-
ical alignment with ISPC. Since all group analyses were done on
SUMA-generated surfaces, individual surface geometry was con-
served while maintaining node correspondence. At each node,
the surface convexity describes the height and depth of sulci
and gyri. We took the convexity at each node and calculated the
variance across subjects. High variance would indicate that the
specified node is on different topological locations for different
subjects. We smoothed the results with the same searchlight size
as used in the ISPC analysis, then calculated the Pearson’s cor-
relation coefficient between convexity variance and ISPC across
the visual cortex to determine whether topological variance
could predict spatial pattern similarity. This control measure
is different from past literature describing the decoupling of
functional and anatomical structure (Watson et al. 1993; Tootell
et al. 1995; Tahmasebi et al. 2012) because it assumes that even
with poor functional alignment during anatomical alignment
alone, small-scale functional spatial patterns may still be shared
across subjects.
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ISPC Is Not Driven by High Amplitude BOLD Signals

Since ISPC is calculated at each time point, we tested whether
time points with high ISPC correlate with time points of high
BOLD signal amplitude in order to determine whether spatial
pattern similarity is driven by global clusters of high amplitude
BOLD signal. An example is if voxels from a small patch of
cortex all exhibit uniformly high BOLD signal, it may artificially
drive high ISPC and thus would not represent any additional
information from temporal pattern similarity. We calculated the
FDR corrected P value and correlation coefficient between mean
BOLD amplitude across subjects over a searchlight to ISPC in the
same searchlight.

Effect of Stereoscopic (3D) Viewing on ISPC

The effect of 3D viewing on spatial pattern correlation was
calculated within each visual area. The ISPC in the two 2D clips
were first averaged, likewise with the 3D clips. The difference
in spatial pattern similarity between the 2D and 3D clips was
converted into a z-score and significance was tested with 10 000
permutations involving scrambling of the 2D and 3D labels. The
P values were BH-FDR corrected.

ISPC Is Stimulus-Dependent

Lastly, to determine the stimulus-dependent nature of the spatial
patterns, we calculated the similarity in spatial patterns between
2 clips (the same clip but presented in 2D and 3D, or different
clips altogether presented in only 3D). For each clip, we averaged
the spatial pattern across subjects, then calculated the Pearson’s
correlation coefficient between clips and averaged the values
over time. To determine a significance threshold, we computed
1000 permutations of the time-series within each searchlight
such that the spatial pattern in a specific time point was not
altered, but the position of that pattern in the time series was
scrambled. We used the 95th percentile of the permutation dis-
tribution, FDR-corrected the P values, and thresholded the data
at P = 0.05. The same analysis was conducted on the BOLD time
series, smoothed with the same searchlight size as in the spatial
pattern version, and averaged over subjects before calculating
the correlation coefficient. Permutations of the BOLD temporal
response included phase randomization of the time series at
each node as to not disrupt temporal autocorrelation, followed
by multiple comparisons correction in the same manner as the
spatial response.

Results
Spatial Patterns Are Shared across Individuals and Vary
across the Cortex

Spatial patterns are similar between subjects, robust, and vary
in similarity as a function of cortical hierarchy (Fig. 2). The
conservative permutation test with family-wise error correction
revealed that up to 10% of the cortex had significant ISPC
across subjects. For 5 mm radius searchlights, 2.7% of the cortex
exhibited significant ISPC. For 7 mm, 7.7% and for 9 mm it
was 10.0%. These results suggest that shared spatial patterns
have a range of sizes, with a minimum 7–9 mm radius in
most visual areas and as small as 5 mm in early visual cortex
(see Supplementary Figs 1 and 2 for data on 5 mm and 7 mm
searchlights).

Significant ISPC was found in all visual areas except in late
dorsal and ventral visual areas, namely intraparietal sulcus

Figure 2. ISPC across subjects in 2D version of clip 1, analyzed with 9 mm search-

lights (N = 54). Significant similarity was found across most of the visual cortex

except late dorsal and ventral areas and is not uniform across the cortex. Only

areas that passed the family-wise error corrected threshold from permutation

tests are shown. Visual area borders reflect population atlas boundaries (Wang

et al. 2015).

