
materials

Article

Recovery of Chloride Penetration Resistance of Cement-Based
Composites Due to Self-Healing of Cracks

Kyung Suk Yoo 1,2, Seung Yup Jang 1,* and Kwang-Myong Lee 2

����������
�������

Citation: Yoo, K.S.; Jang, S.Y.; Lee,

K.-M. Recovery of Chloride

Penetration Resistance of

Cement-Based Composites Due to

Self-Healing of Cracks. Materials 2021,

14, 2501. https://doi.org/10.3390/

ma14102501

Academic Editor: Didier Snoeck

Received: 2 April 2021

Accepted: 7 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Transportation System Engineering, Graduate School of Transportation, Korea National
University of Transportation, 157, Chuldo-bangmulgwan-ro, Uiwang 16106, Korea; yooks815@ut.ac.kr

2 Department of Civil, Architectural, and Environmental Systems Engineering, Sungkyunkwan
University (SKKU) 2066, Seobu-ro, Jangan-gu, Suwon 16419, Korea; leekm79@skku.edu

* Correspondence: syjang@ut.ac.kr; Tel.: +82-10-9037-6610

Abstract: This study proposed a method of applying coating on uncracked surfaces of test specimens
in the electrical migration–diffusion test for the evaluation of the chloride penetration resistance
of cracked cement-based composites. It was shown that, by applying the proposed method, the
recovery of the chloride penetration resistance from self-healing of cracks can be evaluated more
accurately because the application of surface coating reduces the test time and the error introduced
by over-simplification. Based on observations of the self-healing-induced recovery of chloride
penetration resistance, a phenomenological model for predicting the progress of crack self-healing in
cement-based composites was suggested. This model is expected to evaluate the chloride penetration
resistance more accurately in actual concrete structures with cracks.

Keywords: cement-based composites; crack; self-healing; chloride; electrical migration–diffusion
test; surface coating

1. Introduction

Concrete is a construction material with very high durability and excellent mechanical
properties but is vulnerable to the formation of cracks owing to various physicochemical
actions. Concrete cracks degrade structural durability by providing penetration paths for
substances such as water and chloride ions [1]. To prevent the penetration of harmful
substances through cracks and subsequent degradation, repair is generally performed
when cracks larger than an allowed size occur. Crack maintenance, however, requires
considerable cost and time [2]. In addition, cracks tend to propagate and additional cracks
often occur even after repair, leading to a cycle of continuous degradation of concrete
structure durability performance and a shortening of service life [3].

To reduce the need for crack maintenance, a number of studies on self-healing concrete
that recovers durability and mechanical performance through the self-healing of cracks
have recently been conducted [4]. Concrete is essentially capable of naturally healing cracks;
when moisture is supplied through a crack, it will heal through the hydration of unhydrated
cement and the carbonation of calcium hydroxide via a process known as natural healing [5].
This process, however, will only heal very fine cracks [6,7]. Previous studies reported
improvements in crack self-healing capacity through the use of inorganic materials [8],
super absorbent polymers (SAPs) [9], encapsulated polymers [10], and bacteria [11,12].
Inorganic materials improve the self-healing capacities of cement-based materials through
the rehydration of unhydrated cement [13], the generation of calcium carbonate via the
carbonation reaction of Ca2+ [14,15], or the generation of C–S–H via pozzolanic reactions
using fly ash or blast furnace slag [16–19]; cracks can also be healed through the formation of
ettringite within cracks using calcium sulfoaluminate (CSA) and crystalline admixtures [20].
SAPs absorb large quantities of water that are subsequently released during the cement
hydration process. When a crack occurs, they absorb the water that comes through the
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crack and expand to physically block the crack. They are known to further improve
healing performance by accelerating the hydration of unhydrated cement through the slow
discharge of absorbed water [21–23]. Bacteria heal cracks through a phenomenon in which
CO2 generated by their metabolic activity forms CaCO3 crystals through reaction with
Ca(OH)2 in hardened cement paste [11,12]. Bacteria spores and nutrients dissolve into
water that are infiltrated through cracks and the spores subsequently initiate metabolic
activity [24,25].

