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André Kahles*, Jonas Behr‡ and Gunnar Rätsch*
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Abstract

Motivation: Mapping high-throughput sequencing data to a reference genome is an essential step

for most analysis pipelines aiming at the computational analysis of genome and transcriptome

sequencing data. Breaking ties between equally well mapping locations poses a severe problem

not only during the alignment phase but also has significant impact on the results of downstream

analyses. We present the multi-mapper resolution (MMR) tool that infers optimal mapping loca-

tions from the coverage density of other mapped reads.

Results: Filtering alignments with MMR can significantly improve the performance of downstream

analyses like transcript quantitation and differential testing. We illustrate that the accuracy

(Spearman correlation) of transcript quantification increases by 15% when using reads of length

51. In addition, MMR decreases the alignment file sizes by more than 50%, and this leads to a

reduced running time of the quantification tool. Our efficient implementation of the MMR algorithm

is easily applicable as a post-processing step to existing alignment files in BAM format. Its com-

plexity scales linearly with the number of alignments and requires no further inputs.

Availability and implementation: Open source code and documentation are available for down-

load at http://github.com/ratschlab/mmr. Comprehensive testing results and further information

can be found at http://bioweb.me/mmr.

Contact: andre.kahles@ratschlab.org or gunnar.ratsch@ratschlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Addressing the increasing need for fast and accurate mapping of high-

throughput sequencing data to a reference sequence, many different soft-

ware tools have been developed over the past years, many of which are

frequently updated and improved (Dobin et al., 2013; Jean et al., 2010;

Kim et al., 2013; Li and Durbin, 2009). While numerous challenges

have been addressed by the developers, e.g. the consideration of gaps

and mismatches or the spliced alignment of RNA-Sequencing data, the

problem of ambiguous read mapping still remains unresolved for many

of the most popular alignment tools. Depending on factors like read

length, alignment sensitivity and repetitiveness of the target genome, a

large fraction of reads aligns uniquely to the target and exactly one map-

ping location is reported. However, for the remaining, still significantly

large, fraction of reads (�10–20%, depending on alignment sensitivity),

several possible mapping locations exist. Currently, different strategies

are employed to deal with these reads in downstream analyses, most of

which have unfavorable side effects: Discarding reads with ambiguous

alignments from the alignment result leads to a systematic underestima-

tion of abundance in genomic regions with multi-mapper ambiguities,

whereas picking a random alignment or distributing weight across all

alignments uniformly does not have a proper biological justification. We

provide a brief review of related approaches (Hashimoto et al., 2009; Li

et al., 2010; Mortazavi et al., 2008; Wang et al., 2010; Zhang et al.,

2013) in Supplementary Section A.5.

Here, we present a simple, yet powerful tool, called the multi-

mapper resolution (MMR) tool, that assigns each read to a unique

mapping location in a way that the overall read coverage across the

genome is as uniform as possible. MMR makes use of the critical
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fraction of unambiguously aligned reads and iteratively selects the

alignments of ambiguously mapping reads in a way the overall

coverage becomes more uniform. MMR was motivated by and de-

veloped for post-processing of RNA-Seq alignments in order to im-

prove transcript quantification and prediction. We show that it is

also applicable to post-processing DNA-Seq alignments.

2 Approach

2.1 Outline of algorithm
Our approach to resolve ambiguous mapping locations is based on

the simple assumption that, besides all existing biases from library

preparation and sequencing that cause coverage differences over a

longer range, the alignment coverage should generally be uniform

within a local region (RNA-seq or whole-exome-seq) or the whole

genome (WGS-seq). On the basis of this assumption, we can evalu-

ate the fit of an alignment of a read to its current mapping location

relative to other locations, by assessing the local coverage of the can-

didate regions. For each read, the algorithm jointly evaluates all

available alignments with the goal of selecting the alignment/map-

ping that results in the smoothest overall coverage. At the beginning,

for each read, one alignment is selected based on best alignment

score, the given input order or random choice. The set of all initially

picked alignments as well as alignments of uniquely mapped reads

define a global coverage map. On the basis of this map, we can

evaluate the quality of an alignment in its coverage context. To

choose the locally optimal alignment for each read, we perform a

comparison of all alignments a with respect to a loss function ‘þðaÞ
of placing a relative to not placing it (‘�ðaÞ). In the simplest case, the

loss function is defined as the empirical variance of the read cover-

age within a window around the alignment (see Supplementary

Material). This quantity can be computed efficiently since we keep

track of the global coverage map, which is updated when the se-

lected alignment changes. Given the currently selected alignment a

and an alternative alignment b, we update our choice, if the overall

loss across the genome would be reduced by choosing the alternative

alignment. This is the case when ‘�ðaÞ þ ‘þðbÞ < ‘þðaÞ þ ‘�ðbÞ.
This is repeated for all reads with ambiguous mapping locations.

Several iterations over the whole alignment file improve the results.

However, the most striking improvements are achieved within the

first three iterations and only slight changes can be observed after

that (cf. Supplementary Fig. S9). A more detailed description is pro-

vided in Supplementary Section A.