(IPS1—IPS4), superior parietal lobule 1 (SPL1) and posterior
parahippocampal cortex (PHC1, PHC2)—even larger searchlights
(i.e., 7 mm and 9 mm radii) failed to reveal shared patterns across
subjects in these areas (Fig. 3a).

Spatial pattern similarity is not uniform across the visual
cortex. We first tested whether segregation by visual pathways
explains the variation. Using the probabilistic atlas of Wang et al.
(2015), we first compared the average ISPC in areas designated
as early (V1, V2, and V3), ventral stream (V4, LO1, LO2, VO1,
VO2, PHC1, and PHC2), or dorsal stream (V3a, V3b, hMT, MST,
IPS0-IPS5, and SPL1) with 2-sample t-tests. For both left hemi-
sphere (LH) and right hemisphere (RH), early visual areas [LH
M = 0.02, standard deviation {SD} = 0.002; RH M = 0.02, SD = 0.001]
have significantly higher correlation than dorsal stream (LH
M = 0.005, SD = 0.0008; RH M = 0.005, SD = 0.0008; t(52) = 34.67,
P < 1 × 10−10 and t(52) = 47.06, P < 1 × 10−10, respectively, for
LH and RH) and ventral stream (LH M = 0.007, SD = 0.0009; RH
M = 0.008, SD = 0.0008; t(52) = 29.40, P < 1 × 10−10, and t(52) = 34.26,
P < 1 × 10−10, respectively, for LH and RH, Fig. 3b).

Between Dorsal and Ventral areas, there was also a signifi-
cant difference, with Dorsal areas exhibiting the lowest pattern
similarity (t(52) = 8.34, P < 1 × 10−10 and t(52) = 11.33, P < 1 × 10−10,
respectively, for LH and RH, Fig. 3b).

We then asked if the pattern of ISPC across the cortex is
related to retinotopy—a putatively intrinsic organizing principle
that is known to be similar across individuals. To answer this
question we compared ISPC across the 3 areas with robust
retinotopic organization—V1, V2, and V3. We found significant
differences in the magnitude of similarity between these areas
(t(52) = 14.27, P < 1 × 10−10 between V1 and V2, t(52) = 21.25,
P < 1 × 10−10 between V1 and V3, and t(52) = 7.56, P < 1 × 10−9

between V2 and V3), suggesting spatial pattern similarity is not
directly related to previously-known shared spatial structures

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
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Figure 3. Mean ISPC of subsampled groups in each (a) visual area and (b) visual stream for clip 1 in 2D with searchlight of 9 mm using N = 27 sub-samples of 53

pairs each. Spatial patterns similarity was variable across visual areas (a). Two-sample t-tests showed significant differences between many of the visual areas (see

Supplementary Fig. 3 for pairwise comparisons of areas) and between all visual streams (b). Error bars represent standard deviation. ∗∗∗Represents P < 0.001.

such as retinotopic maps (see Supplementary Fig. 3 for all visual
area comparisons).

Spatial Pattern Correlation Is Not Due to Anatomical
Misalignment nor BOLD Amplitude

We tested whether spatial pattern similarity is dictated by
anatomical alignment—it could simply be the case that when
subject anatomies are slightly misaligned, their functional
structures are similarly misaligned. To test this, we carried
out a correlation analysis between intersubject variability
in anatomical convexity determined from the reconstructed
surfaces and the ISPC at each node. There was no significant
correlation between anatomical alignment and magnitude of
ISPC across the brain (Pearson’s r = 8.8 × 10−4, P = 0.96), suggesting
our new metric is not explained by anatomical alignment or
misalignment.

Our approach to estimating spatial patterns allowed us to
obtain a metric per time point, so we wondered whether the time
course of ISPC was related to the BOLD time series. We tested the
correlation between the 2 measures at every node in the cortex
and found that the two are “not” related to each other (Fig. 4). This
means that spatial pattern similarity is also not likely explained
by BOLD temporal signal-to-noise ratio (SNR)—high BOLD would
predict higher SNR, and if ISPC was driven largely by the presence
or absence of sufficient BOLD SNR, we would expect the two to
be correlated, but that was not observed.