The use of self-healing concrete improves the durability performance and lengthens
the target service life of concrete without requiring costly and time-consuming crack repair.
To enable commercialization of self-healing concrete, however, a method for quantitatively
evaluating the self-healing capacities of different technologies is necessary. In particular,
because cracks have a direct impact on durability performance rather than on mechanical
properties, it is very important to evaluate the recovery of durability performance through
self-healing. In previous studies, crack healing was evaluated using nondestructive testing
(NDT) or microstructure analysis [26]. NDT, which has been carried out using radiation
testing [23], acoustic emission [27], ultrasonic testing [28,29], and image analysis [30], is
a relatively simple process but has a low degree of reliability and limited applicability in
directly evaluating mechanical or durability performance. Alternatively, water permeabil-
ity tests have been applied in the direct evaluation of recovery of durability performance
through self-healing [4,6]. To evaluate the reduction in permeability induced by self-healing,
Van Mullem et al. [31] introduced water from a water tank in which the water level was held
constant to the inside of a cracked specimen and measured the amount of water discharged
through the cracks. Gwon et al. [32] evaluated the permeability of a cylindrical specimen
with artificially induced cracks installed within a water permeability test cell in terms of
the total amount of water that permeated the cracks over a specific period of time. Instead
of water permeability testing, water absorption test has also been investigated [33,34].
Recently, pre-standard testing methods for water permeability and absorption have been
evaluated by means of an interlaboratory testing campaign [35]. However, water perme-
ability or absorption testing methods have limited applicability in the direct evaluation of
resistance to chloride penetration. Therefore, methods for directly evaluating resistance
to chloride penetration have been studied [10,36–40]. Van Belleghem et al. [36] confirmed
the formation of layers that block against direct chloride penetration through cracks in
self-healing concrete in which encapsulated polyurethane is used as a healing material
and evaluated self-healing capacity using accelerated chloride diffusion testing. However,
the accelerated chloride diffusion test they applied is slow, making it difficult to evaluate
self-healing capacity at a specific time. Şahmaran et al. [37] investigated resistance to
chloride penetration in specimens with crack widths ranging from 50 to 140 µm using
the test method defined under ASTM C 1202 [41] and evaluated the self-healing capaci-
ties of the specimens after 60 days of healing age. The ASTM C 1202 method indirectly
evaluates resistance to chloride penetration by measuring the quantity of charge passing
over a period of 6 h using an applied electrical potential. Despite its short testing time,
this method cannot be used to directly measure ion penetration rates because it evaluates
electrical conductivity in terms of quantities of charge. This method also has difficulties in
effectively evaluating chloride penetration resistance, particularly in self-healing concretes
containing inorganic materials, because the electrical conductivity depends on the types
and concentrations of ions within the concrete. To overcome these problems, Abro et al. [40]
applied a steady-state chloride ion electrical migration–diffusion test for calculating the rate
of chloride ion penetration through cracks and used it to evaluate the self-healing capacity
of inorganic material-based self-healing cement mortar. They reported that the application
of an electrical potential of 36 V can reduce the testing time for a mortar specimen with a
water-binder (w/b) ratio of 0.40 by up to 36 h. However, it is encouraged to further reduce
the testing time for minimizing the error. In addition, as the cracks in the specimens used
in the migration–diffusion testing differ from actual cracks in structures in terms of internal
crack geometry, the migration-diffusion test applied for the specimens has some limita-
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tions in evaluating the recovery of chloride penetration resistance through self-healing in
actual cracks. Hence, it is required to develop a model for evaluating chloride penetration
resistance in actual concrete structures.

This study proposes an improved method applying coating on uncracked surfaces
of test specimens in the using electrical migration–diffusion test for the more rapid and
accurate evaluation of the chloride penetration resistance of cracked cement-based com-
posites. Based on observations of the self-healing-induced recovery of chloride penetration
resistance following application of the proposed method, a phenomenological model for
evaluating chloride penetration resistance in actual concrete structures is proposed.

2. Steady-State Migration—Diffusion Test

As noted in the preceding section, the electrical migration–diffusion tests have been
used to rapidly evaluate chloride penetration rates within a short period of time. Stan-
dardized electrical migration–diffusion test methods include ASTM C 1202 [41], NT Build
355 [42], and NT Build 492 [43]. The ASTM C 1202 test method indirectly evaluates chloride
penetration resistance by measuring the quantity of charge passed charges for 6 h. As
previously noted, however, despite the benefit of short testing time, this method cannot
directly measure durability parameters such as the chloride ion diffusion coefficient. By
contrast, the test specified under NT Build 355 can determine diffusion coefficients using
steady-state electrical migration–diffusion testing and the test specified under NT Build 492
can determine non-steady-state chloride ion diffusion coefficients using a non-steady-state
test. The steady-state diffusion coefficient can be calculated using the Nernst–Planck equa-
tion by measuring the rate of change in chloride ion concentration within a solution inside a
diffusion cell after reaching the steady state. On the contrary, the non-steady-state diffusion
coefficient measurement test is terminated before reaching the steady state. Instead of
measuring the change in chloride ion concentration, the non-steady-state diffusion coef-
ficient is obtained by cutting the specimen perpendicular to the chloride ion penetration
direction, spraying the cut with AgNO3 solution, measuring the chloride ion penetration
depth by observing the color change [43], and applying the equation proposed by Tang
and Nilsson [44].

However, it is difficult to use the non-steady-state diffusion coefficient test to calculate
only the diffusion coefficient of cracked concrete because the chloride ion penetration
depths at crack and in uncracked section differ. For this reason, many researchers have
evaluated the steady-state diffusion coefficients of cracked specimens by applying the test
setups described under ASTM C 1202 or NT Build 355 [1,38–40]. Abro et al. [40] conducted
steady-state chloride ion migration–diffusion testing using the ASTM C 1202 set-up shown
in Figure 1 and proposed a method for evaluating self-healing capacity by calculating the
quantity of chloride ions that moved through the cracks.

Materials 2021, 14, x FOR PEER REVIEW 4 of 20 
 

 

  

(a) (b) 

Figure 1. (a,b) Test set-up for chloride ion migration–diffusion test (ASTM C 1202). 

The “steady-state condition” refers to the state, occurring after a certain period of 

time during which ions move by an electrical potential between two cells, in which the 

chloride ion concentration within the specimen is saturated and, therefore, the incoming 

and outcoming ion flows per unit time become equal: 

∆𝑐1

∆𝑡
≈

∆𝑐2

∆𝑡
. (2) 

In this instance, if the electrical potential is constant, the steady-state diffusion coef-

ficient can be calculated using the Nernst–Planck equation as follows [44]: 

𝐷𝑠𝑠𝑚 =
𝑅𝑇𝐿

𝑧𝐹𝑈

𝑉

𝐴

1

𝑐1
|
∆𝑐1

∆𝑡
| =

𝑅𝑇𝐿

𝑧𝐹𝑈

𝑉

𝐴

1

𝑐1
|
∆𝑐2

∆𝑡
|, (3) 

where 𝑐1 is the concentration in the upstream cell, 𝑐2 is the concentration in the down-

stream cell, 𝐿 is the specimen thickness, 𝑉 is the cell volume, and 𝐴 is the cross-sec-

tional area of the specimen. The chloride ion concentration in the upstream cell (𝑐1) con-

tinues to decrease over the course of an actual test. Therefore, Equation (3) can be con-

verted to the following form in which the diffusion coefficient is defined in terms of the 

rate of change of the logarithmic value of the chloride ion concentration: 

𝐷𝑠𝑠𝑚 =
𝑅𝑇𝐿

𝑧𝐹𝑈

𝑉

𝐴
|
∆ ln(𝑐1)

∆𝑡
|. (4) 

In the formulation in Equation (4), the state in which the rate of change in the loga-

rithmic chloride concentration becomes constant is defined as the quasi-steady-state con-

dition [1,45]. 