2.2 Paired-end reads
Handling paired-end reads in our framework is straightforward:

Instead of evaluating two individual mapping locations, the same

principle is used to compare two pairs of alignments. After generat-

ing a list of proper pairs, where feasibility is determined through

orientation, chromosome and reasonable proximity, the list is eval-

uated the same way as the list of possible mapping locations for sin-

gle-end reads. This approach is easily adaptable to n-tuple of mates

for n>2.

2.3 Adaptations for RNA-seq data
When mRNA is sequenced instead of DNA, the alignments to the

genome show additional complexity caused by the exon/intron

structure. In this case MMR can incorporate annotation information

to compute the loss in local windows that do not overlap the gen-

omic breakpoints implied by the annotated exons. For more details

on this, we refer to Supplementary Section A.4.1.

2.4 Limiting ambiguity
To find a good trade-off between mapping sensitivity and the number

of possible mapping locations, we allow to restrict the list of possible

mapping locations. This is achieved by thresholding the difference in

edit operations between the best hit and any other alignment. For

instance, a filter of 0 would only include alignments as possible map-

ping locations that have as few edit operations as the best mapping.

2.5 Implementation
The MMR approach is implemented in Cþþ and its source code is

publicly available at http://github.com/ratschlab/mmr. Although it

has been tested and optimized for Linux-based systems, it can be

compiled on other platforms. Parsing of alignment files in BAM for-

mat requires samtools (Li et al., 2009). We also provide a multi-

threaded implementation that keeps the coverage information in

common memory, requiring no additional memory if multiple

threads are used. The single-threaded running time depends on the

number of possible mapping locations per read but is on average

30–45 s per one million alignments per iteration. Thus, running

MMR for three iterations on 100 million alignments takes �20 min

using 10 threads (Intel Xeon E5-2665 CPU).

3 Application

As a proof of principle, we tiled the A.thaliana genome with over-

lapping 50-mers and aligned these 50 nt reads back to the genome.

This resulted in a non-uniform coverage, in particular near repetitive

regions (see Supplementary Fig. S2). Using MMR, we could fully re-

solve mapping ambiguities, resulting in the expected uniform cover-

age of 50 almost everywhere.

Although MMR has been successfully used in several studies

(Drechsel et al., 2013; Rühl et al., 2012), we wanted to rigorously

test our approach on a set of 7 million artificial RNA-Seq reads that

were generated with FluxSimulator (Griebel et al., 2012) based on a

subset of 5000 genes randomly drawn from the human Gencode an-

notation (v19). We simulated read sets of length 32 nt, 51 nt, 76 nt

and 101 nt, resulting in average coverages between 9� and 28�.

The reads were then mutated using an empirical error model that

led to a native error rate of 0.9%. Three levels of random noise

(þ1%, þ2%, þ3%) were applied in addition. We aligned the reads

with TopHat2 (v2.0.2; Kim et al. 2013) and PALMapper (v0.6; Jean

et al. 2010), allowing for up to 6 edit operations, with no annotation

provided. Further information is provided in Supplementary Section

B.2. To investigate the effect of MMR on downstream analyses, we

performed transcript quantification using Cufflinks (Trapnell et al.,

2010) (v2.1.1) and rQuant (Bohnert et al., 2009) on the
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Fig. 1. MMR results on simulated read data: quantification results on 7 million

simulated 51 nt reads aligned with TopHat2, using rQuant and Cufflinks.

Accuracy was measured as Spearman correlation to ground truth. Unfiltered

read sets are shown in dark, best-hit read sets in medium and MMR-filtered

in light gray. Native error rate is 0.9%, noise levels 1–3%
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MMR-filtered alignments, the best alignments only (the alignment

ranked highest by the aligner) and on completely unfiltered align-

ments. For TopHat2 and PALMapper, the quantifications based on

the MMR-filtered alignments showed a consistently better correl-

ation to the ground truth than both the best-hit and unfiltered align-

ments sets. The shorter reads of length �51 nt (Fig. 1) showed larger

improvements compared to unfiltered (Cufflinks: 2.7%, rQuant:

15.0%) and best-hit set (Cufflinks: 5.6%, rQuant: 4.0%) than the

longer reads of length �76 nt, that showed consistent but smaller

improvements (Supplementary Figs S5–S7).

4 Conclusion

We presented MMR, a post-processor for BAM files, resolving ambigu-

ous alignment locations. We showed its easy applicability to the output

of different alignment methods and illustrated that MMR can greatly

improve accuracy of downstream quantification methods. Although

the improvements seem moderate on a global scale, the effect on single

genes can be much larger. Given its lean implementation and the short

running time, MMR is very well suited for large-scale genome-, exome-

and RNA-sequencing efforts. Its good performance on short reads also

suggests an application to ribosome footprinting data (Ingolia et al.,

2012). MMR may also be useful for post-processing alignments in

meta-genome projects for improved selection of taxa.
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