Spatial Pattern Similarity Is Stimulus-Dependent

Because our participants had viewed the clips in both 2D and
3D conditions, we could use the evoked patterns across different
viewings to determine the extent to which stimulus features
affected spatial pattern similarity. Viewing of the movie clip in 3D
tended to increase ISPC magnitude in several higher level dorsal
and ventral areas (Fig. 5). Surprisingly, we found that right PHC2
and right SPL1 exhibit significantly higher ISPC in 2D viewing.

Spatial patterns generated by the same movie clip were very
similar, whereas different movie clips generate different spatial
patterns (Fig. 6a). This result demonstrates that the spatial

patterns sampled to generate the ISPC map are clearly stimulus-
driven and not a consequence of spontaneous patterns in the
brain. In clip 1 versus clip 2 condition, 0.03% of nodes survived
significance testing, whereas 9.9% of nodes survived in the 3D
versus 2D condition. This further lends support to our hypothesis
that spatial patterns represent information encoding in the
cortex and so common spatial patterns across subjects represent
common functional structures. When looking at the analogous
analysis with BOLD temporal ISC, the difference between same
and different movie clips is also very apparent (5.5% of nodes
are significant in the clip 1 versus clip 2 condition and 51% of
nodes are significant in the 3D versus 2D condition; Fig. 6b).
Interestingly, the magnitude of similarity in the 3D versus
2D condition is much higher in the temporal version than
in the spatial version. This suggests that spatial patterns are
more sensitive to stereoscopic differences than BOLD temporal
patterns–there are greater differences between spatial patterns
than between temporal patterns when the only difference
between clips is stereoscopy. We also found correlations between
the temporal pattern of clip 1 and clip 2 in the superior temporal
cortex.

Discussion
We examined intersubject spatial pattern similarity across the
visual system during naturalistic stimulation to determine
whether shared patterns were significantly present with
anatomical alignment alone and to examine their character-
istics. We demonstrate that ISPC is robust, varies across the
cortex as a function of visual hierarchy, and is modulated by
the stimulus content and stereoscopy even to a greater extent
than temporal ISCs. In addition, we verified that ISPC was not
explained by variations in anatomical alignment across the
cortex or changes in BOLD amplitude over time.

Our study utilized rich naturalistic stimulation under
different viewing conditions and in a large cohort of subjects,
analyzed using rigorous statistical criteria. We used greater than
the minimum number of subjects required for reliability (N > 30,
according to Pajula and Tohka 2016)) and strict significance
testing with minimal assumptions (Nichols and Hayasaka 2003).
We minimized top-down modulations by using a visually rich

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
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Figure 4. Relationship between mean BOLD signal amplitude and spatial pattern similarity in the RH (N = 54). Dotted line represents threshold at FDR-corrected P = 0.05.

Almost all nodes are not significantly correlated, indicating weak or no relationship between spatial pattern similarity and BOLD signal amplitude over time.

Figure 5. Effect of stereoscopic (3D) versus monoscopic (2D) viewing on ISPC in

each visual area. Clip 1 and clip 2 were concatenated for each viewing condition.

Significantly greater spatial pattern similarity was observed in higher order areas

during stereoscopic (3D) viewing. ∗Represents P < 0.05, ∗∗represents P < 0.01, and

∗∗∗represents P < 0.001 (N = 54).

stimulus that was devoid of narrative structure and enforced
comparability with central fixation (Naci et al. 2014; Lu et al.
2016). We also included 3D viewing of the stimulus to mimic real-
world vision as closely as possible and compared the responses
to 2D viewing.

Our results could not be explained by factors related to
anatomical alignment nor by BOLD SNR fluctuations. First, we
found no relationship between ISPC and anatomical misalign-
ment as measured by the variance of convexity estimates at
each vertex of reconstructed cortical surfaces. If the variance
of ISPC were solely related to misalignment, we would have
expected a strong negative correlation—greater anatomical
misalignment should have correlated negatively with ISPC, but
we did not observe such a trend. Our large sample size (54)
strengthens this point, as our variability estimate would have
been a robust estimate of population variance. The absence
of a relationship between anatomical alignment and ISPC in
this study corroborates an earlier study of the auditory cortex
(Tahmasebi et al. 2012), where functional pattern variations
in higher cognitive levels of the auditory cortex could not be
explained by greater anatomical variation.