In several previous studies [1,40,46], the penetration paths of chloride ions were di-

vided into crack and uncracked zone as shown in Figure 2a. Under the formulation using 

a parallel model, the total amount of chloride ion penetrations becomes the sum of the 

penetrations through the crack and uncracked zone: 

𝐴𝑡𝑜𝑡𝐽𝑡𝑜𝑡 = 𝐴𝑢𝑐𝑟𝐽𝑢𝑐𝑟 + 𝐴𝑐𝑟𝐽𝑐𝑟 (5) 

here, 𝐴𝑡𝑜𝑡 is the total area of the specimen; 𝐴𝑢𝑐𝑟 is the area of the uncracked zone of the 

specimen; 𝐴𝑐𝑟 is the area of cracking; and 𝐽𝑡𝑜𝑡, 𝐽𝑢𝑐𝑟, and 𝐽𝑐𝑟 are the total flux and the 

fluxes in the uncracked zone and the crack, respectively. If the electrical potential 𝜕𝑈/𝜕𝑥 

acting on the crack and uncracked zone is assumed to be same and constant, the following 

relationship holds under the Nernst–Planck equation [46]: 

𝐴𝑡𝑜𝑡𝐷𝑚𝑒𝑎𝑠 = 𝐴𝑐𝑟𝐷𝑐𝑟 + 𝐴𝑢𝑐𝑟  𝐷𝑢𝑐𝑟, (6) 

where 𝐷𝑚𝑒𝑎𝑠 is the measured chloride ion diffusion coefficient of the specimen, 𝐷𝑢𝑐𝑟 is 

the chloride ion diffusion coefficient in the uncracked zone, and 𝐷𝑐𝑟 is the diffusion co-

efficient in the crack. Assuming 𝐴𝑢𝑐𝑟 ≈ 𝐴𝑡𝑜𝑡, the chloride ion diffusion coefficient in the 

crack is given as: 

Figure 1. (a,b) Test set-up for chloride ion migration–diffusion test (ASTM C 1202).



Materials 2021, 14, 2501 4 of 20

If the movement of chloride ions by diffusion is neglected in the electrical migration–
diffusion test, the chloride ion flux can be expressed using the following Nernst–Planck equation:

Jc = D
zF
RT

c
∂U
∂x

, (1)

where Jc is the chloride ion flux, z is the ionic valence, F is the Faraday constant (=96,485 C
per equivalent), R is the gas constant (=8.3145 J/mol·K), T is the absolute temperature (K),
D is the diffusion coefficient, c is the chloride ion concentration, U is the electrical potential
applied (V), and x is the distance.

The “steady-state condition” refers to the state, occurring after a certain period of
time during which ions move by an electrical potential between two cells, in which the
chloride ion concentration within the specimen is saturated and, therefore, the incoming
and outcoming ion flows per unit time become equal:

∆c1

∆t
≈ ∆c2

∆t
. (2)

In this instance, if the electrical potential is constant, the steady-state diffusion coeffi-
cient can be calculated using the Nernst–Planck equation as follows [44]:

Dssm =
RTL
zFU

V
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1
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V
A
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where c1 is the concentration in the upstream cell, c2 is the concentration in the downstream
cell, L is the specimen thickness, V is the cell volume, and A is the cross-sectional area of
the specimen. The chloride ion concentration in the upstream cell (c1) continues to decrease
over the course of an actual test. Therefore, Equation (3) can be converted to the following
form in which the diffusion coefficient is defined in terms of the rate of change of the
logarithmic value of the chloride ion concentration:

Dssm =
RTL
zFU

V
A

∣∣∣∣∆ ln(c1)

∆t

∣∣∣∣. (4)

In the formulation in Equation (4), the state in which the rate of change in the log-
arithmic chloride concentration becomes constant is defined as the quasi-steady-state
condition [1,45].

In several previous studies [1,40,46], the penetration paths of chloride ions were
divided into crack and uncracked zone as shown in Figure 2a. Under the formulation using
a parallel model, the total amount of chloride ion penetrations becomes the sum of the
penetrations through the crack and uncracked zone:

Atot Jtot = Aucr Jucr + Acr Jcr (5)

here, Atot is the total area of the specimen; Aucr is the area of the uncracked zone of the
specimen; Acr is the area of cracking; and Jtot, Jucr, and Jcr are the total flux and the fluxes
in the uncracked zone and the crack, respectively. If the electrical potential ∂U/∂x acting
on the crack and uncracked zone is assumed to be same and constant, the following
relationship holds under the Nernst–Planck equation [46]:

AtotDmeas = AcrDcr + AucrDucr, (6)

where Dmeas is the measured chloride ion diffusion coefficient of the specimen, Ducr is the
chloride ion diffusion coefficient in the uncracked zone, and Dcr is the diffusion coefficient
in the crack. Assuming Aucr ≈ Atot, the chloride ion diffusion coefficient in the crack is
given as:

Dcr =
Atot

Acr
(Dmeas − Ducr). (7)
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Figure 2. Transport paths of chloride ions in uncoated and coated specimens: (a) uncoated specimen
and (b) coated specimen.

To determine the chloride ion penetration rate in the crack using Equation (7), it is
necessary to obtain the diffusion coefficient in the uncracked zone. In previous studies [1,40],
the diffusion coefficient in the uncracked zone was assumed based on chloride ion diffusion
coefficients measured from other uncracked specimens. However, the assumption that
the diffusion coefficient of a specimen without cracking will be the same as that of the
uncracked zone of a cracked specimen is questionable; this is discussed in more detail
in our analysis of the results in Section 4. To re-assess the validity of the parallel model
hypothesis and calculate the chloride ion diffusion coefficient in the crack more accurately,
we decided in this study to apply epoxy coating to the external contact surfaces in the
uncracked zone, as shown in Figure 2b. If the amount of the chloride ions penetrating a
specimen through the internal surfaces in the crack via diffusion can be assumed to be
negligibly small compared to the amounts of the chloride ions that penetrate through crack
via migration. This makes it possible to assume that chloride ions penetrate only through
crack. If this assumption is valid, the chloride ion diffusion coefficient of the crack can be
directly obtained from the measured diffusion coefficient of the specimen as follows:

Dcr =
Atot

Acr
Dmeas. (8)

3. Experimental Program
3.1. Materials and Mixture Proportions

Mortar specimens with water-to-binder ratios (w/b) of 0.4 were prepared for testing.
In addition to an ordinary Portland cement (OPC) mixture, two self-healing mixtures
containing ground granulated blast furnace slag (GGBFS) and clinker with a particle size
larger than that of OPC were formulated. In both mixtures, 25% of the OPC was replaced
with GGBFS. Clinker with a particle size of 0.85 mm or below replaced 5% (or 10%) of
the OPC and clinker with a particle size of 2.5 mm or below replaced 5% (or 10%) of the
fine aggregate. Na2SO4 and anhydrate gypsum were added as a GGBFS stimulant to each
mixture at 1.5% of the binder weight. Clinker with a particle size larger than that of the
cement is expected to generate self-healing because the insides of the clinker particles are in
the unhydrated state and generate hydrates by reacting with water that penetrates through
formed cracks [47]. Unreacted GGBFS also contributes to self-healing by generating C–S–H
through reactions with water and Ca(OH)2. Table 1 lists the mixture proportions in detail.

3.2. Preparation of Test Specimens

After mixing the materials according to the mixture proportions listed in Table 1, the
mixtures were poured into cylindrical molds with a diameter of 100 mm and a height of 200
mm and compacted using a vibrator to prepare specimens. Following air curing for 24 h,
the specimens were removed from the mold and subjected to water curing for 28 days.
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Table 1. Mixture proportions.

Mixture ID

Proportions
HRWRA

(% by Binder Weight)Water OPC GGBFS Na2SO4
Anhydrate
Gypsum Clinker Fine

Aggregate

OPC 0.4 1 0 0 0 0 2.0 0.5
SHC15 0.4 0.67 0.25 0.015 0.015 0.15 1.90 0.7
SHC30 0.4 0.62 0.25 0.015 0.015 0.30 1.80 0.7

HRWRA = high-range water-reducing admixture.

After 28 days, each specimen was cut with both ends excluded to form two disk
specimens with lengths of 50 mm each. The disk specimens were split using a compression
testing machine and the surface coating was then applied. After that, silicone tapes with
thicknesses corresponding to the target crack widths were attached to both ends of each
crack. The split specimens were then fixed using a steel clamp, as shown in Figure 3. The
details of our method for preparing cracked specimens can be found in [40]. The actual
crack widths were measured twice at three points with 30 mm spacing along crack on
the top and bottom faces of each specimen using an optical microscope immediately after
re-assembling of split specimens. The mean value was taken as the crack width of the
specimen. Table 2 lists the measured crack widths of the prepared cracked specimens. It is
seen from the table that the prepared cracks had errors in width of up to 10% of the target
crack widths. For each mixture, a total of seven specimens were fabricated, including one
uncracked specimen without coating, and three uncoated and three coated specimens with
induced crack widths of 0.1, 0.2, and 0.3 mm, respectively. Because only one specimen was
tested for each crack width, coating condition, and mixture type, it has some limitations in
capturing the statistical uncertainties included in the test results. However, the main focus
of this study is to assess the differences that come from the application of surface coating,
and it can be done by directly comparing the results of uncoated and coated specimens,
which were manufactured from the same cylinder. The specimen coatings were obtained
by applying epoxy resin onto all surfaces facing upstream cell except for crack (refer to
Figure 3b). The repeatability of the test has been checked in the previous study [40]. In this
study, the test was done on one specimen for each crack width and mixture.

Materials 2021, 14, x FOR PEER REVIEW 7 of 20 
 

 

Table 2. Measured crack widths. 

Mixture 
ID 

Measured Crack Widths (μm) of Specimens—Mean (Standard Deviations) 100 = ࢚ࢋࢍ࢘ࢇ࢚,࢘ࢉܟ μm 200 = ࢚ࢋࢍ࢘ࢇ࢚,࢘ࢉܟ μm 300 = ࢚ࢋࢍ࢘ࢇ࢚,࢘ࢉܟ μm 
Uncoated Coated Uncoated Coated Uncoated Coated 

OPC 109.7 (5.91) 101.2 (10.24) 199.6 (9.03) 206.5 (17.90) 298.1 (18.37) 295.3 (12.80) 
SHC15 109.9 (7.81) 102.1 (8.02) 202.2 (9.04) 206.9 (11.29) 296.0 (8.70) 299.7 (12.63) 
SHC30 97.4 (6.51) 106.9 (7.99) 203.8 (7.44) 203.8 (14.60) 299.2 (10.12) 304.3 (17.55) w௖௥,௧௔௥௚௘௧ = target crack width. 

  
(a) (b) 

Figure 3. Uncoated and surface-coated specimens: (a) uncoated specimens and (b) surface-coated 
specimens. 