Because of the naturalistic stimuli used, it is possible that
BOLD amplitude changes—due to the presence or absence of
scene features important for a given cortical area—would induce
the spatial pattern correlations we report here. Yet we found no
support for this. We found that BOLD amplitude was a poor
predictor of ISPC, as we were unable to find a single node
cluster that survived FDR correction for multiple comparisons
when testing the time-series correlation of BOLD amplitude
and ISPC.

We determined that spatial pattern similarity is stimulus-
driven and this was supported by 2 separate analyses. First, we
tested whether spatial patterns induced by 1 movie explained
patterns induced by another movie clip. A correlation between
patterns induced by 2 movies would preclude stimulus-
selectivity, but we failed to observe such a correlation. This first
analysis thus supports the view that spatial pattern correlations
are stimulus-driven.

Second, we further tested the degree of stimulus-selectivity
by comparing spatial patterns and BOLD time series between 2D
and 3D viewings of the same clip. As a stronger test of stimulus-
selectivity, we would expect ISPC to be modulated by 3D versus
2D viewing. As a comparison, we took the BOLD time-series cor-
relations between the same clips. We found that the BOLD time
series was strongly correlated between the 3D and 2D viewing
of the same clip, whereas the spatial pattern was substantially
less correlated—spatial patterns were more sensitive to viewing
condition than BOLD amplitude.

Implications of ISPC Nonuniformity on Other fMRI
Techniques

Our results lend support to alternative methods of functional
brain mapping in which cortical areas are not treated as uni-
formly active in response to their preferred stimuli, such as the
information-based method by Kriegeskorte et al. (2008). Tradi-
tional fMRI experiments heavily smooth spatial data to magnify
areas of high amplitude signal due to the belief that the limited
spatial resolution of fMRI could only distinguish which brain
regions corresponded to which functions. Modern MVPA tech-
niques pioneered by Haxby et al. (2001) and further supported by
the present results demonstrate that smoothing the data is actu-
ally removing a major source of information about the brain’s
function. The meso-scale spatial patterns presented here and
traditionally removed by spatial smoothing, encode important
information because they are shared among a large cohort of
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Figure 6. Test of stimulus-dependence of (a) spatial pattern and (b) temporal pattern consistency. The group-averaged spatial pattern (a) was not similar between clip 1

and clip 2 across the whole cortex (left column), but this was not the case for the contrast of 3D versus 2D of the same clip (right column), suggesting spatial patterns are

sensitive to even subtle stimulus changes such as the addition of disparity. The analysis was repeated for the temporal pattern (b), where similarity between clip 1 and

clip 2 in the auditory cortex was observed. Temporal patterns were more comparable across the cortex than spatial patterns in the 3D versus 2D condition, suggesting

that spatial patterns may be more sensitive to small stimulus differences. N = 54.

individuals during naturalistic stimulation. Most importantly, we
demonstrate that significant ISPC can be found with anatomical
alignment alone, without necessitating abstraction of the cortical
response using RSA or functional alignment and at a much
smaller spatial scale than previously noted.

One example of functional alignment, termed “hyperalign-
ment,” involves the alignment of the spatio-temporal pattern in
searchlights across the cortex (Sabuncu et al. 2010; Guntupalli
et al. 2016). If some regions exhibit greater dissimilarity across

subjects than other regions, then functional responses in these
regions will need greater transformation. Because the purpose of
the transformation is to facilitate multivoxel classification, our
results suggest that these latter analyses may have an inherent
and systemic bias depending on the region of the brain they are
being carried out on. Due to greater ISPC values in V1, for exam-
ple, responses in this area will need less transformation and
hence less interpolation and blurring, yielding greater capacity
for maintaining discriminant patterns. Beyond V1, most areas
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showed decreasing ISPC and would hence need greater func-
tional alignment than lower areas. Another implication of our
results on hyperalignment is the effect of searchlight size. Since
whole-brain hyperalignment involves using searchlights of a
consistent size across the brain and we demonstrate that search-
light size has an effect on ISPC scope (Supplementary Fig. 4), a
variable searchlight method may be more accurate in preserving
existing shared spatial structures of the cortex.