4. Results and Discussion 
4.1. Variation of Chloride Ion Concentration and Time to Reach the Quasi-Steady State 

Figure 4 shows the changes over time of the upstream- and downstream-cell chloride 
ion concentrations in the uncracked and cracked (0.3-mm crack width) OPC and SHC30 
specimens. In the upstream cell, the chloride ion concentrations rapidly decrease at first 
and then undergo a slower decrease with an almost constant slope. The cracked specimens 
exhibit higher concentrations than the uncracked specimens. In the downstream cell, the 
chloride ion concentration increases as the chloride ions passing through the crack and 
uncracked zone reach the cell, after which the slope also becomes constant. In the 
uncracked specimens, the concentration in the downstream cell slowly increases as the 
time at which the slope of concentration change becomes constant is approached. In the 
cracked specimens, by contrast, the passage of chloride ions through the cracks causes the 
ion concentrations to increase immediately after the start of testing, and the changes in 
slope are induced by chloride ions passing through the uncracked zone of the specimens. 
In addition, although the slopes of concentration change in the upstream and downstream 
cells converge, they do not become identical. Because the slopes vary slightly even after a 
considerable time, it is not easy to clearly determine when the steady state is reached. 

Figure 3. Uncoated and surface-coated specimens: (a) uncoated specimens and (b) surface-coated specimens.

3.3. Test Methods

The upstream and downstream cells were filled with 0.5 M NaCl and 0.3% NaOH
solutions, respectively, as shown in Figure 1 for the chloride migration-diffusion test. To
induce the movement of chloride ions, a voltage of 36 V was applied. The rates of change
in the chloride ion concentrations in the upstream and downstream cells were obtained
by measuring the concentrations at regular intervals using an ion-selective electrode. The
concentrations were measured every 20 min for 2 h after the start of the test, every 60 min
for the next 4 h, and every 120 min thereafter until the end of the test. When each diffusion
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coefficient measurement test was completed, the specimen was subjected to water curing
until the next measurement. The test was conducted four times, at 0, 28, 56, and 91 days of
healing age.

Table 2. Measured crack widths.

Mixture ID

Measured Crack Widths (µm) of Specimens—Mean (Standard Deviations)

wcr,target=100 µm wcr,target=200 µm wcr,target=300 µm

Uncoated Coated Uncoated Coated Uncoated Coated

OPC 109.7 (5.91) 101.2 (10.24) 199.6 (9.03) 206.5 (17.90) 298.1 (18.37) 295.3 (12.80)
SHC15 109.9 (7.81) 102.1 (8.02) 202.2 (9.04) 206.9 (11.29) 296.0 (8.70) 299.7 (12.63)
SHC30 97.4 (6.51) 106.9 (7.99) 203.8 (7.44) 203.8 (14.60) 299.2 (10.12) 304.3 (17.55)

wcr,target = target crack width.

4. Results and Discussion
4.1. Variation of Chloride Ion Concentration and Time to Reach the Quasi-Steady State

Figure 4 shows the changes over time of the upstream- and downstream-cell chloride
ion concentrations in the uncracked and cracked (0.3-mm crack width) OPC and SHC30
specimens. In the upstream cell, the chloride ion concentrations rapidly decrease at first
and then undergo a slower decrease with an almost constant slope. The cracked specimens
exhibit higher concentrations than the uncracked specimens. In the downstream cell,
the chloride ion concentration increases as the chloride ions passing through the crack
and uncracked zone reach the cell, after which the slope also becomes constant. In the
uncracked specimens, the concentration in the downstream cell slowly increases as the
time at which the slope of concentration change becomes constant is approached. In the
cracked specimens, by contrast, the passage of chloride ions through the cracks causes the
ion concentrations to increase immediately after the start of testing, and the changes in
slope are induced by chloride ions passing through the uncracked zone of the specimens.
In addition, although the slopes of concentration change in the upstream and downstream
cells converge, they do not become identical. Because the slopes vary slightly even after a
considerable time, it is not easy to clearly determine when the steady state is reached.

Abro et al. [40] reported that, after reaching the quasi-steady state, the magnitude
of the standard deviation of ∆c1/c1 becomes less than 1%. However, determining this
is cumbersome because the quantitative criterion for the allowable magnitude of the
standard deviation is ambiguous, and the deviation must be examined as the size of the
measurement section continuously varies. Accordingly, in this study, the rate of change
of the log concentration gradient in the upstream cell was measured to better identify the
time needed to reach the quasi-steady state. It was assumed that the quasi-steady state was
reached when the rate of change of ∆ln(c1)/∆t at each time step became lower than the
allowable error, that is:

RLCS =

∣∣∣∆ln(c1)
∆t

∣∣∣
n+1
−

∣∣∣∆ln(c1)
∆t

∣∣∣
n∣∣∣∆ln(c1)

∆t

∣∣∣
n

≤ ε, (9)

where RLCS is the rate of change of the log concentration gradient and the allowable error
ε is set to 3.5 × 10−3 by referring to the data in Figure 5. The coated specimens reached
the quasi-steady state more rapidly than the uncoated specimens. Figure 6 shows the
time needed by each specimen to reach the quasi-steady state (tqss). For the uncoated
specimens, tqss ranged from 14 to 24 h and for the coated specimens, it ranged from 6 to
12 h, a decrease of 44–67% relative to the uncoated specimens. There were, however, no
significant differences in tqss in terms of mixing characteristics, age, or crack width.
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Figure 4. Variation in chloride concentrations in upstream and downstream cells: (a) OPC, uncracked;
(b) SHC15, uncracked; (c) SHC30, uncracked; (d) OPC, crack width 0.3 mm, uncoated; (e) OPC, crack
width 0.3 mm, coated; (f) SHC15, crack width 0.3 mm, uncoated; (g) SHC15, crack width 0.3 mm,
coated; (h) SHC30, crack width 0.3 mm, uncoated; and (i) SHC30, crack width 0.3 mm, coated.
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Figure 5. Variation in rate of change of chloride concentration: (a) OPC, uncracked; (b) SHC15,
uncracked; (c) SHC30, uncracked; (d) OPC, crack width 0.3 mm, uncoated; (e) OPC, crack width
0.3 mm, uncoated; (f) SHC15, crack width 0.3 mm, uncoated; (g) SHC15, crack width 0.3 mm, coated;
(h) SHC30, crack width 0.3 mm, uncoated; and (i) SHC30, crack width 0.3 mm, coated.

As noted previously, as crack healing can occur within a short period of time in a
self-healing cement composite, it is very important to reduce the test time in evaluating
self-healing capacity; correspondingly, surface coating is applied to obtain more accurate
self-healing capacity evaluation because it decreases the time needed to reach the quasi-
steady state and, therefore, reduces the test time.
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Figure 6. Comparison of times needed to reach the quasi-steady state: (a) OPC, (b) SHC15, and (c) SHC30.

4.2. Relationship Between Chloride Ion Diffusion Coefficient and Crack Width

Once the chloride ion log concentration gradient is obtained after reaching the quasi-
steady state, the chloride ion diffusion coefficient Dmeas of a specimen can be calculated
using Equation (4). Figure 7 shows the relationship between the crack width and diffusion
coefficient as a function of healing age. It is seen that the chloride ion diffusion coefficient
of each specimen increases linearly with the crack width, whereas the diffusion coefficient
decreases as the age increases. These results confirm those of Abro et al. [40]. It is also
noted that a slope of diffusion coefficient to crack width decreases because the reduction in
diffusion coefficients is larger as the crack width increases.
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Figure 7. Measured diffusion coefficients of specimens as functions of crack width and healing age:
(a) OPC, uncoated; (b) OPC, coated; (c) SHC15, uncoated; (d) SHC15, coated; (e) SHC30, uncoated;
and (f) SHC30, coated.

Most noteworthy are the differences in slope of diffusion coefficient to crack width
among the specimens. Because ions moved only through the cracks in the coated cracked
specimens, the diffusion coefficients calculated using the total areas of these specimens were
smaller. Therefore, to compare the differences in the quantities of chloride ions passing
through the cracks, we can compare the values obtained by subtracting the diffusion
coefficients of the uncracked zone from the diffusion coefficients of the overall specimens,
as shown in Figure 8. It is seen from the figure that the slopes of the curves for the uncoated
specimens are smaller than those of the coated specimens.

If Equations (6) and (7) under the parallel model described in Section 2 hold,
Equation (7) can re-expressed as follows:

Dmeas − Ducr =
Acr

Atot
Dcr =

wcr d
Atot

βcrD0, (10)

where wcr is the crack width, d is the specimen diameter, βcr is the crack formation factor
representing tortuosity according to the internal crack geometry, and D0 is the ion diffusion
coefficient in the pore solution, which has a value of 2.03 × 10−9 m2/s at 23 ◦C [48]. In this
equation, the slope of the relationship between crack width and diffusion coefficient varies
depending on βcr. Although each cracked specimen has, as expected, different internal
crack geometries, it is difficult to ascertain whether the differences in slope owing to the
application of coating arise from differences in βcr given that the slopes of the uncoated
specimens are consistently smaller than those of the coated specimens by a factor of close
to two. In other words, there is no reason for the slope to change significantly as a result



Materials 2021, 14, 2501 13 of 20

of coating if the assumption applied under the parallel model holds. Consequently, the
finding that the uncoated specimens exhibit smaller slopes indicates that the diffusion
coefficients of the uncracked zone vary by crack width, which in turn suggests that the
assumption applied under the parallel model, i.e., that the electrical potentials ∂U/∂x
acting on crack and uncracked zone are the same, is not valid.
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Figure 8. Diffusion coefficient through cracks as a function of crack width: (a) OPC, uncoated; (b)
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According to Gauss’ law, the electrical potential is inversely proportional to the
permittivity and directly proportional to the charge density, which, in turn, is proportional
to the ion concentration [49]:

∇2U =
F

ε0εr
∑

i
cizi, (11)

where ε0 ~ 8.8542 × 10−12 F/m is the permittivity in vacuum, εr is the relative permittivity,
and ci and zi are the concentration and valence of ion i, respectively. As a saturated crack is
filled with water, its permittivity will be much higher than that of cement-based composites.
The relative permittivity of water is 81, whereas that of concrete varies depending on the
internal porosity and is known to range from approximately 5 to 10 [50]. As a result of this
disparity in permittivity, the electrical potential of crack should be much smaller than that
of uncracked zone. Under this assumption, Equation (6) must be revised as follows:

AtotDmeas

(
∂U
∂x

)
tot

= AcrDcr

(
∂U
∂x

)
cr
+ AucrDucr

(
∂U
∂x

)
ucr

. (12)

Under the further assumptions that Aucr ≈ Atot and ∂Uucr/∂x ≈ ∂Utot/∂x, Equation (12)
can be re-expressed as:

Dmeas − Ducr = Dcr

Acr

(
∂U
∂x

)
cr

Atot

(
∂U
∂x

)
tot

. (13)

Under Equation (13), the diffusion coefficient through a crack (Dmeas −Ducr) decreases
as the crack width increases if the electrical potential of the crack is smaller than that of
uncracked zone. In other words, the diffusion coefficient of the uncracked zone increases
with the crack width. As Equation (13) is based on a simple assumption, it is difficult to use
it to accurately identify changes in the electrical potentials of crack and uncracked zone; for
more accurate analysis, it is necessary to examine changes in these electrical potentials using
numerical analysis, as in the study conducted by Yang [49]. Nevertheless, it is obvious that
the diffusion coefficients through cracks are underestimated in the electrical migration–
diffusion testing of uncoated cracked specimens if the crack and non-crack electrical
potentials are assumed to be the same. This indicates that more accurate evaluation can be
performed by applying coating to the uncracked surface.