Our results align with existing bsMVPC studies, which
show poor between-subject classification accuracies com-
pared with within-subject, and even that poor performance
being limited to a very small subset of early visual cortex
(Guntupalli et al. 2016). This limited localization of bsMVPC
performance relates heavily to areas with the highest magnitude
of ISPC in our study, indicating that significant accuracies
can be achieved with sufficient intersubject similarity in the
spatial pattern of response. Our results go on to show that
significant pattern similarity can also be found in much of
the visual cortex, but to differing degrees. Future studies
may incorporate nonuniform similarity and searchlight size
requirements from our study to create more accurate bsMVPC
experiments without the need for further transformations to the
response.

What Causes Variations in ISPC?

Most of the visual cortex exhibited spatial pattern similarity
except IPS1–IPS4, SPL1, and PHC1 and 2. SPL1 has been found to
be involved in saccades (e.g., Konen and Kastner 2008), and we
speculate that the very low correlation values in this region were
due to our subjects fixating. IPS1–IPS4 are also involved in the
representation of eye movements and the lack of spatial pattern
correlation in these areas could be similarly explained (Arcaro
et al. 2009). The remaining visual cortex exhibited nonuniform
spatial pattern similarity.

We could conceive of 3 hypotheses to explain variations in
spatial pattern similarity, which we termed: Experiential Cor-
tex, Receptive Field, and Motif Size hypotheses. According to
the Experiential Cortex hypothesis, shared spatial patterns may
reflect regions that are not shaped by individual’s unique expe-
riences—areas with high spatial pattern correlation reflect areas
whose structure is largely predetermined by genetic factors. In
contrast, the Receptive Field hypothesis predicts spatial pattern
similarity is related to the population receptive field size of
a given area—larger receptive field sizes (and correspondingly
weaker retinotopic organization) result in smoother variations
across the cortical surface, reflected in lower ISPC values across
individuals. Finally, according to the Motif Size hypothesis, the
variation we observed in spatial structural similarity is reflec-
tive of the “size” of the underlying spatial motifs—for higher
level areas, these motifs may be larger than our searchlights,
and hence the estimated spatial pattern similarity is not uni-
form across the cortex when sampled by a single searchlight
size.

We did not find evidence supporting the Experiential Cortex
hypothesis, which would predict that high spatial pattern simi-
larity coincides with areas that are not strongly shaped by indi-
vidual experience. V1 and V2 are areas with this property, having
a predictable functional structure, which can be estimated from
anatomy (Burkhalter 1993; Benson et al. 2012; Benson et al. 2014).
Our results depict high ISPC in V1 and V2 compared with other
visual areas; however, there was a large difference in magni-
tude between them (over 50%), suggesting other factors must
be involved. The Receptive Field hypothesis is weakly supported

by our results. The estimated map of population receptive field
sizes presented by Dumoulin and Wandell (2008) does not appear
to correspond to our ISPC map, though there are some similar
trends. For example, the population receptive field of lateral
occipital cortex (LO)/ventral occipital cortex (VO) was found to
be roughly 5 times larger than V1—a similar trend was found in
our study for spatial pattern similarity.

Lastly, we found strong evidence to support the Motif Size
hypothesis. Results from 3 searchlight sizes revealed that only
when sampling with larger searchlights do higher-level visual
areas become significantly similar (see Supplementary Fig. 4),
suggesting higher visual areas contain larger shared patterns
than early areas. This finding is in accordance with results
from Haxby et al. (2001), which suggest that ventral temporal
cortex represents objects with distributed, overlapping patterns,
and hypotheses from Op de Beeck et al. (2008), stating that the
nonlinear combination of multiple feature maps may give rise to
a distributed pattern responsible for diverse object recognition.
It is also possible that some of the stronger ISPC found with
larger searchlights is a consequence of including more than 1
selective object recognition modules in 1 searchlight, such as the
fusiform face area and parahippocampal place area. We do not
believe this to be a strong driving factor because our stimulus
does not include many of the objects typically described to excite
these areas selectively (I.e., human body parts, human faces,
buildings; except possible faces of sea animals), our searchlights
are relatively small, and our effect was not limited to ventro-
lateral occipital cortex. Along with our results on the stimulus-
driven nature of the spatial patterns described, this suggests that
higher visual areas recruit more distributed spatial structures
responsible for the processing of visual information. In contrast,
V1 is made up of a repeating pattern of feature detectors—small
spatial structures—that cover the entire visual field retinotopi-
cally (e.g., orientation columns repeat the same spatial motif,
called pinwheels, over entire V1). A small searchlight will capture
similar patterns across subjects in V1 because the small spatial
structures will be activated the same way across the retinotopic
map across all subjects. When a larger searchlight is used, more
of these repeated small structures will be captured, so spatial
pattern similarity will be conserved.