4.3. Evaluation of Crack Healing Capacity

It is seen from Figure 8 that the reductions in diffusion coefficient are much larger
in the mixtures containing self-healing materials (SHC15 and SHC30) than in the OPC
and that the reduction in diffusion coefficient increases as the self-healing material content
increases. The largest reductions in diffusion coefficient are observed at a healing age of
28 days, after which the rate of reduction slowly decreases. To quantitatively evaluate the
chloride penetration resistance arising from self-healing, the self-healing capacity can be
calculated, following the method proposed by Abro et al. [40], as a function of the diffusion
of chloride ions through the crack:

SH = 1− Dmeas(t)− Ducr(t)
Dmeas(0)− Ducr(0)

, (14)

where t is the healing age. For the coated specimens, Ducr = 0. Figure 9 shows the
self-healing capacities calculated using Equation (14). For both the uncoated and coated
specimens, the self-healing capacities tend to increase with the content of self-healing
material and tend to decrease as the initial crack width increases. These results are in
close agreement with those of Abro et al. [40], although it is important to note that the self-
healing capacities of the uncoated specimens are greater than those of the coated specimens.
This appears to be because the diffusion coefficient of the uncracked zone of the cracked
specimen was found to be higher than that of the uncoated specimens and, therefore, the
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values of (Dmeas − Ducr) were lower, as described previously. Because the initial values
at the beginning of healing (day 0) were found to be small, the self-healing capacities
relative to the initial values were larger. This suggests that the self-healing capacities of
the uncoated specimens are overestimated, whereas those of the coated specimens are
accurately estimated because it is possible to directly calculate the chloride ion diffusion
coefficient through crack.

Materials 2021, 14, x FOR PEER REVIEW 15 of 20 
 

 

28 days, after which the rate of reduction slowly decreases. To quantitatively evaluate the 

chloride penetration resistance arising from self-healing, the self-healing capacity can be 

calculated, following the method proposed by Abro et al. [40], as a function of the diffu-

sion of chloride ions through the crack: 

𝑆𝐻 = 1 −
𝐷𝑚𝑒𝑎𝑠(𝑡) − 𝐷𝑢𝑐𝑟(𝑡)

𝐷𝑚𝑒𝑎𝑠(0) − 𝐷𝑢𝑐𝑟(0)
, (14) 

where 𝑡 is the healing age. For the coated specimens, 𝐷𝑢𝑐𝑟 = 0. Figure 9 shows the self-

healing capacities calculated using Equation (14). For both the uncoated and coated spec-

imens, the self-healing capacities tend to increase with the content of self-healing material 

and tend to decrease as the initial crack width increases. These results are in close agree-

ment with those of Abro et al. [40], although it is important to note that the self-healing 

capacities of the uncoated specimens are greater than those of the coated specimens. This 

appears to be because the diffusion coefficient of the uncracked zone of the cracked spec-

imen was found to be higher than that of the uncoated specimens and, therefore, the val-

ues of (𝐷𝑚𝑒𝑎𝑠 − 𝐷𝑢𝑐𝑟) were lower, as described previously. Because the initial values at 

the beginning of healing (day 0) were found to be small, the self-healing capacities relative 

to the initial values were larger. This suggests that the self-healing capacities of the un-

coated specimens are overestimated, whereas those of the coated specimens are accurately 

estimated because it is possible to directly calculate the chloride ion diffusion coefficient 

through crack. 

  

(a) (b) 

Figure 9. Evaluated self-healing capacities of uncoated and coated specimens: (a) uncoated specimens and (b) coated spec-

imens. 

4.4. Phenomenological Model for Crack Healing Process and Recovery of Resistance to Chloride 

Ion Penetration 

4.4.1. Concept of Healed Crack Width 

Previous studies have found that, if the crack width is below a certain value (the 

“critical crack width” [1,46]), the ion diffusion rate in the crack will be the same as that for 

concrete without cracking. The size of the reported critical crack width depends somewhat 

on the study but has been found to lie within the 55–100 μm range [1,37,46,51,52]. How-

ever, the cause of the critical crack width phenomenon has yet to be clearly identified. 

In the test results obtained in this study, the x-axis intercepts of the straight lines 

connecting the 𝐷𝑚𝑒𝑎𝑠 − 𝐷𝑢𝑐𝑟 values at each crack width in Figure 8 represent the critical 

crack widths. For the coated specimens, the critical crack widths at day 0 of healing age 

are very small (less than 10 μm) but increase with the healing age. This supports the fol-

lowing hypotheses: 

 The critical crack width is the result of self-healing. 

Figure 9. Evaluated self-healing capacities of uncoated and coated specimens: (a) uncoated specimens and (b) coated specimens.

4.4. Phenomenological Model for Crack Healing Process and Recovery of Resistance to Chloride
Ion Penetration
4.4.1. Concept of Healed Crack Width

Previous studies have found that, if the crack width is below a certain value (the
“critical crack width” [1,46]), the ion diffusion rate in the crack will be the same as that for
concrete without cracking. The size of the reported critical crack width depends somewhat
on the study but has been found to lie within the 55–100 µm range [1,37,46,51,52]. However,
the cause of the critical crack width phenomenon has yet to be clearly identified.

In the test results obtained in this study, the x-axis intercepts of the straight lines
connecting the Dmeas − Ducr values at each crack width in Figure 8 represent the critical
crack widths. For the coated specimens, the critical crack widths at day 0 of healing age
are very small (less than 10 µm) but increase with the healing age. This supports the
following hypotheses:

• The critical crack width is the result of self-healing.
• The critical crack width is not fixed but varies depending on the healing age with a

rate of change that depends on the self-healing capacity.

Critical crack widths that were found in previous studies appeared to be large because
crack self-healing occurred during the experiments. For the results of this study, we define
the critical crack width as the “healed crack width” based on the above hypotheses. Figure 10
shows the change in healed crack width owing to self-healing.

Under the concept shown in Figure 10, the residual crack width at healing age t can
be expressed as:

wcr(t) = wci − wch(t), (15)

where wcr(t) is the residual crack width at healing age t, wci is the initial crack width, and
wch(t) is the healed crack width at healing age t (all in mm). Thus, wch(0) is the healed
crack width at day 0 of healing age and corresponds to the critical crack width in the
literature. Based on this, Equation (10) can be re-written as follows:

Dmeas =
Acr

Atot
Dcr =

wcr(t) d
Atot

βcr(t)D0 =
[wci − wch(t)]d

Atot
βcr(t)D0. (16)
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Figure 10. Healed crack width concept.

The coated specimen data in Figure 8 show that, as the healing age increases, the healed
crack width increases but the slope of Dmeas − Ducr as a function of crack width slowly
decreases. Because D0 is a constant and varies only with the temperature, this decrease
in slope can be attributed to the reduction in βcr. This reduction in crack formation factor
appears to originate in the changes in internal crack geometry arising from the irregular
formation of self-healing materials in the cracks with increasing healing age and the
resulting changes in tortuosity.

4.4.2. Healed Crack Width and Crack Formation Factor

The coated specimen test results in Figure 8 can be used to obtain the healed crack
width and crack formation factor according to healing age, as shown in Figure 11, from
which it is seen that the mixtures containing self-healing materials exhibit larger healed
crack widths and lower crack formation factors.
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The relationship between healing age and healed crack width and crack formation
factor shown in the figure can be expressed as the following hyperbolic functions:

wch(t) = wcc + (wchu − wcc)

[
1−

(
t0

t + t0

)m]
(17)

βcr(t) = βcrl + (βcr0 − βcrl)

(
t0

t + t0

)n
, (18)
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where t0 is the age at which healing begins, wchu is the upper limit of the healed crack
width, and βcr0 and βcrl are the initial value and lower limit of the crack formation factor,
respectively. As shown in Figure 11, the two functions closely follow the data trend
when the upper limit of the healed crack width (wchu) and the lower limit of the crack
formation factor (βcrl) are assumed as shown in Table 3. Table 3 lists the main parameters
of the healed crack width growth and crack formation factor reduction functions obtained
through data fitting.

Table 3. Parameters for healed crack width and crack formation factors.

Mixture ID
Parameters for Healed Crack Width Parameters for Crack Formation Factor

wcc wchu m (R2) βcr0 βcrl n (R2)

OPC 0.009 0.04 2.217 (0.99) 0.433 0.22 1.25 (0.99)
SHC15 0.006 0.15 0.302 (0.99) 0.438 0.10 1.10 (0.99)
SHC30 0.002 0.17 0.420 (0.99) 0.431 0.05 1.29 (0.99)

The healed crack width wch(t) and crack formation factor βcr(t) can be defined as
intrinsic material properties that depend on the self-healing capacity of the cement-based
composite. Using the material parameter values in Table 3 obtained by applying the test
method suggested in this study, it is possible to predict the reduction in crack width and
the change in the penetration rate of chloride ions through actual cracks as functions of
healing age. In test specimens, the crack width hardly changes along the depth, whereas
cracks forming in real concrete structures tend to narrow with increasing depth from the
surface, making it difficult to evaluate the quantity of chloride ions penetrating through
such cracks using test data alone. By applying the healed crack width growth and crack
formation factor reduction functions suggested in this study, it is possible to estimate the
residual crack width recovered through self-healing. Our results suggest that these models
would be useful in evaluating the self-healing-induced recovery of the chloride penetration
resistance of cracked concrete in actual structures.

5. Conclusions

This study proposed a method of applying coating on uncracked surfaces of test
specimens in the electrical migration-diffusion test to improve the evaluation of the re-
covery of chloride penetration resistance from the self-healing of cracks in cement-based
composites. The proposed method has been validated from the experimental data. Based
on observations of the self-healing-induced recovery of chloride penetration resistance, a
phenomenological model for predicting the progress of crack self-healing in cement-based
composites was suggested. The following conclusions were obtained from this study:

1. The time required to reach the quasi-steady state decreases when coating is applied
to the uncracked surface of a specimen. This indicates that the application of surface
coating can reduce testing time, thereby minimizing the error caused by self-healing
during the test.

2. The slope of the crack width-diffusion coefficient relation was found to be higher
in the surface-coated specimens. This was attributed to differences between the
electrical potentials of the crack and uncracked zone arising from differences in their
permittivities. If the electrical potential of crack is assumed to be the same as that of
uncracked zone without considering this difference in electrical potential between the
two, the diffusion coefficient of the uncracked zone will be overestimated whereas
that of the crack will be underestimated, with the degree of error increasing with the
crack width. This will in turn result in an overestimation of the self-healing capacity.
Thus, the diffusion coefficient of cracked concrete can be evaluated more accurately
by applying surface coating.

3. The critical crack width at day 0 of healing age was found to be very small (less than
10 µm) but increased with the healing age. Based on this, it was possible to establish
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the hypotheses that (a) the critical crack width results from self-healing and (b) the
critical crack width is not fixed but varies depending on the healing age, with a rate
of change that depends on the self-healing capacity. Based on these hypotheses, the
critical crack width can be defined as the “healed crack width” and the diffusion
coefficient of a crack can be formulated as a function of the healed crack width and
crack formation factor.

4. As self-healing progresses, the healed crack width slowly increases as a result of the
formation of self-healing materials in the crack; at the same time, the crack formation
factor decreases as the internal crack geometry changes owing to self-healing. The
rates of increase in the healed crack width and decrease in the crack formation factor
vary depending on the self-healing capacity of the material and can be expressed as
hyperbolic functions with upper and lower limits, respectively.

5. By applying the healed crack width growth and crack formation factor reduction
functions suggested in this study, it is possible to estimate the residual crack width
recovered through self-healing in an actual structure and to predict the chloride ion
penetration rate through its cracks. As such, the proposed models are expected to
be useful in evaluating the self-healing-induced recovery of the chloride penetration
resistance of cracked concrete in actual structures.
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