Current hyperalignment and whole-brain MVPA techniques
use consistently sized searchlights across the cortex to examine
local spatial patterns and make inferences about the population.
We have shown that different searchlight sizes affect ISPC and
hypothesize that different searchlights may be capturing differ-
ent spatial motifs. Future studies could test different searchlight
sizes concurrently across the cortex, or sequentially testing a
few, before determining the best searchlight method for their
study.

Because we found ISPC to be stimulus-driven, it is also
nonuniform across time. We speculate that the dynamic aspect
of ISPC is related to saliency (Niebur et al. 1998). Saliency limits
the processing demands of the visual system to smaller parts
of the visual field for efficiency and speed and is driven by
prominent features of the stimulus, such as high contrast or
vivid color (Koch and Ullman 1985). Although our subjects were
fixating, they were still able to covertly shift their attention
to salient regions of the scene. In the case of V1, a shift in
saliency will also shift the main feature-detecting pattern on
V1 to a different retinotopically corresponding portion of V1
(Brefczynski and DeYoe 1999). In the case of higher-level ventral
areas, a shift in saliency will not change location of the pattern,
due to weak retinotopic mapping in these areas, but instead
will fundamentally change the pattern itself because different

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa076#supplementary-data
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maps will be activated to form the unique combined patterns
representing the object/scene (Treue and Trujillo 1999; Downing
et al. 2001).

ISPC Compared to ISC

Our ISPC values are lower and cover less of the cortex than
previous studies of temporal similarity using the ISC method
(Hasson et al. 2004; Chen et al. 2016b). Cinematic movies con-
tain many nonvisual temporal structures, such as suspense and
executive load driven by the plot of the movie. These aspects
of the movie have been shown to drive synchronous activity in
the frontal and parietal lobe (Naci et al. 2014). We used a vivid,
non-narrative movie and restrained our investigations to the
visual system only, which likely removed a significant amount
of synchronicity across the cortex found in previous studies.
Although potentially limiting, this strategy is a crucial first step
to examining common spatial structures of the visual system
because top-down influences may also drive similarity unrelated
to underlying structure.

Temporal ISC and ISPC are at least partly independent of one
another. When BOLD amplitude is relatively weak in a region,
the temporal pattern will not be robust enough to find similarity
but the spatial pattern can still be significantly similar across
subjects (Haxby et al. 2001; Sterzer et al. 2008). Future studies
will need to incorporate both temporal and spatial ISC during
naturalistic stimulation to better capture the representations
underlying the fMRI response.

Conclusion
The visual system encodes everyday experience in similar spa-
tial patterns across individuals. Shared spatial patterns vary by
location in the visual cortex, the size of the spatial patterns
sampled, and the movie content and complexity (3D vs. 2D).
They carry different information and represent stimulus-driven
activation across the visual cortex even more so than voxel-
wise temporal BOLD signal alone. Future studies may benefit
from our improved understanding of intersubject spatial pattern
similarity. Nonuniform similarity across the cortex implies that
inherent biases may be present when treating them as uniform,
from the rudimentary step of aligning and smoothing different
brains, to functional alignment, to studying complex brain func-
tions using MVPA.

Spatial patterns may also serve as an indicator of normal
cortical behavior, similar to how temporal patterns have been
investigated in individuals with depression, schizophrenia, and
autism (Hasson et al. 2009; Guo et al. 2015; Gruskin et al. 2020; Tu
et al. 2019). Combining these techniques to incorporate the full
spatio-temporal response pattern will allow future researchers
to localize subtle functional changes in the brain while sampling
many visual features at once, in a naturalistic visual environment
most like everyday experience, making it extremely practical and
impactful for patients’ lives. In sum, a map of spatial pattern
similarity values across the cortex provides the basis for pre-
dicting prototypicality of spatially patterned brain responses in
any individual and contributes to building a general blueprint for
human brain function.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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